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Abstract. KVEST – Kernel VErification and Specification Technology – is based on automated test generation 

from  formal  specifications.  The  technology  was developed  under  a contract with Nortel Networks and  is 

based on experience  gained in academic research  [1]. By 2000 the methodology and the toolset  have been 

applied in 6 industrial  projects dealing with the verification  of large-scale telecommunication software. The 

first project, named Kernel Verification project, gave its name to the methodology and the toolset as a whole. 

The results of this project are presented  in the Formal Method Europe Application database [28]. It is one of 

the largest formal method  applications presented  in the database. This paper provides a brief description of 

the approach, a comparison to related research,  and prospects  for the future work*. 

 

1. Introduction 

1.1 Reverse and forward 

engineering 
 

Software engineering tasks can be conventionally 

divided into two large groups: reverse engineering and 

forward engineering. Different researchers and practical 

software developers pay different degree of attention to these 

groups, but today no industrial  project can ignore problems 

of each group. Forward engineering is needed for progressive 

software development, while reverse engineering  is needed 

to support continuity of functionality and such 

characteristics as reliability, controllability, openness to 

changes,  etc. 

In  the  context  of the  industrial  software  design  and 

development, it is important to combine  methods  and 

technologies   of   software   analysis   and   development. 

An underestimation of the importance of this combination 

might lead to a situation  when some phases of the software 

life cycle are supported  with hypertrophically advanced 

tools, which among other consequencies causes an increase 

of software  size, while other  phases  are lacking  adequate 

tools and as a result face insuperable  obstacles. An obvious 

example is the development of programming languages,  in 

particular, object-oriented (OO) languages including 

compilers and integrated  development environments. It led 

to extremely  huge software systems, which  are impossible 

to support,  study, and modify without special methods  and 

tools. 

In this paper the reverse engineering  often precedes the 

forward  engineering.  It can be explained  by the following 

two reasons. The first reason is that the authors  are closely 

acquainted with the  subject  since  the  reverse engineering 

was a starting  point  for works on  development of 

technologies discussed  below. The  second  and  maybe  the 

more important one is that the reverse engineering  tasks are 

simpler  to  formalize  in  many  respects  which  gives  an 

 
*   The  work  was partially  supported by RFBR grants  96-0101277 

and  99-01-00207. 

essential prerequisite  to the experimental application of the 

most advanced  software design and development methods 

and tools on reverse engineering tasks. The simplicity of 

formalization here results from the fact that the source for 

reverse engineering – software sources – is fully formalized. 

In the case of forward engineering, the source is a less 

material substance:  design methods, designer’s skills, 

informal  requirement specifications, etc. Thus, despite the 

fact that the paper objective is to develop a unified approach 

to solving problems of reverse and forward engineering, 

further  we  will  discuss  aspects  of  software  engineering 

in the same order: «reverse» first and «forward» next. 
 

1.2 Formal methods in software 

engineering 
 

It is very difficult to give a precise definition  of «formal 

methods» as they are understood in theoretical 

programming. One of the reasons is that programs and 

methods  of their compilation and interpretation are 

undoubtedly formal,  so it is easy to declare  all methods  of 

software development to be also formal. However, the term 

«formal  methods»  denotes  something  that  differenciates 

the process of writing program texts in programming 

language   from   the   process   of  analysis   of  such   texts 

and the analysis of program behaviour defined by these texts. 

Such  an  analysis  is close to mathematical research  since 

it   uses   mathematical  notation   as   well   as   reasoning 

and proving techniques that are a common practice  in 

mathematics.  In  this  connection  many  authors   define 

«formal methods» simply as methods  of software 

development that use mathematical notation and/or 

mathematical reasoning.  We are ready to accept this 

definition  because we do not see any reason to search for a 

better one. 

Apparently  formal  methods  appeared  in programming 

togehter  with programming itself. The most famous results 

of Soviet programming school are in the works of A.A.Mar- 

kov (Markov  algorithm)  [24] and  A.A.Ljapunov  [25] and 

his school (for example,  Janov schemes [26]). Later formal 

methods  were payed  much  attention in the  USSR  in the 
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works of scientists from Kiev, Novosibirsk,  Leningrad, and 

Moscow. The most famous and wide spread formal notation 

is  Bacus-Naur  form  used  to  describe  syntax  of  formal 

languages.  Also  there  are  Turing  machine, Finite State 
Machines  (FSM)  or  Finite Automata (FA),  Petri   nets, 

languages  for description of communicating processes  by 

C.A.Hoar and R.Milner, etc. 

For obvious reasons almost all works on formal methods 

were focused on forward applications. The following scheme 

was considered ideal. Functional requirements to a software 

system are described in a formal specification language. 

Correctness of specification is determined analitically – 

specification is verified. Then a program  code is generated 

from the formal specification by some tool. A slightly more 

realistic  scenario   enriched  the  above  scheme   with  the 

process of step-by-step refinement of the specification. 

Each step of refinement is performed by a person who guides 

the refinement process. Special tools control  the 

correspondence between each refinement and the source 

specification. In both scenarios the result is a software 

implementation that meets the specified requirements and 

has no errors. 

In 1970s formal specification languages appeared  that, 

on one hand,  had much in common with programming 

languages, and, on the other hand,  provided special means 

that  brought  them  closer  to  mathematical notation and 

simplified reasonings on properties of such formal texts. The 

most  famous  of such  languages  are CSP [13],  CCS [14], 

VDM [15], SDL[16], LOTOS [17]. 
Despite  of this most part of research  in formal methods 

still was, so to speak, «academic». Apparently the main 
exception  are the works on FSM, which are widely applied 
in design and  testing of automatic devices,  telecommuni- 
cation  and  computer hardware.  The  experience  gained  in 
using FSM in hardware  development was also used in 
software development, however in a significantly lesser 
extent  than  in hardware  development. 

Very limited results achieved in attempts to apply formal 

methods  in real-life  projects caused a sceptical  attitude  to 

the ability to gain any profit from using formal methods that 

would be comparable with the expenses of additional work 

on development and analysis of formal specifications. 

However, formal methods  and formal specification 

languages  in particular have had  a significant  success  in 

some areas. On one hand,  the success was caused by an 

appropriate combination of requirements of the problem 

area and features of the applied formal methods  (mostly it 

is   problems    of   specification   of   telecommunication 

protocols;  SDL, ESTELLE, LOTOS are languages used in 

this area).  On  the  other  hand,  the  success was helped  by 

bringing specification languages closer to forms that are 
common in traditional programming (first of all it is Vienna 
Development Method – VDM and  it’s succsessors – Z and 
RAISE languages). 

Another  factor that helped to promote  formal methods 

into real-life software production is the interest to problems 

of reverse engineering  as a whole and to problems of test 

automation based on the use of formal specifications. 

Therefore, coming  back to earth  from heavens,  experts in 

formal methods  discarded  the dream to produce  error-free 

programs  and  decided  to use their  methods  for searching 

for bugs that are inevitably introduced in software. 

The  main  advantage  of using formal  methods  in  the 

reverse engineering  is the ability to strictly define software 

 

system interfaces  and behaviour.  Such an ability allows to 

fix knowledge  about  the  functionality of components and 

subsystems, interaction rules, restrictions on input data, 

temporal  characteristics etc. Thus, there is a premise for 

solving  the  main  problem  of  the  modern  reverse 

engineering.  The problem is that now the result of the 

program analysis (that consistutes reverse engineering in 

restricted  sense) is knowledge of a separate individual.  This 

knowledge is not estranged from the individual and is easily 

lost by this individual (and group, in which he or she works), 

and also by the customer  of reverse engineering  service as 

soon as this individual changes work. It is known that 

companies that produce software spend much effort on 

software documentation. However, just a few of them have 

sufficient resources and the time to support documentation 

in the updated  condition. This situation  each time causes 

the need in reverse engineering.  The real way out of this 

infinite cycle is in establishment of the so-called  «software 

contracts», which can be considered as a material 

presentation of knowledge on software functionality. 

The software contract describes a syntax and a semantics 

of system interfaces.  As a rule, this term is used in relation 
to  so-called   Application Programming Interface  (API). 
An API is an interface which is provided by program entities, 
for example, procedures, functions, methods  of classes etc. 

Besides just fixing the software contract, a formal 

specification allows to systematize the functional testing 

(what  is frequently  referred  to as testing by a «black box» 

method). Since formal specifications  strictly describe 

requirements on  both  the  input  data  and  the  expected 

results,  functional specifications  are sufficient  to perform 

testing of the external behaviour  of the system. 

Note    that    without    precise   specifications    such   a 

systematized  approach is impossible since there is no 

information neither  about  the input  domain  for the target 

system, nor about the criteria of evaluation  of the obtained 

results  – which  of  the  results  should  be  considered  as 

correct, and which – as wrong. It is one of the reasons for 

the large part of the research on testing to be devoted to the 

testing based on source texts. The source texts provide strict 

description of the implementation structure, therefore they 

are suitable for extraction of tests (test influences)  and for 

test coverage estimation. However, unlike the functional 

specifications, it is impossible to make the conclusions 

about criteria of check of conformance of implementation 

with its functional requirements and, in particular, about 

completeness of implementation, based on study of the 

source texts. 

One   more   circumstance  is  very  important.  If  the 

specifications   are   formal,   they   can   be  considered  as 

«machine-readable». Thus, there is a prerequisite  for a 

complete  automation of both  test generation  and  analysis 

of test results. 

In the last ten years another  direction of formal methods 

application – «model checking» – has become serious. This 

approach shows the  compromise between  an ideal dream 

of formal system verification and the reality of software 

development. The essence of this approach consists in 

creation  of a model of the real system and, whenever 

possible, a complete check of correctness of the given 

model. If possible, the check is done by analytical methods. 

If it is not possible, testing of the model is performed. 

Complexity  of the model,  as a rule, is chosen such that it is 

possible to perform  exhaustive  testing.  The  weak point  of 
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the given approach are the problems of model creation  and 

the proof that the model is sophisticated enough to properly 

represent  the properties  of the real system. 

Summarizing the given brief review of positive shifts in 

the  use  of  formal  methods   in  industrial  software 

development, we shall note that rather a precise division of 

methodologies and their supporting tools, oriented  to 

academic research  and to use in software industry, is now 

evident. The later differ from the prior not only in the more 

advanced  means  for support  of software projects,  but also 

in means allowing to make a link between the specifications 

and the target system. Among such means are compilers  of 

executable subsets of specification languages into 

programming languages, means for coordination of 

specificational and implementational entities, means for 

simplifying the configuration of the target and test systems, 

in which a part of components is created manually, and the 

other part is a result of generation  from the formal 

specifications.  A variety  of such  opportunities allows to 

conclude  that  some formal  methodologies and  the  sets of 

their tools are already software products, and a significant 

expansion  of both their functionality and scale of their use 

should be expected  in the nearest future. 
 
 

2. KVEST history and conceptions 

2.1 History of KVEST Development and Use 
 

In 1994, Nortel Networks (Bell-Northern Research  and 

Nortel (Northern Telecom) are the former names of Nortel 

Networks) proposed ISP RAS to develop a methodology and 

supporting  toolset  for automation of conformance testing 

of API. A real-time OS kernel was selected as a first practical 

target for the methodology. ISP was to rigorously describe 

software contract definition  of the kernel and produce  test 

suites for the kernel conformance testing [3]. 

In the case of success, Nortel Networks was obtaining  a 

possibility to automate conformance testing for the next OS 

kernel porting and for the new release of the OS. In addition, 

Nortel  was improving its product  software structure  as a 

whole, since during software contract definition  ISP 

promised  to establish minimal  and orthogonal set of 

interfaces  for the OS kernel. 

ISP   organized    a   joint   group   of   researchers    and 

developers. Team members had rich experience in operating 

system design,  real-time systems,  compiler  development, 

and the use of formal specification in systematic  approach 

for software design and testing [2, 9, 10]. 

During the first half a year, ISP suggested the first version 
of the Kernel Interface Layer (KIL) contents  and conducted a 
comparison analysis of the available specification 
methodologies. The KIL contents  was approved with slight 
modifications. RSL (RAISE Specification Language) [11, 12] 
was selected as the most suitable specification language. 

During the next half a year, ISP developed the first draft 

of the specification and test generation  methodology and 

developed  a prototype version of specifications  and  a test 

oracle generator.  The prototype has demonstrated a 

possibility of use of the formal  specifications  in industrial 

software development. Implicit  specification was selected 

as the  main  kind  of specification. The  base principles  of 

test   coverage   analysis   were   established.   The   KVEST 

methodology  uses  a  modification  of  the  FDNF  (Full 

 

Disjunction Normal Form)  criterion  for the  partition of 

input  space, test coverage and test strategy. 

During the second year, a product  version of the 

specifications  and  tools for test generation  and  execution 

were completed. From  mid-1996  to the beginning of 1997, 

most  of the  test suites were produced  and  the  OS kernel 

was successfully tested. Results of the testing surprised the 

customer. No one expected to detect several dozens of errors 

in the  very critical  part  of software that  had  been  used in 

the field for about ten years. 

 
 
2.2 Main concepts of KVEST 
 

We shall distinguish  methodology and technology, a set 

of the technical  decisions and tools supporting KVEST 

methodology. (In Russian a word «methodology» sounds too 
pretentious, nevertheless  we use it as it is shorter, than «set 

of methods»  and  is completely  adequate  to the  treatment 

of the word «methodology»  in English language literature). 
The KVEST methodology is focused on establishing software 
contracts and on various ways of using of the software 
contracts specifications. 

As  the  basic  method   of  specification  the  so-called 

«model-oriented» or «state-oriented» (model based or state 

based) approach is used. This approach is alternative  to the 

so-called  «algebraic»  approach, synonyms  of which  are 

«axiomatic»     and     «action-oriented»    (action     based) 

approaches [21, 22]. In the model-oriented approach a 

specification represents a set of functions and data 

descriptions, on which the given functions operate, that are 

familiar to programmers. As a rule, each operation 

(procedure) of the target system corresponds to some 

function  in specification. In case of the data the picture  is 

much more complex.  «Visible» implementational data and 

hidden data are distinguished. The input and output 

parameters of operations (procedures, methods) are always 

visible. Such data as global variables, static areas of memory 

are also declared  «visible», if they are included  in the 

software contract (that admittedly  contradicts the 

requirements of competent modular  construction of 

interfaces). Otherwise they are considered «hidden». The 

visible data are modeled in a manner  close to their 

implementation. The hidden  data can be modeled  without 

a direct  binding  to the implementation. It allows, first, to 

make the specifications implementationally independent in 

a greater  degree,  and secondly, more  abstract  and,  hence, 

frequently  shorter  and more clear. 

In   the   model-oriented  specifications   two  kinds  of 

function  description are used – explicit and implicit.  The 

first is familiar to all users of conventional programming 

languages. Such a description represents  the description of 

an algorithm  of calculation of function  result. The implicit 

way consists in a description of restrictions on input 

parameters (pre-condition) and a restriction on the set of 

input  and  output  parameters (post-condition).  Both  pre- 

and post-conditions are predicates, i.e. Boolean functions. 

The pre-condition is true if and only if the values of input 

parameters are within the domain  of the given function 

(behaviour  of function  outside its domain  is undefined and 

consequently is not considered and is not tested). The post- 

condition is true if and only if the set of values of input and 

output parameters meets the requirements that specify 

functionality (purpose) of the  given function. Thus,  the 
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post-condition can be considered as formal definition  of a 

criterion  of correctness of function  result. 

Note that the implicit form easily allows to describe not 

only the specific value that  function  should  calculate, but 

also the class of allowable values. It is very important when 

describing real software contracts. We consider two 

examples.  In the first example it is not important whether 

to define a function  implicitly or explicitly. In the second 

example the explicit form is practically  not acceptable. 

The  first  example  is a  function   that  performs  some 

integer  arithmetic calculations. The  formula  (one  of the 
possible ones)  on  which  the  given calculations are 
performed  is known;  we shall designate  it as f(x), where x 
denotes arguments. In such a case the explicit specification 

of the  target  function  tf(x) will be as follows (X is type of 

arguments; Y is type of results): 
 

tf : X  Y 

tf(x)  is  f(x) 
 

An implicit  specification could look as follows: 
 

post–tf : X  Y  Boolean 

post–tf (x, y)  is  y = f (x) // here х is an argument, 

// and y is a result of the target 

function 

Note that both considered specifications  can be 

implementation-independent, since we do not make any 

assumptions  on what formula the calculations in 

implementation of the  target  function  are  peformed  by. 

The only important fact is that the result of the target 

function  should be the same as the result of calculation by 

the formula f(x). 

The second example: the function that allocates some area 

of memory should return a descriptor  of this area. The 

implementationally independent specification cannot predict 

what value this descriptor  will have. However, a restriction 

on such a result is easily specified in the following implicit 

form: the new descriptor should not coincide with any 

descriptors of other areas of memory. Usually this requirement 

together  with the  requirements specifying type restrictions 

are sufficient for the specification of such a function. 

While  revisiting  the  first  example   note   that   if  the 

argument of the target function  is a real number, the explicit 

form will be useless without additional agreements  on 

interpretation of such specifications.  When specifying 

calculations in real numbers  it is necessary to additionally 

specify the accuracy of calculations and the accuracy of the 

representation of results.  For  these  purposes  the  implicit 

form will be more preferable. For example, the specification 

of the function  tf could look as follows: 

post-tf  : X  Y  Boolean 

post-tf (x, y) is 

abs(y–f(x)) < delta 
 

Abandoning  the  specifications  binding  to  algorithms 

used in an implementation makes the specifications 

implementationally independent only formally, not actually. 

From the good specification, in comparison with an 

implementation, we expect the more  obvious,  transparent 

description of «sense». Here we concern a very delicate 

subject.  It is difficult  to give strict  definitions  allowing to 

compare  two texts so that  to specify in which of them  the 

sense is presented  «more obviously». Nevertheless, it 

practically  always appears  that  the  «good» specification 

 

differs from the implementation in that more abstract  data 

structures  are used in the description of interfaces.  In turn, 

it is possible to say that a data structure  is then «more 

abstract» when for its description we use such mathematical 

concepts  as sets,  maps,  graphs  and  their  variations  in a 

greater degree. Apparently, it is not meaningful  to say that 

the mathematical notation and techniques of the 

mathematical descriptions, reasonings, transformations are 

better than the appropriate means used by programmers in 

their real practice.  The only important fact is that the 

mathematical notation encourages  the software designer to 

look at the program,  its implementation, its behaviour from 

a new angle. Such a new view of the program  is apparently 

the main reason for the effectiveness of formal methods even 

where completely  automatic generation  of programs  from 

specifications  and complete analytical verification of 

programs  is impossible. 

KVEST uses in full measure this technique of description 

of software contracts with abstract data structures.  It is true 

for both types of visible data and for the description of 

hidden  data.  Thus,  describing  arithmetic functions  that 

work with integers  of different  length,  KVEST defines  an 

integer type of infinite length. This technique allows to 

reveal many errors in implementations of seemingly simple 

functions.  Actually  these  functions  are not  complex  only 

in classical arithmetics of an infinite length. Algorithms 

become not obvious if arithmetics with integer of finite 

length  or unsigned  arithmetics are used.  The  comparison 

of calculations in «infinite» and in «finite» arithmetics 

allows to verify libraries of arithmetic operations in unified 

manner. 

In a much greater degree the increase of abstraction level 

concerns  the description of hidden data models. They 

correspond to so-called  «abstract» variables. The structure 

of abstract  variables  can  be quite  different  from  that  of 

hidden  data.  Moreover, the  structure  of abstract  and  of 

hidden variables, as a rule, are essentially different. The only 

requirement for choosing  the set of abstract  variable is an 

opportunity to simulate  behaviour  of the target system, its 

functions  and, thus, as a minimum, to estimate results 

obtained  from target functions. 

 
 
2.3 Terms and Basic Notions 
 

Let there be some software system containing a 

functionally  closed set of procedures. We need to determine 

the elements and functional specifications  of its external 

interfaces,  constituting the software contract, and to 

develop a set of test suites suitable for conformance testing 

of the software contract implementation. Since the elements 

of the software contract are procedures, we can say that this 
is in fact the API testing. From now on, we will say that API 
consists of a set of procedures. There are other kinds of API 
entities  like  operations,  functions,  methods   (in  C++), 
subroutines  in Fortran, etc. We consider  these terms 

synonymous and will use the term «procedure» in this paper. 

Let us note  that  we are not  talking about  testing some 

specific implementation of the software contract. It was 

important to build a methodology allowing to verify the 

correctness of the software behaviour  without  introducing 

any extra limitations  on the internal structure  of the 

implementation. To stress this very important requirement, 

we call our specifications  implementation-independent. 
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Figure 1. KVEST methodology steps and results. 

 

 
Let us introduce some terminology. The whole software 

system used in the process of test execution and 
communicating with the system under test (SUT) we call test 
harness. Sometimes, instead  of SUT, we will be using the 
term  «target system». The  main  part  of the  test harness  is 
made  of so-called  test drivers. To enable  the functionality 
of test drivers, we need a run-time support system, which is 
often called «test bed». The test drivers are usually developed 
with SUT specifics in mind while the test bed is independent 

of the SUT functionality. 

We consider  two levels of test drivers. Let us call a basic 

driver a test driver for some target procedure that performs 

the following actions: 

• checks  that  pre-conditions for the  target  procedure 

hold for a given tuple of input parameters; 

• calls the target procedure with a given tuple of input 

parameters and records the corresponding output 

parameters; 

• assigns  a  verdict  on  the  correctness  of  the  target 

procedure execution  results; 

• collects  information necessary  to  estimate  the  test 

coverage or investigate reasons for a fault. 

Let  us call a script driver a test driver  for some  target 

procedure, or a set of target procedures, that performs  the 

following actions: 

• reads test options; 

• generates   sets  of  input   parameters  based  on  test 

options; 

• calls a basic driver with some set of input parameters; 

• does extra  checking,  if necessary, of the  correctness 

of the target procedure execution  results and assigns 

a verdict; 

• checks whether  the desired test coverage is complete 

and if not, continues to generate  sets of input 

parameters and call the basic driver with these sets. 

Let us call a test plan a program that defines the order of 

script driver calls with given test options  and checks script 

driver call conditions and termination correctness. 

Besides the set of basic and script drivers and test plan 

interpreter, test harness also contains  a repository and tools 

for test plan execution  and querying the results kept in the 

repository.  The  repository  contains  information about  all 

test executions, reached code coverage for different 

procedures with different test coverage criteria,  and all 

situations when test drivers have assigned a negative verdict. 
 

2.4 The methodology steps 
 

The KVEST methodology consists of the following steps 
(Figure  1.): 

• software contract content definition; 

• specification development; 

• test suite production; 

• test execution  and test result analysis. 
 
2.4.1 Software Contract Content Definition 
 

The goals of this step are: 

• to provide a minimal  and orthogonal interface; 

• to hide the internal  data structures  and implementa- 

tion details. 

Following  these goals we can minimize  restrictions on 

the possible implementation solutions and the knowledge 

needed to use the software, and make it possible to develop 

long-term living test suites for conformance testing. 
 

2.4.2 Specification Development 
 

Goals: 

• to rigorously describe the functionality; 

• to provide an input  for test generation. 

Based on the specification, KVEST can fully auto- 

matically generate  basic drivers. 
 

2.4.3 Test Suite Production 
 

Goals: 

• to develop the so-called  «manually developed compo- 

nents» (MDC) of test suites; 

• to generate  test suites. 

Most  of MDCs are  convertors  between  model  and 

implementation data  representation, test  data  structure 
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Figure 2. KVEST technology:  general scheme. 

 

 
initiators, and  iterators.  Based  on  the  MDCs and  the 
specifications, KVEST generates test suites as a whole. No 
customization is required  after the generation  is complete. 

 
2.4.4 Test Execution and Test Result Analysis 

 
Requirements to the tool for test execution  and analysis 

are as follows: 

• to automate test execution; 

• to collect trace data and to calculate the obtained  test 

coverage; 

• to provide browsing and navigation  facilities; 

• to provide  «incremental testing»,  i.e. to recover  the 

target system after a fault or a crash,  and to continue 

test execution  from the point  of interruption. 

Figure  2 presents  a generalized  view of the input  data 
and results of using the KVEST methodology. 

 

2.4.5 Testing Approach 
 

To develop a test driver we have to solve three problems: 

• how to generate  an oracle,  i.e. a program  that assigns 

a verdict on the correctness of an outcome for the 

target procedure; 

• how to estimate the completeness of the test coverage; 

• how to enumerate combinations of the test input data. 

Test  oracles  are very similar  to post-conditions. Both 

functions  are Boolean,  they have the same parameters and 

return True if the target procedure produces a correct result 

and  False  otherwise.  So,  the  generation  of test oracles  is 

quite feasible once we have the post-conditions. 

A test coverage criterion  is a metric defined in terms of 

implementation or specification. The most well known test 

coverage criteria in terms of implementation are: 

• C1 – all statements are passed; 

• C2 – all branches  are passed. 

In the case of specification use for test coverage criteria 

definition, the so-called  domain  testing approach is used. 

The whole input  space is partitioned into areas. Each  area 

corresponds to a class of equivalence. The partition could 

be    derived    from    the    specification    that    describes 

requirements on the input and the properties of the outcome 

for the target procedures. Both the requirements and the 

properties  are clearly represented in pre- and post- 

conditions of formal specifications  in an implicit form. So, 

based on the implicit specification, we can successfully solve 

the problem  of test coverage estimating. 

There  are  skeptics  who  think  that  full  coverage  of 

domains, even including  interesting  points like a boundary 
layer, does not guarantee  a good coverage of the 

implementation code. Our experience  shows that the 

average percentage of KVEST test coverage is 70% to 100% 

of statements in the implementation. 

We distinguish  two levels of the  test coverage  criteria. 

The first one is the coverage of all branches  in post- 

conditions. The second one is the coverage of all disjuncts 

(elementary conjunctions) in FDNF representation of the 

post-condition while taking into account the pre-condition 

terms too. KVEST allows making the partitioning in terms 
of specification branches  and  FDNF fully automatically. 

One of the most difficult problems is the calculation of 
accessible  FDNF  disjuncts   and   removing   inaccessible 
FDNF disjuncts.  The  problem  is solved in KVEST by a 
special technique in pre-condition design. 

Monitoring of the obtained  test coverage is conducted 

on the fly by script drivers. Based on this data, script driver 

may tune testing parameters and/or testing duration. 

 
 
2.5 Test Generation Techniques 
 

2.5.1 API Classification 
 

First,  we should  consider  a classification  of APIs. The 

classification determines the choice of one of test generation 

techniques applicable to a procedure or procedure group 

interfaces. 

We  consider   five  main   classes  of  APIs  and   some 

extensions  of classes including  interfaces  tested in parallel 

and expected  exceptions. 

The classes are organized hierarchically. First class 

establishes  the  strongest  requirements. Each  other  class 
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weakens the requirements. The requirements for the five 

classes are as follows: 

Kind 1. The  input  is data  that  could  be represented in 

literal   (textual)    form   and   can   be   produced    without 

accounting for any interdependencies between values of 

different parameters. Such procedures can be tested 

separately, because no other  target procedure is needed  to 

generate  input  parameters and analyze the outcome. 

Examples  of interdependencies will be shown below. 

Kind 2. No  interdependencies exist between  the  input 

items (values of the input  parameters). The input  does not 

have to be in a literal form. Such procedures can be tested 

separately. 

Example: procedures with the pointer type input 

parameters. 

Kind  3.   Some   interdependencies  exist,   however   a 

separate  testing is possible. 

Example: a procedure with two parameters, the first one 

is array, the second one is a value placed in the array. 

Kind 4.  The  procedures cannot  be  tested  separately, 

because some input can be produced  only by calling another 

procedures from  the  group  and/or some  outcome can  be 

analyzed  only by calling other  procedures. 

Example:  procedures that provide stack operations and 

that receive the stack as a parameter. 

Kind 5.  The  procedures cannot  be  tested  separately. 

A part of the input  and output  data are hidden  and a user 

does not have a direct access to data. 

Example: instances  of OO classes with internal  states; a 

group of procedures that share a variable not visible for the 

procedure user. 

Parallel  extension  of  API classes.   Theoretically  the 

procedures of all classes should be tested in parallel in case 

when there is some interaction between procedures 

belonging to a set. In fact, it is reasonable to conduct parallel 

testing only for the kind 5 procedures because these 

procedures share some common resources and collisions are 

likely in this case. 

Example:    the    procedures   for   manipulation   with 

mailboxes (send,  receive, etc). 

Exception raising extension of API classes. The specific 

kind of procedures that raise exceptions as a correct reaction 

to certain  inputs. 

Example: a procedure that raises an exception  after 

dividing by zero received as an input parameter because this 

procedure must not return any return code in case of a zero 

parameter value. 
 

2.5.2 Script driver scheme. Example of kind 5 
 

The above taxonomy  is a good basis for classification  of 

the test generation  techniques. Kind 1 allows the full 

automation of test generation. All other  kinds need  some 

additional effort  for  MDC writing.  The  effort  gradually 

grows from kind 2 to kind 5. The extensions  require  more 

effort than  the corresponding kinds themselves. 

Complexity   and  effort  of  the  MDC development  is 

caused  by  the  complexity   of  script  driver  writing  and 

debugging. Below we consider only one scheme of script 
drivers used for kind 5 API testing. All script drivers have a 
similar  structure.  The  main  distinction is the  distribution 
between  the automatically generated  components and the 

MDCs. Kind 1 script driver is generated  fully automatically, 

kind 2 script driver - almost automatically and so on. 

 
A script driver is a program  that is composed and 

compiled  by KVEST. A general  scheme  of script  driver is 
defined  by a formal  description called skeleton. The 
skeletons are specific for each kind of API. Each script driver 
consists  of declarations and  a body.  The  declarations are 

generated  automatically based on the list of procedures 

under test and their specifications. The declarations include 

an import of the procedure under test and its data structure 

definitions  and/or import  of all data and types used in the 

specifications. 

The body of a script driver begins with script driver 

options  parsing.  The  options  – parameters of the  script 

driver as a whole – determine the depth of testing, i.e., the 

level of test coverage criteria,  and some specific data like 

interval of values, duration  of testing,  etc. 

Before the testing starts, some initialization is required. 

For example,  before testing write/read procedures we have 

to open  a file. Such  initializations are written  manually. 

After the initialization is finished, the main part of the script 

driver starts. 

Kind 5 script driver implements a general algorithm  for 
traversing an abstract  FSM. The goal of the algorithm  is to 
pass all states and all possible transitions  between the states. 
FSM states  here  correspond to  some  classes of the  data 
states.  Each  transition corresponds to an  execution  of a 

procedure under  test. 

Aforementioned data is the data used in a formal 

specification, so-called «model data». The algorithm of a 

script driver is related to the specification and does not 

depend  on the implementation details outside of the 

specification. 

The most interesting aspect of the script driver algorithm 
is the absence of the direct descriptions  of the abstract FSM. 
A direct  specification of an FSM requires  an extra effort, 
and this is where KVEST avoids the trouble. There are some 
attempts  to extract  an FSM specification from an implicit 
specification  [7].  However, no  one  can  provide  a  fully 

automated way for such extraction yet. 

Instead of a direct specification of an FSM, KVEST uses 

its indirect, virtual  representation. To  describe  an  FSM, 

a script driver designer should  imagine  a mental  model  of 
the FSM and then define a function-observer. The observer 
calculates  on the  fly the  current  state identifier  (number) 
in the abstract FSM based on the data accessible to the script 
driver. 

Let us consider the kind 5 script driver algorithm in more 

detail. For example, suppose we are testing a procedure 

group. Say, we have passed several FSM states, which means 

we had called some target procedures. Now we are going to 

make the next transition. This elementary cycle of testing 

consists of the following steps: 

• Select an arbitrary  procedure from the group. 

• Call a set of iterators (data generators  for a data type) 

that prepare  a tuple of input parameter values for the 

target procedure. 

• If the iterators  have managed  to generate  a new and 

correct tuple without violation of pre-conditions, then 

the script driver calls the corresponding basic driver 

with this tuple as actual parameters. 

• If iterators  cannot  produce  a new correct  tuple,  then 

we return  to the first step and repeat  the attempt  for 

another  procedure. 

• When the basic driver returns control, the script driver 

checks the verdict assigned by the basic driver. 
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Figure 3. Programming language independent test suite generation  scheme. 
 

• If the verdict is False (an error has been detected), the 

script  driver  produces  the  corresponding trace  data 

and finishes. 

• If the verdict is True (the elementary test case passed), 

the script driver calls the observer of the group to 

calculate  the current  state number, logs the state 

number and transition and continues to traverse FSM. 
 

2.5.3 Test Suite Composition 
 

Let us go back to the issue of the composition of the 
MDCs and the automatically generated components. Script 
drivers are composed following the requirements of the 
corresponding skeletons. Overall, we need five skeletons for 
serial testing of API kinds 1 through  5; one skeleton for 
parallel testing and five skeletons for exception  raising 
testing. Based on the corresponding skeleton and the list of 
target procedures and specifications, KVEST generates the 
script driver template.  For kind 1, this template  is a ready- 
to-use  program.  For  other  kinds,  the  template  includes 
several nests with default initiators and iterators. If a test 
designer does not  need  to add or improve  anything  in the 
nests, the template can be compiled and executed. This 
situation  is typical for kind 2 API. For other kinds, test 
designer usually has to add some specific initiators and 
iterators.  In any case, the designer should  define  an FSM 
state observer for the script drivers of kinds 4 and 5. 

Basic drivers invoked by script drivers are generated fully 

automatically. The only MDCs called from basic drivers are 

data converters.  As mentioned above, the converters 

transform  a model data representation into an 

implementational representation and  backward.  A model 

representation is distinguished  from the implementational 

one by the level of abstraction. For  example,  models  may 

use «infinite»  representation of integers,  sets, maps,  and 

other  data  structure  suitable  for specification. Sometimes 

the model  representation is very similar to the implemen- 

tational  one. In this case, such transformation is done by a 

standard translation algorithm of specification language into 

the implementation language. 

KVEST uses implementation language independent test 

generators.  All generators  use only RSL texts as input  and 
output. The only components written in the implementation 

language are data converters.  These components are out of 

 
the scope of test generators.  So, the test generation  process 
produces  a full test suite source  in RSL at first, and  then 
the source is compiled  into the implementation language. 
To port a KVEST test suite from one implementation 
language  platform  to another, a user should  re-write  data 
converters  and provide a compiler  from RSL into the 
implementation language, as well as a run-time support 
system with test bed functions.  The scheme  of test 
generation  is presented  in Figure 3. 
 
2.6 Integration of reverse and forward 

engineering 
 

In  2000 KVEST is going to be used in co-verification 

manner. The team of designers in Ottawa will develop design 

documentation and source code while another  team in 

Moscow  will in parallel develop formal  specifications  and 

test suites.  The  co-verification scheme  allows to improve 

the quality of design documents and to produce  test suites 

before implementation is complete. It is one of the ways to 

use KVEST in the forward engineering  process. 
During  1998, ISP  conducted initiative  work in natural 

language documentation generation. Result of the 

experiment was a prototype demo that had been presented 

at ZUM’98 conference (Berlin,  September  1998). 

The  prototype synthesizes  man-page-like documenta- 

tion based on formal and informal components of a 

specification. The prototype demonstrated a real possibility 

to generate  an actual  documentation. The  consistency  of 

the documentation is checked  by means  of test execution 

generated  from  the  same  source,  from  the  RSL 

specification. This work currently  continues to extend  the 

variety of documentation forms and to produce  a more 

fluent natural  language. 

 
 

3. State of the art 
 

In this section, we will discuss systems that, on one hand, 

build the verification  process on the formal specifications, 

and,  on  the  other  hand,  propose  a rather  generic 

technological scheme, not just solutions to the specific 

problems that have certain theoretical value but fail attempts 

to introduce them in the process of verification  of the 

industrial-strength software. 
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3.1 ITEX – Interactive TTCN Editor and eXecutor 
 

ITEX [29] is a test environment for communicating 
systems. It includes a TTCN and ASN.1 analysis and design 
tool, a test simulator and support for generation  of complete 
Executable  Test Suites (ETS).  Here is a brief ITEX 
functionality: 

• A Test  Suite  is made  up of Test  Cases in a form  of 

tables; 

• ITEX provides a set of highly integrated  tools for the 
development and maintenance of Abstract Test Suites 

(ATS) written in TTCN; 
• ITEX supports  the following phases of the Test Suite 

development:   Test    Case    Generation,   Editing, 

Verification, Validation  and Execution. 

 
This toolset is well integrated with SDT, an environment 

for  design  of  SDL specifications.   Test  suites  described 
with  TTCN can  be transformed to  the  form  that  allows 
testing  both  implementation in  some  programming 
language and specification in SDL. 

The main  shortcoming of this approach in the context 
of our research is that it is unsuitable for API testing. TTCN 
does not permit  declaration of pointers  and other  software 
entities  that do not have textual (literal)  representation. 

Besides, a very serious limitation of SDL-like 

specifications  is their  explicit  form.  This  means  that  it is 

quite  easy to build models  and  prototypes  based on them 

but it is very difficult to develop a system of constraints that 

define the union  of all possible implementations. Implicit 

specifications  overcome  this problem. 

 
 

3.2 ADL/ADL2 
 

This approach [30] is the most similar  to the works of 
our group. From  formal specifications, ADL generates test 
oracles and skeletons for building test drivers and 
documentation. Not very fundamental, but still interesting 
difference  of ADL is that  instead  of one  of the  popular 
specification languages it uses extensions of C and C++ 
languages. In the Kernel Verification project, SPP, a similar 
extension  of the target language, was developed  during the 

prototyping phase. It is documented in the Kernel 

Verification  project report [20]. A similar kind of extension 

was also proposed  by Barbara  Liskov [6]. There  are ideas 

on  extending  Java  and  other  object-oriented languages 

aimed  at  developing  software  in  «Design-by-Contract» 

fashion [5, 27, 31]. However, despite the obvious advantages 

of a better acceptance of such languages in the software 

engineering  community, the common concept  is still far 

away, to say nothing  about the common notation. 

The difference  of the KVEST results compared to ADL 

results can be explained by the difference in the range of API 
classes for which this or another  methodology can provide 
means for specification and automatic test generation. ADL 
provides adequate  tools for test generation  automation only 

for procedures which parameters allow independent 
enumeration while this set of procedures allows testing 
procedures one by one. In the KVEST classification, these 
are the APIs of the first and second  kind. This means  that 
procedures with  dependent parameters, procedures that 

require  testing  in a group,  e.g.,  «open  – close»,  or those 

that require testing in a parallel mode, e.g., «lock – unlock», 

 

or «send – receive»,  are left out.  Besides,  ADL does not 
recognize  the  first kind  of API that  permits  an automatic 
generation  of the  complete  test  suite  including  test  case 

parameters and test oracles. 

An interesting  moment in ADL is its capability  to 

generate  natural  language  documentation. It is important 

to note that the same mechanism is used for both the 
documentation of the target system and the documentation 
of  the  test  suites.  It  seems  that  ADL authors   made  a 
conscious  choice of not using any of the technologies from 
the NLG (Natural Language Generation) field. It is easy to 
explain in a pragmatic sense, however, it does not mean that 
modern  natural  language generation  methods  can not help 
in the generation  of the software documentation. KVEST 
capabilities in documentation generation  are implemented 
in the prototype version. Still, as opposed  to ADL, KVEST 
uses computer grammar and English dictionary  for analysis 
and generation  of natural  language fragments that allows it 
to reduce  the number  of natural  language errors and make 

the text more readable without  any manual  work. 
The  significant  advancement of ADL2 compared to 

KVEST is its capability  of specification and testing of OO 
classes. This KVEST shortcoming can be explained by RSL 
weakness. Extending  KVEST to OO software verification  is 
the task for 2000. 
 
 
3.3 Using Test Oracles Generated from Program 
Documentation 
 

This work [8] is in a research  phase and as such it is not 

a technology  ready to use in industry.  The main interest  in 

this research is the analysis of factors that,  in authors’ 

opinion, prevent the wide use of formal specifications during 

automatic testing of industrial software. The authors 

formulate   five main  problems  the  common solution  of 

which,  in their  opinion, is impossible  within  the  current 

state of the art. These five problems  have a lot in common 

with a group  of characteristics that  were the  basis of API 
classification in KVEST. Thus, D. Peters and D. Parnas and 
us arrived to the common understanding that those are the 

key problems in the task of test automation based on formal 
specifications.  KVEST continued research  in this direction 
and  proposed  a technological scheme  for a partial 
automation of test suite development for all kinds of APIs. 
 
 
3.4 Formal Derivation of Finite State Machines 

for Class Testing 
 

This work [7] is also a research.  At the same time,  this 

work is interesting  in a sense that it proposes a scheme  for 

organization  of  procedure  group  testing  similar  to  the 

scheme  used in KVEST. Object-Z is used as a specification 
language and C++ as a programming language. The task is 
stated   as   follows:   to   build   test   suites   to   verify  the 

conformance of the implementation to the specification 

using formal specifications  of the methods  for some class. 

As a test coverage criterion, a union  of two criteria is used: 

to cover all equivalency classes that represent areas obtained 

as a result of partition analysis, and then, to check the results 

on or near boundaries. 

The authors of this work do not try to solve the problem 

of complete automation of test  generation. Nor  do  they 
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attempt  to support  any elements  of the preparation phase 

with some tools. Still, all the steps are described  in a very 

systematic way and can be boiled down to various 

specification transformations. 

The  partition and  boundary  analysis is done  manually 

according  to the methodology proposed  by the authors.  In 
a similar way, they build a specification of oracles. Oracles, 
once compiled  into C++, call target procedures and verify 
the conformance of the results to specifications. 

The most interesting  part is the testing scheme,  which 

is a framework  that  dynamically  generates  test sequences 

of procedure calls. The framework is controlled by a Finite 

State  Machine description that  represents  an  abstraction 

of state transition graph of the test class. The authors 

describe the methodology of building specifications  for the 

classes of states and transitions  between them while 

considering  the problem of exclusion of inaccessible states. 

The theoretical weakness of this approach is that it does 

not try to come up with a formal methodology to build 

transformation specifications.  It is obvious that serious 

problems will be encountered when attempting to apply this 

method  recommendations to the specifications  of real-life 

complexity.  In practical  sense, it is clear that the process of 

test derivation  from the  specifications  is a mostly  manual 

activity, which limits its applicability  to the industrial 

software. 

The main difference of KVEST compared to this work is 
that during testing KVEST does not need a full description 
of the  Finite  State  Machine that  models  the  states  of a 
system  under  test.  Instead, KVEST proposes  a universal 
algorithm  that can dynamically provide all accessible states 

and all possible transitions  between state pairs. 
 

4. Conclusion and further 

work 
 

KVEST experience  shows that  formal  methods  can  be 
used in the industrial  software production. The level of 
complexity  and  size of KVEST applications support  this 
thesis. 

However, the  current  state  of KVEST and  the  state  of 

the art as a whole dictate the necessity of an intensive 

development   of   the   approaches,   methodologies   and 

supporting  tools.  It is possible to formulate  the  following 

important problems  to be solved: 

• The users of programming languages are not  able to 

use specification languages and formal methods  with 

sufficient skill, it is the main factor constraining wider 

use of formal methods; 

• Methodologies,     technologies,     CASE      systems 

supporting software development, as a rule, are aimed 

at the development and analysis of implementation 

structure  (architecture). This approach makes a 

consideration of software functionality itself difficult. 

There are still no methodologies that successfully 

combine  advantages of both structural and functional 

approaches. 

• Static  (purely  formal)  methods  of program  analysis 

provide exhaustive decisions of the problems,  but are 

aplicable only for fragments of real systems. Dynamic 

methods such as modeling or testing are based on some 

heuristics  and therefore  cannot  form the basis for an 

exhaustive analysis. In this connection, there is the 

problem of integration of static and dynamic methods, 

to take advantages of each of them. 

 

We see the following ways of solving these problems: 

• Rapproachement of  specification and programming 

languages. 

Keeping in mind that it is impossible to force a 

programmer to study not only a new specification language, 

but just a new programming language, it is easy to conclude 

that it is necessary to make а smooth transition from a 

programming language to a specification language. The 

attempts  to pull these languages together  were made  for a 
long  time.  Examples  of  such  languages  are  CLU 
extension  [18], Alphard [19], Eiffel [27, 31], iContract [5], 
SDL [16], SPP [20]. 

Some languages, for example Larch [23], offer to make 

this    rapproachement   purely    at    the    expense    of    a 

simplification of the specification part while simultaneously 

expanding  the  means  for displaying  of a formal  model  in 

the implementation language. Other languages, for example 

SDL, are using the specifities of the problem  area,  borrow 

features  of  programming  languages  and  thus  allow  to 

generate  executable  code directly from the specifications. 

There is quite a successful experience  of a counter 
movement. For example, the authors of ADL slightly expand 
C, C++, Java, and IDL. As a result, there are no problems 
for user of the  programming language  at least in reading 

specifications. 

KVEST in its prospective development considers the last 

of the listed approaches as the main one. The version of the 

system currently  under development offers means of C++, 

probably enriched by «syntactic sugar» simple in implemen- 

tation  and in understanding, as a specification tool. 

Note   that  the  concept   of  such  updating   requires  a 
thorough  study. A consequence of «simple decisions» is 
easily  illustrated   by  the  example   of  ADL. Absence  of 
methods  and appropriate means for increasing  the level of 
abstraction do not allow ADL users to create specifications 
of higher levels of abstraction and in a sufficient degree to 
automate test generation  for groups of procedures or classes. 

 
• Synthesis of program analysis and program 

development methods aimed at the description of 
functionality and implementation structure. 

Some aspects of software behaviour poorly fit in the 
framework  of API consideration. As an example  there  are 
stacks of telecommunication protocols and distributed 
systems. Such software is well described in the form of 
executable  models,  constructed on the basis of FSM, Petri 
nets,  special  kinds  of automata, for example,  CCS [14]. 
Common   disadvantage    of   such   approaches   are   the 

difficulties with setting invariants  for distributed  events. In 

particular, this problem showed up in attempt  to detect a 

potential undesirable  feature  interaction. One of the ways 

of structural and functional methods  integration are FSM 

extended  with description of restrictions on transitions  [4]. 

This approach is close to the technique of describing  and 
testing  of procedures groups  proposed  in KVEST. Thus, 
KVEST can be extended by appropriate means for describing 
protocols, distributed  systems and other  kinds of software 

requiring combination of the structural and functional 

specifications. 

 
• Integration of static and dynamic methods of forward 

and reverse engineering. 

Among potentially  possible applications of the synthesis 

of static and dynamic methods of development/analysis, we 
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recognize means for controlling level of abstraction and 

generators  of models for static and/or dynamic  analysis of 

program  behaviour. 

As   a   means   for   increasing    level   of   abstraction, 

methodical   and    tool    support    for   «upwarding»    and 

«downwarding»  together  with means for transformation of 

explicit  specifications  into  implicit  ones  (in  the  form  of 
post-conditions) is developed  within KVEST. Until  the 

present time these works were carried out completely 

manually.  Now  some  of the  planned  «transformers»  are 

being developed. 

The models under consideration are generalized 

descriptions  of scenarios of the target system usage. Such 

scenarios  can be used both for static analysis (this is what 

the idea of «model checking» means) and for generation  of 

test  sequences.  In  KVEST,  FSM in the  5-th  kind  of test 
drivers played a role of such models. The fact that such FSM 
is developed  manually, besides problems  connected with 

cost and terms of its development, raises a question of 
correspondence between FSM and procedure specifications, 
of the relation between test coverage criteria defined on the 
basis the  specifications  and  those  defined  on  FSM itself. 
There are the works on partial automation of such FSM 
construction. Unfortunately, problems  of FSM extraction 
from the specifications  of functions  with side effect are not 
considered in them.  KVEST makes an attempt  to solve this 
problem  using specifications  of hidden  (abstract) states of 

target systems. 
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