

Burdonov I.B., Kossathcev A.S., Demakov A.W., Petrenko A.K., Maksimov A.V.

Formal specifications in reverse engineering and software verification.

Proceedings of the Russian Academy of Sciences Institute for System Prigramming, No. 1, 1999, pp. 61-83.

11 стр.

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/253768257

Formal specifications in reverse engineering

and software verification

ARTICLE

READS

11

5 AUTHORS, INCLUDING:

Igor B. Bourdonov

Russian Academy of Sciences

20 PUBLICATIONS 189 CITATIONS

Alexey V. Demakov

Russian Academy of Sciences

7 PUBLICATIONS 26 CITATIONS

SEE PROFILE SEE PROFILE

Alexander Kossatchev

Russian Academy of Sciences

36 PUBLICATIONS 374 CITATIONS

Alexander K. Petrenko

Russian Academy of Sciences

50 PUBLICATIONS 344 CITATIONS

SEE PROFILE SEE PROFILE

Available from: Alexander Kossatchev

Retrieved on: 11 March 2016

https://www.researchgate.net/publication/253768257_Formal_specifications_in_reverse_engineering_and_software_verification?enrichId=rgreq-b21cf81d-aa9e-4d83-8a8a-47a9e32bf520&enrichSource=Y292ZXJQYWdlOzI1Mzc2ODI1NztBUzo5ODk5NjUxNzM0MzIzNUAxNDAwNjE0MDE3NjE5&el=1_x_2
https://www.researchgate.net/publication/253768257_Formal_specifications_in_reverse_engineering_and_software_verification?enrichId=rgreq-b21cf81d-aa9e-4d83-8a8a-47a9e32bf520&enrichSource=Y292ZXJQYWdlOzI1Mzc2ODI1NztBUzo5ODk5NjUxNzM0MzIzNUAxNDAwNjE0MDE3NjE5&el=1_x_3
https://www.researchgate.net/publication/253768257_Formal_specifications_in_reverse_engineering_and_software_verification?enrichId=rgreq-b21cf81d-aa9e-4d83-8a8a-47a9e32bf520&enrichSource=Y292ZXJQYWdlOzI1Mzc2ODI1NztBUzo5ODk5NjUxNzM0MzIzNUAxNDAwNjE0MDE3NjE5&el=1_x_3
https://www.researchgate.net/profile/Igor_Bourdonov?enrichId=rgreq-b21cf81d-aa9e-4d83-8a8a-47a9e32bf520&enrichSource=Y292ZXJQYWdlOzI1Mzc2ODI1NztBUzo5ODk5NjUxNzM0MzIzNUAxNDAwNjE0MDE3NjE5&el=1_x_5
https://www.researchgate.net/institution/Russian_Academy_of_Sciences?enrichId=rgreq-b21cf81d-aa9e-4d83-8a8a-47a9e32bf520&enrichSource=Y292ZXJQYWdlOzI1Mzc2ODI1NztBUzo5ODk5NjUxNzM0MzIzNUAxNDAwNjE0MDE3NjE5&el=1_x_6
https://www.researchgate.net/profile/Alexey_Demakov?enrichId=rgreq-b21cf81d-aa9e-4d83-8a8a-47a9e32bf520&enrichSource=Y292ZXJQYWdlOzI1Mzc2ODI1NztBUzo5ODk5NjUxNzM0MzIzNUAxNDAwNjE0MDE3NjE5&el=1_x_5
https://www.researchgate.net/institution/Russian_Academy_of_Sciences?enrichId=rgreq-b21cf81d-aa9e-4d83-8a8a-47a9e32bf520&enrichSource=Y292ZXJQYWdlOzI1Mzc2ODI1NztBUzo5ODk5NjUxNzM0MzIzNUAxNDAwNjE0MDE3NjE5&el=1_x_6
https://www.researchgate.net/profile/Igor_Bourdonov?enrichId=rgreq-b21cf81d-aa9e-4d83-8a8a-47a9e32bf520&enrichSource=Y292ZXJQYWdlOzI1Mzc2ODI1NztBUzo5ODk5NjUxNzM0MzIzNUAxNDAwNjE0MDE3NjE5&el=1_x_7
https://www.researchgate.net/profile/Alexey_Demakov?enrichId=rgreq-b21cf81d-aa9e-4d83-8a8a-47a9e32bf520&enrichSource=Y292ZXJQYWdlOzI1Mzc2ODI1NztBUzo5ODk5NjUxNzM0MzIzNUAxNDAwNjE0MDE3NjE5&el=1_x_7
https://www.researchgate.net/profile/Alexander_Kossatchev?enrichId=rgreq-b21cf81d-aa9e-4d83-8a8a-47a9e32bf520&enrichSource=Y292ZXJQYWdlOzI1Mzc2ODI1NztBUzo5ODk5NjUxNzM0MzIzNUAxNDAwNjE0MDE3NjE5&el=1_x_5
https://www.researchgate.net/institution/Russian_Academy_of_Sciences?enrichId=rgreq-b21cf81d-aa9e-4d83-8a8a-47a9e32bf520&enrichSource=Y292ZXJQYWdlOzI1Mzc2ODI1NztBUzo5ODk5NjUxNzM0MzIzNUAxNDAwNjE0MDE3NjE5&el=1_x_6
https://www.researchgate.net/profile/Alexander_Petrenko2?enrichId=rgreq-b21cf81d-aa9e-4d83-8a8a-47a9e32bf520&enrichSource=Y292ZXJQYWdlOzI1Mzc2ODI1NztBUzo5ODk5NjUxNzM0MzIzNUAxNDAwNjE0MDE3NjE5&el=1_x_5
https://www.researchgate.net/institution/Russian_Academy_of_Sciences?enrichId=rgreq-b21cf81d-aa9e-4d83-8a8a-47a9e32bf520&enrichSource=Y292ZXJQYWdlOzI1Mzc2ODI1NztBUzo5ODk5NjUxNzM0MzIzNUAxNDAwNjE0MDE3NjE5&el=1_x_6
https://www.researchgate.net/profile/Alexander_Kossatchev?enrichId=rgreq-b21cf81d-aa9e-4d83-8a8a-47a9e32bf520&enrichSource=Y292ZXJQYWdlOzI1Mzc2ODI1NztBUzo5ODk5NjUxNzM0MzIzNUAxNDAwNjE0MDE3NjE5&el=1_x_7
https://www.researchgate.net/profile/Alexander_Petrenko2?enrichId=rgreq-b21cf81d-aa9e-4d83-8a8a-47a9e32bf520&enrichSource=Y292ZXJQYWdlOzI1Mzc2ODI1NztBUzo5ODk5NjUxNzM0MzIzNUAxNDAwNjE0MDE3NjE5&el=1_x_7

Proceedings of the Russian Academy of Sciences Institute for System Programming. N 1. 1999.

Formal specifications in reverse

engineering and software verification

I.B.Bourdonov, A.V.Demakov, A.S.Kossatchev, A.V.Maksimov, A.K.Petrenko

Abstract. KVEST – Kernel VErification and Specification Technology – is based on automated test generation

from formal specifications. The technology was developed under a contract with Nortel Networks and is

based on experience gained in academic research [1]. By 2000 the methodology and the toolset have been

applied in 6 industrial projects dealing with the verification of large-scale telecommunication software. The

first project, named Kernel Verification project, gave its name to the methodology and the toolset as a whole.

The results of this project are presented in the Formal Method Europe Application database [28]. It is one of

the largest formal method applications presented in the database. This paper provides a brief description of

the approach, a comparison to related research, and prospects for the future work*.

1. Introduction

1.1 Reverse and forward

engineering

Software engineering tasks can be conventionally

divided into two large groups: reverse engineering and

forward engineering. Different researchers and practical

software developers pay different degree of attention to these

groups, but today no industrial project can ignore problems

of each group. Forward engineering is needed for progressive

software development, while reverse engineering is needed

to support continuity of functionality and such

characteristics as reliability, controllability, openness to

changes, etc.

In the context of the industrial software design and

development, it is important to combine methods and

technologies of software analysis and development.

An underestimation of the importance of this combination

might lead to a situation when some phases of the software

life cycle are supported with hypertrophically advanced

tools, which among other consequencies causes an increase

of software size, while other phases are lacking adequate

tools and as a result face insuperable obstacles. An obvious

example is the development of programming languages, in

particular, object-oriented (OO) languages including

compilers and integrated development environments. It led

to extremely huge software systems, which are impossible

to support, study, and modify without special methods and

tools.

In this paper the reverse engineering often precedes the

forward engineering. It can be explained by the following

two reasons. The first reason is that the authors are closely

acquainted with the subject since the reverse engineering

was a starting point for works on development of

technologies discussed below. The second and maybe the

more important one is that the reverse engineering tasks are

simpler to formalize in many respects which gives an

* The work was partially supported by RFBR grants 96-0101277

and 99-01-00207.

essential prerequisite to the experimental application of the

most advanced software design and development methods

and tools on reverse engineering tasks. The simplicity of

formalization here results from the fact that the source for

reverse engineering – software sources – is fully formalized.

In the case of forward engineering, the source is a less

material substance: design methods, designer’s skills,

informal requirement specifications, etc. Thus, despite the

fact that the paper objective is to develop a unified approach

to solving problems of reverse and forward engineering,

further we will discuss aspects of software engineering

in the same order: «reverse» first and «forward» next.

1.2 Formal methods in software

engineering

It is very difficult to give a precise definition of «formal

methods» as they are understood in theoretical

programming. One of the reasons is that programs and

methods of their compilation and interpretation are

undoubtedly formal, so it is easy to declare all methods of

software development to be also formal. However, the term

«formal methods» denotes something that differenciates

the process of writing program texts in programming

language from the process of analysis of such texts

and the analysis of program behaviour defined by these texts.

Such an analysis is close to mathematical research since

it uses mathematical notation as well as reasoning

and proving techniques that are a common practice in

mathematics. In this connection many authors define

«formal methods» simply as methods of software

development that use mathematical notation and/or

mathematical reasoning. We are ready to accept this

definition because we do not see any reason to search for a

better one.

Apparently formal methods appeared in programming

togehter with programming itself. The most famous results

of Soviet programming school are in the works of A.A.Mar-

kov (Markov algorithm) [24] and A.A.Ljapunov [25] and

his school (for example, Janov schemes [26]). Later formal

methods were payed much attention in the USSR in the

27 Formal specifications in reverse engineering...

works of scientists from Kiev, Novosibirsk, Leningrad, and

Moscow. The most famous and wide spread formal notation

is Bacus-Naur form used to describe syntax of formal

languages. Also there are Turing machine, Finite State
Machines (FSM) or Finite Automata (FA), Petri nets,

languages for description of communicating processes by

C.A.Hoar and R.Milner, etc.

For obvious reasons almost all works on formal methods

were focused on forward applications. The following scheme

was considered ideal. Functional requirements to a software

system are described in a formal specification language.

Correctness of specification is determined analitically –

specification is verified. Then a program code is generated

from the formal specification by some tool. A slightly more

realistic scenario enriched the above scheme with the

process of step-by-step refinement of the specification.

Each step of refinement is performed by a person who guides

the refinement process. Special tools control the

correspondence between each refinement and the source

specification. In both scenarios the result is a software

implementation that meets the specified requirements and

has no errors.

In 1970s formal specification languages appeared that,

on one hand, had much in common with programming

languages, and, on the other hand, provided special means

that brought them closer to mathematical notation and

simplified reasonings on properties of such formal texts. The

most famous of such languages are CSP [13], CCS [14],

VDM [15], SDL[16], LOTOS [17].
Despite of this most part of research in formal methods

still was, so to speak, «academic». Apparently the main
exception are the works on FSM, which are widely applied
in design and testing of automatic devices, telecommuni-
cation and computer hardware. The experience gained in
using FSM in hardware development was also used in
software development, however in a significantly lesser
extent than in hardware development.

Very limited results achieved in attempts to apply formal

methods in real-life projects caused a sceptical attitude to

the ability to gain any profit from using formal methods that

would be comparable with the expenses of additional work

on development and analysis of formal specifications.

However, formal methods and formal specification

languages in particular have had a significant success in

some areas. On one hand, the success was caused by an

appropriate combination of requirements of the problem

area and features of the applied formal methods (mostly it

is problems of specification of telecommunication

protocols; SDL, ESTELLE, LOTOS are languages used in

this area). On the other hand, the success was helped by

bringing specification languages closer to forms that are
common in traditional programming (first of all it is Vienna
Development Method – VDM and it’s succsessors – Z and
RAISE languages).

Another factor that helped to promote formal methods

into real-life software production is the interest to problems

of reverse engineering as a whole and to problems of test

automation based on the use of formal specifications.

Therefore, coming back to earth from heavens, experts in

formal methods discarded the dream to produce error-free

programs and decided to use their methods for searching

for bugs that are inevitably introduced in software.

The main advantage of using formal methods in the

reverse engineering is the ability to strictly define software

system interfaces and behaviour. Such an ability allows to

fix knowledge about the functionality of components and

subsystems, interaction rules, restrictions on input data,

temporal characteristics etc. Thus, there is a premise for

solving the main problem of the modern reverse

engineering. The problem is that now the result of the

program analysis (that consistutes reverse engineering in

restricted sense) is knowledge of a separate individual. This

knowledge is not estranged from the individual and is easily

lost by this individual (and group, in which he or she works),

and also by the customer of reverse engineering service as

soon as this individual changes work. It is known that

companies that produce software spend much effort on

software documentation. However, just a few of them have

sufficient resources and the time to support documentation

in the updated condition. This situation each time causes

the need in reverse engineering. The real way out of this

infinite cycle is in establishment of the so-called «software

contracts», which can be considered as a material

presentation of knowledge on software functionality.

The software contract describes a syntax and a semantics

of system interfaces. As a rule, this term is used in relation
to so-called Application Programming Interface (API).
An API is an interface which is provided by program entities,
for example, procedures, functions, methods of classes etc.

Besides just fixing the software contract, a formal

specification allows to systematize the functional testing

(what is frequently referred to as testing by a «black box»

method). Since formal specifications strictly describe

requirements on both the input data and the expected

results, functional specifications are sufficient to perform

testing of the external behaviour of the system.

Note that without precise specifications such a

systematized approach is impossible since there is no

information neither about the input domain for the target

system, nor about the criteria of evaluation of the obtained

results – which of the results should be considered as

correct, and which – as wrong. It is one of the reasons for

the large part of the research on testing to be devoted to the

testing based on source texts. The source texts provide strict

description of the implementation structure, therefore they

are suitable for extraction of tests (test influences) and for

test coverage estimation. However, unlike the functional

specifications, it is impossible to make the conclusions

about criteria of check of conformance of implementation

with its functional requirements and, in particular, about

completeness of implementation, based on study of the

source texts.

One more circumstance is very important. If the

specifications are formal, they can be considered as

«machine-readable». Thus, there is a prerequisite for a

complete automation of both test generation and analysis

of test results.

In the last ten years another direction of formal methods

application – «model checking» – has become serious. This

approach shows the compromise between an ideal dream

of formal system verification and the reality of software

development. The essence of this approach consists in

creation of a model of the real system and, whenever

possible, a complete check of correctness of the given

model. If possible, the check is done by analytical methods.

If it is not possible, testing of the model is performed.

Complexity of the model, as a rule, is chosen such that it is

possible to perform exhaustive testing. The weak point of

8 I.B.Bourdonov, A.V.Demakov, A.S.Kossatchev, etc.

the given approach are the problems of model creation and

the proof that the model is sophisticated enough to properly

represent the properties of the real system.

Summarizing the given brief review of positive shifts in

the use of formal methods in industrial software

development, we shall note that rather a precise division of

methodologies and their supporting tools, oriented to

academic research and to use in software industry, is now

evident. The later differ from the prior not only in the more

advanced means for support of software projects, but also

in means allowing to make a link between the specifications

and the target system. Among such means are compilers of

executable subsets of specification languages into

programming languages, means for coordination of

specificational and implementational entities, means for

simplifying the configuration of the target and test systems,

in which a part of components is created manually, and the

other part is a result of generation from the formal

specifications. A variety of such opportunities allows to

conclude that some formal methodologies and the sets of

their tools are already software products, and a significant

expansion of both their functionality and scale of their use

should be expected in the nearest future.

2. KVEST history and conceptions

2.1 History of KVEST Development and Use

In 1994, Nortel Networks (Bell-Northern Research and

Nortel (Northern Telecom) are the former names of Nortel

Networks) proposed ISP RAS to develop a methodology and

supporting toolset for automation of conformance testing

of API. A real-time OS kernel was selected as a first practical

target for the methodology. ISP was to rigorously describe

software contract definition of the kernel and produce test

suites for the kernel conformance testing [3].

In the case of success, Nortel Networks was obtaining a

possibility to automate conformance testing for the next OS

kernel porting and for the new release of the OS. In addition,

Nortel was improving its product software structure as a

whole, since during software contract definition ISP

promised to establish minimal and orthogonal set of

interfaces for the OS kernel.

ISP organized a joint group of researchers and

developers. Team members had rich experience in operating

system design, real-time systems, compiler development,

and the use of formal specification in systematic approach

for software design and testing [2, 9, 10].

During the first half a year, ISP suggested the first version
of the Kernel Interface Layer (KIL) contents and conducted a
comparison analysis of the available specification
methodologies. The KIL contents was approved with slight
modifications. RSL (RAISE Specification Language) [11, 12]
was selected as the most suitable specification language.

During the next half a year, ISP developed the first draft

of the specification and test generation methodology and

developed a prototype version of specifications and a test

oracle generator. The prototype has demonstrated a

possibility of use of the formal specifications in industrial

software development. Implicit specification was selected

as the main kind of specification. The base principles of

test coverage analysis were established. The KVEST

methodology uses a modification of the FDNF (Full

Disjunction Normal Form) criterion for the partition of

input space, test coverage and test strategy.

During the second year, a product version of the

specifications and tools for test generation and execution

were completed. From mid-1996 to the beginning of 1997,

most of the test suites were produced and the OS kernel

was successfully tested. Results of the testing surprised the

customer. No one expected to detect several dozens of errors

in the very critical part of software that had been used in

the field for about ten years.

2.2 Main concepts of KVEST

We shall distinguish methodology and technology, a set

of the technical decisions and tools supporting KVEST

methodology. (In Russian a word «methodology» sounds too
pretentious, nevertheless we use it as it is shorter, than «set

of methods» and is completely adequate to the treatment

of the word «methodology» in English language literature).
The KVEST methodology is focused on establishing software
contracts and on various ways of using of the software
contracts specifications.

As the basic method of specification the so-called

«model-oriented» or «state-oriented» (model based or state

based) approach is used. This approach is alternative to the

so-called «algebraic» approach, synonyms of which are

«axiomatic» and «action-oriented» (action based)

approaches [21, 22]. In the model-oriented approach a

specification represents a set of functions and data

descriptions, on which the given functions operate, that are

familiar to programmers. As a rule, each operation

(procedure) of the target system corresponds to some

function in specification. In case of the data the picture is

much more complex. «Visible» implementational data and

hidden data are distinguished. The input and output

parameters of operations (procedures, methods) are always

visible. Such data as global variables, static areas of memory

are also declared «visible», if they are included in the

software contract (that admittedly contradicts the

requirements of competent modular construction of

interfaces). Otherwise they are considered «hidden». The

visible data are modeled in a manner close to their

implementation. The hidden data can be modeled without

a direct binding to the implementation. It allows, first, to

make the specifications implementationally independent in

a greater degree, and secondly, more abstract and, hence,

frequently shorter and more clear.

In the model-oriented specifications two kinds of

function description are used – explicit and implicit. The

first is familiar to all users of conventional programming

languages. Such a description represents the description of

an algorithm of calculation of function result. The implicit

way consists in a description of restrictions on input

parameters (pre-condition) and a restriction on the set of

input and output parameters (post-condition). Both pre-

and post-conditions are predicates, i.e. Boolean functions.

The pre-condition is true if and only if the values of input

parameters are within the domain of the given function

(behaviour of function outside its domain is undefined and

consequently is not considered and is not tested). The post-

condition is true if and only if the set of values of input and

output parameters meets the requirements that specify

functionality (purpose) of the given function. Thus, the

29 Formal specifications in reverse engineering...

post-condition can be considered as formal definition of a

criterion of correctness of function result.

Note that the implicit form easily allows to describe not

only the specific value that function should calculate, but

also the class of allowable values. It is very important when

describing real software contracts. We consider two

examples. In the first example it is not important whether

to define a function implicitly or explicitly. In the second

example the explicit form is practically not acceptable.

The first example is a function that performs some

integer arithmetic calculations. The formula (one of the
possible ones) on which the given calculations are
performed is known; we shall designate it as f(x), where x
denotes arguments. In such a case the explicit specification

of the target function tf(x) will be as follows (X is type of

arguments; Y is type of results):

tf : X Y

tf(x) is f(x)

An implicit specification could look as follows:

post–tf : X Y Boolean

post–tf (x, y) is y = f (x) // here х is an argument,

// and y is a result of the target

function

Note that both considered specifications can be

implementation-independent, since we do not make any

assumptions on what formula the calculations in

implementation of the target function are peformed by.

The only important fact is that the result of the target

function should be the same as the result of calculation by

the formula f(x).

The second example: the function that allocates some area

of memory should return a descriptor of this area. The

implementationally independent specification cannot predict

what value this descriptor will have. However, a restriction

on such a result is easily specified in the following implicit

form: the new descriptor should not coincide with any

descriptors of other areas of memory. Usually this requirement

together with the requirements specifying type restrictions

are sufficient for the specification of such a function.

While revisiting the first example note that if the

argument of the target function is a real number, the explicit

form will be useless without additional agreements on

interpretation of such specifications. When specifying

calculations in real numbers it is necessary to additionally

specify the accuracy of calculations and the accuracy of the

representation of results. For these purposes the implicit

form will be more preferable. For example, the specification

of the function tf could look as follows:

post-tf : X Y Boolean

post-tf (x, y) is

abs(y–f(x)) < delta

Abandoning the specifications binding to algorithms

used in an implementation makes the specifications

implementationally independent only formally, not actually.

From the good specification, in comparison with an

implementation, we expect the more obvious, transparent

description of «sense». Here we concern a very delicate

subject. It is difficult to give strict definitions allowing to

compare two texts so that to specify in which of them the

sense is presented «more obviously». Nevertheless, it

practically always appears that the «good» specification

differs from the implementation in that more abstract data

structures are used in the description of interfaces. In turn,

it is possible to say that a data structure is then «more

abstract» when for its description we use such mathematical

concepts as sets, maps, graphs and their variations in a

greater degree. Apparently, it is not meaningful to say that

the mathematical notation and techniques of the

mathematical descriptions, reasonings, transformations are

better than the appropriate means used by programmers in

their real practice. The only important fact is that the

mathematical notation encourages the software designer to

look at the program, its implementation, its behaviour from

a new angle. Such a new view of the program is apparently

the main reason for the effectiveness of formal methods even

where completely automatic generation of programs from

specifications and complete analytical verification of

programs is impossible.

KVEST uses in full measure this technique of description

of software contracts with abstract data structures. It is true

for both types of visible data and for the description of

hidden data. Thus, describing arithmetic functions that

work with integers of different length, KVEST defines an

integer type of infinite length. This technique allows to

reveal many errors in implementations of seemingly simple

functions. Actually these functions are not complex only

in classical arithmetics of an infinite length. Algorithms

become not obvious if arithmetics with integer of finite

length or unsigned arithmetics are used. The comparison

of calculations in «infinite» and in «finite» arithmetics

allows to verify libraries of arithmetic operations in unified

manner.

In a much greater degree the increase of abstraction level

concerns the description of hidden data models. They

correspond to so-called «abstract» variables. The structure

of abstract variables can be quite different from that of

hidden data. Moreover, the structure of abstract and of

hidden variables, as a rule, are essentially different. The only

requirement for choosing the set of abstract variable is an

opportunity to simulate behaviour of the target system, its

functions and, thus, as a minimum, to estimate results

obtained from target functions.

2.3 Terms and Basic Notions

Let there be some software system containing a

functionally closed set of procedures. We need to determine

the elements and functional specifications of its external

interfaces, constituting the software contract, and to

develop a set of test suites suitable for conformance testing

of the software contract implementation. Since the elements

of the software contract are procedures, we can say that this
is in fact the API testing. From now on, we will say that API
consists of a set of procedures. There are other kinds of API
entities like operations, functions, methods (in C++),
subroutines in Fortran, etc. We consider these terms

synonymous and will use the term «procedure» in this paper.

Let us note that we are not talking about testing some

specific implementation of the software contract. It was

important to build a methodology allowing to verify the

correctness of the software behaviour without introducing

any extra limitations on the internal structure of the

implementation. To stress this very important requirement,

we call our specifications implementation-independent.

10 I.B.Bourdonov, A.V.Demakov, A.S.Kossatchev, etc.

Documentation

Source code

Step 3

Test suite

production

Step 1

Software
contract

minimizing

Step 2

Specification

Step 4

Test execution

Analysis

Software contract

contents
Interface section A1

DCL PROC p1 1 (...........)

DCL PROC p 12 (............) RETURNS..
Interface section A2

DCL TYPE

Detected errors

Test drivers and

test cases
Docs: man-pages

Error free software

Figure 1. KVEST methodology steps and results.

Let us introduce some terminology. The whole software

system used in the process of test execution and
communicating with the system under test (SUT) we call test
harness. Sometimes, instead of SUT, we will be using the
term «target system». The main part of the test harness is
made of so-called test drivers. To enable the functionality
of test drivers, we need a run-time support system, which is
often called «test bed». The test drivers are usually developed
with SUT specifics in mind while the test bed is independent

of the SUT functionality.

We consider two levels of test drivers. Let us call a basic

driver a test driver for some target procedure that performs

the following actions:

• checks that pre-conditions for the target procedure

hold for a given tuple of input parameters;

• calls the target procedure with a given tuple of input

parameters and records the corresponding output

parameters;

• assigns a verdict on the correctness of the target

procedure execution results;

• collects information necessary to estimate the test

coverage or investigate reasons for a fault.

Let us call a script driver a test driver for some target

procedure, or a set of target procedures, that performs the

following actions:

• reads test options;

• generates sets of input parameters based on test

options;

• calls a basic driver with some set of input parameters;

• does extra checking, if necessary, of the correctness

of the target procedure execution results and assigns

a verdict;

• checks whether the desired test coverage is complete

and if not, continues to generate sets of input

parameters and call the basic driver with these sets.

Let us call a test plan a program that defines the order of

script driver calls with given test options and checks script

driver call conditions and termination correctness.

Besides the set of basic and script drivers and test plan

interpreter, test harness also contains a repository and tools

for test plan execution and querying the results kept in the

repository. The repository contains information about all

test executions, reached code coverage for different

procedures with different test coverage criteria, and all

situations when test drivers have assigned a negative verdict.

2.4 The methodology steps

The KVEST methodology consists of the following steps
(Figure 1.):

• software contract content definition;

• specification development;

• test suite production;

• test execution and test result analysis.

2.4.1 Software Contract Content Definition

The goals of this step are:

• to provide a minimal and orthogonal interface;

• to hide the internal data structures and implementa-

tion details.

Following these goals we can minimize restrictions on

the possible implementation solutions and the knowledge

needed to use the software, and make it possible to develop

long-term living test suites for conformance testing.

2.4.2 Specification Development

Goals:

• to rigorously describe the functionality;

• to provide an input for test generation.

Based on the specification, KVEST can fully auto-

matically generate basic drivers.

2.4.3 Test Suite Production

Goals:

• to develop the so-called «manually developed compo-

nents» (MDC) of test suites;

• to generate test suites.

Most of MDCs are convertors between model and

implementation data representation, test data structure

31 Formal specifications in reverse engineering...

KVEST input

Documentation

Source code

KVEST outcome

Software contract contents

Interface section A1

DCL PROC p11 (...........)
DCL PROC p12 (............) RETURNS..

Interface section A2
DCL TYPE

Detected errors

Test drivers and

test cases
Docs: man-pages

Error free software

Figure 2. KVEST technology: general scheme.

initiators, and iterators. Based on the MDCs and the
specifications, KVEST generates test suites as a whole. No
customization is required after the generation is complete.

2.4.4 Test Execution and Test Result Analysis

Requirements to the tool for test execution and analysis

are as follows:

• to automate test execution;

• to collect trace data and to calculate the obtained test

coverage;

• to provide browsing and navigation facilities;

• to provide «incremental testing», i.e. to recover the

target system after a fault or a crash, and to continue

test execution from the point of interruption.

Figure 2 presents a generalized view of the input data
and results of using the KVEST methodology.

2.4.5 Testing Approach

To develop a test driver we have to solve three problems:

• how to generate an oracle, i.e. a program that assigns

a verdict on the correctness of an outcome for the

target procedure;

• how to estimate the completeness of the test coverage;

• how to enumerate combinations of the test input data.

Test oracles are very similar to post-conditions. Both

functions are Boolean, they have the same parameters and

return True if the target procedure produces a correct result

and False otherwise. So, the generation of test oracles is

quite feasible once we have the post-conditions.

A test coverage criterion is a metric defined in terms of

implementation or specification. The most well known test

coverage criteria in terms of implementation are:

• C1 – all statements are passed;

• C2 – all branches are passed.

In the case of specification use for test coverage criteria

definition, the so-called domain testing approach is used.

The whole input space is partitioned into areas. Each area

corresponds to a class of equivalence. The partition could

be derived from the specification that describes

requirements on the input and the properties of the outcome

for the target procedures. Both the requirements and the

properties are clearly represented in pre- and post-

conditions of formal specifications in an implicit form. So,

based on the implicit specification, we can successfully solve

the problem of test coverage estimating.

There are skeptics who think that full coverage of

domains, even including interesting points like a boundary
layer, does not guarantee a good coverage of the

implementation code. Our experience shows that the

average percentage of KVEST test coverage is 70% to 100%

of statements in the implementation.

We distinguish two levels of the test coverage criteria.

The first one is the coverage of all branches in post-

conditions. The second one is the coverage of all disjuncts

(elementary conjunctions) in FDNF representation of the

post-condition while taking into account the pre-condition

terms too. KVEST allows making the partitioning in terms
of specification branches and FDNF fully automatically.

One of the most difficult problems is the calculation of
accessible FDNF disjuncts and removing inaccessible
FDNF disjuncts. The problem is solved in KVEST by a
special technique in pre-condition design.

Monitoring of the obtained test coverage is conducted

on the fly by script drivers. Based on this data, script driver

may tune testing parameters and/or testing duration.

2.5 Test Generation Techniques

2.5.1 API Classification

First, we should consider a classification of APIs. The

classification determines the choice of one of test generation

techniques applicable to a procedure or procedure group

interfaces.

We consider five main classes of APIs and some

extensions of classes including interfaces tested in parallel

and expected exceptions.

The classes are organized hierarchically. First class

establishes the strongest requirements. Each other class

31
2

I.B.Bourdonov, A.V.Demakov, A.S.Kossatchev, etc.

weakens the requirements. The requirements for the five

classes are as follows:

Kind 1. The input is data that could be represented in

literal (textual) form and can be produced without

accounting for any interdependencies between values of

different parameters. Such procedures can be tested

separately, because no other target procedure is needed to

generate input parameters and analyze the outcome.

Examples of interdependencies will be shown below.

Kind 2. No interdependencies exist between the input

items (values of the input parameters). The input does not

have to be in a literal form. Such procedures can be tested

separately.

Example: procedures with the pointer type input

parameters.

Kind 3. Some interdependencies exist, however a

separate testing is possible.

Example: a procedure with two parameters, the first one

is array, the second one is a value placed in the array.

Kind 4. The procedures cannot be tested separately,

because some input can be produced only by calling another

procedures from the group and/or some outcome can be

analyzed only by calling other procedures.

Example: procedures that provide stack operations and

that receive the stack as a parameter.

Kind 5. The procedures cannot be tested separately.

A part of the input and output data are hidden and a user

does not have a direct access to data.

Example: instances of OO classes with internal states; a

group of procedures that share a variable not visible for the

procedure user.

Parallel extension of API classes. Theoretically the

procedures of all classes should be tested in parallel in case

when there is some interaction between procedures

belonging to a set. In fact, it is reasonable to conduct parallel

testing only for the kind 5 procedures because these

procedures share some common resources and collisions are

likely in this case.

Example: the procedures for manipulation with

mailboxes (send, receive, etc).

Exception raising extension of API classes. The specific

kind of procedures that raise exceptions as a correct reaction

to certain inputs.

Example: a procedure that raises an exception after

dividing by zero received as an input parameter because this

procedure must not return any return code in case of a zero

parameter value.

2.5.2 Script driver scheme. Example of kind 5

The above taxonomy is a good basis for classification of

the test generation techniques. Kind 1 allows the full

automation of test generation. All other kinds need some

additional effort for MDC writing. The effort gradually

grows from kind 2 to kind 5. The extensions require more

effort than the corresponding kinds themselves.

Complexity and effort of the MDC development is

caused by the complexity of script driver writing and

debugging. Below we consider only one scheme of script
drivers used for kind 5 API testing. All script drivers have a
similar structure. The main distinction is the distribution
between the automatically generated components and the

MDCs. Kind 1 script driver is generated fully automatically,

kind 2 script driver - almost automatically and so on.

A script driver is a program that is composed and

compiled by KVEST. A general scheme of script driver is
defined by a formal description called skeleton. The
skeletons are specific for each kind of API. Each script driver
consists of declarations and a body. The declarations are

generated automatically based on the list of procedures

under test and their specifications. The declarations include

an import of the procedure under test and its data structure

definitions and/or import of all data and types used in the

specifications.

The body of a script driver begins with script driver

options parsing. The options – parameters of the script

driver as a whole – determine the depth of testing, i.e., the

level of test coverage criteria, and some specific data like

interval of values, duration of testing, etc.

Before the testing starts, some initialization is required.

For example, before testing write/read procedures we have

to open a file. Such initializations are written manually.

After the initialization is finished, the main part of the script

driver starts.

Kind 5 script driver implements a general algorithm for
traversing an abstract FSM. The goal of the algorithm is to
pass all states and all possible transitions between the states.
FSM states here correspond to some classes of the data
states. Each transition corresponds to an execution of a

procedure under test.

Aforementioned data is the data used in a formal

specification, so-called «model data». The algorithm of a

script driver is related to the specification and does not

depend on the implementation details outside of the

specification.

The most interesting aspect of the script driver algorithm
is the absence of the direct descriptions of the abstract FSM.
A direct specification of an FSM requires an extra effort,
and this is where KVEST avoids the trouble. There are some
attempts to extract an FSM specification from an implicit
specification [7]. However, no one can provide a fully

automated way for such extraction yet.

Instead of a direct specification of an FSM, KVEST uses

its indirect, virtual representation. To describe an FSM,

a script driver designer should imagine a mental model of
the FSM and then define a function-observer. The observer
calculates on the fly the current state identifier (number)
in the abstract FSM based on the data accessible to the script
driver.

Let us consider the kind 5 script driver algorithm in more

detail. For example, suppose we are testing a procedure

group. Say, we have passed several FSM states, which means

we had called some target procedures. Now we are going to

make the next transition. This elementary cycle of testing

consists of the following steps:

• Select an arbitrary procedure from the group.

• Call a set of iterators (data generators for a data type)

that prepare a tuple of input parameter values for the

target procedure.

• If the iterators have managed to generate a new and

correct tuple without violation of pre-conditions, then

the script driver calls the corresponding basic driver

with this tuple as actual parameters.

• If iterators cannot produce a new correct tuple, then

we return to the first step and repeat the attempt for

another procedure.

• When the basic driver returns control, the script driver

checks the verdict assigned by the basic driver.

33 Formal specifications in reverse engineering...

RAISE Specifications Script Driver Skeletons

Basic Driver Generator Script Driver Generator

Tools
(UNIX)

Test Case Generator

RAISE -> Target Language Compiler

Target platform

Basic Drivers Test Case

Parameters
Script Drivers

Test Suites

Figure 3. Programming language independent test suite generation scheme.

• If the verdict is False (an error has been detected), the

script driver produces the corresponding trace data

and finishes.

• If the verdict is True (the elementary test case passed),

the script driver calls the observer of the group to

calculate the current state number, logs the state

number and transition and continues to traverse FSM.

2.5.3 Test Suite Composition

Let us go back to the issue of the composition of the
MDCs and the automatically generated components. Script
drivers are composed following the requirements of the
corresponding skeletons. Overall, we need five skeletons for
serial testing of API kinds 1 through 5; one skeleton for
parallel testing and five skeletons for exception raising
testing. Based on the corresponding skeleton and the list of
target procedures and specifications, KVEST generates the
script driver template. For kind 1, this template is a ready-
to-use program. For other kinds, the template includes
several nests with default initiators and iterators. If a test
designer does not need to add or improve anything in the
nests, the template can be compiled and executed. This
situation is typical for kind 2 API. For other kinds, test
designer usually has to add some specific initiators and
iterators. In any case, the designer should define an FSM
state observer for the script drivers of kinds 4 and 5.

Basic drivers invoked by script drivers are generated fully

automatically. The only MDCs called from basic drivers are

data converters. As mentioned above, the converters

transform a model data representation into an

implementational representation and backward. A model

representation is distinguished from the implementational

one by the level of abstraction. For example, models may

use «infinite» representation of integers, sets, maps, and

other data structure suitable for specification. Sometimes

the model representation is very similar to the implemen-

tational one. In this case, such transformation is done by a

standard translation algorithm of specification language into

the implementation language.

KVEST uses implementation language independent test

generators. All generators use only RSL texts as input and
output. The only components written in the implementation

language are data converters. These components are out of

the scope of test generators. So, the test generation process
produces a full test suite source in RSL at first, and then
the source is compiled into the implementation language.
To port a KVEST test suite from one implementation
language platform to another, a user should re-write data
converters and provide a compiler from RSL into the
implementation language, as well as a run-time support
system with test bed functions. The scheme of test
generation is presented in Figure 3.

2.6 Integration of reverse and forward

engineering

In 2000 KVEST is going to be used in co-verification

manner. The team of designers in Ottawa will develop design

documentation and source code while another team in

Moscow will in parallel develop formal specifications and

test suites. The co-verification scheme allows to improve

the quality of design documents and to produce test suites

before implementation is complete. It is one of the ways to

use KVEST in the forward engineering process.
During 1998, ISP conducted initiative work in natural

language documentation generation. Result of the

experiment was a prototype demo that had been presented

at ZUM’98 conference (Berlin, September 1998).

The prototype synthesizes man-page-like documenta-

tion based on formal and informal components of a

specification. The prototype demonstrated a real possibility

to generate an actual documentation. The consistency of

the documentation is checked by means of test execution

generated from the same source, from the RSL

specification. This work currently continues to extend the

variety of documentation forms and to produce a more

fluent natural language.

3. State of the art

In this section, we will discuss systems that, on one hand,

build the verification process on the formal specifications,

and, on the other hand, propose a rather generic

technological scheme, not just solutions to the specific

problems that have certain theoretical value but fail attempts

to introduce them in the process of verification of the

industrial-strength software.

31
4

I.B.Bourdonov, A.V.Demakov, A.S.Kossatchev, etc.

3.1 ITEX – Interactive TTCN Editor and eXecutor

ITEX [29] is a test environment for communicating
systems. It includes a TTCN and ASN.1 analysis and design
tool, a test simulator and support for generation of complete
Executable Test Suites (ETS). Here is a brief ITEX
functionality:

• A Test Suite is made up of Test Cases in a form of

tables;

• ITEX provides a set of highly integrated tools for the
development and maintenance of Abstract Test Suites

(ATS) written in TTCN;
• ITEX supports the following phases of the Test Suite

development: Test Case Generation, Editing,

Verification, Validation and Execution.

This toolset is well integrated with SDT, an environment

for design of SDL specifications. Test suites described
with TTCN can be transformed to the form that allows
testing both implementation in some programming
language and specification in SDL.

The main shortcoming of this approach in the context
of our research is that it is unsuitable for API testing. TTCN
does not permit declaration of pointers and other software
entities that do not have textual (literal) representation.

Besides, a very serious limitation of SDL-like

specifications is their explicit form. This means that it is

quite easy to build models and prototypes based on them

but it is very difficult to develop a system of constraints that

define the union of all possible implementations. Implicit

specifications overcome this problem.

3.2 ADL/ADL2

This approach [30] is the most similar to the works of
our group. From formal specifications, ADL generates test
oracles and skeletons for building test drivers and
documentation. Not very fundamental, but still interesting
difference of ADL is that instead of one of the popular
specification languages it uses extensions of C and C++
languages. In the Kernel Verification project, SPP, a similar
extension of the target language, was developed during the

prototyping phase. It is documented in the Kernel

Verification project report [20]. A similar kind of extension

was also proposed by Barbara Liskov [6]. There are ideas

on extending Java and other object-oriented languages

aimed at developing software in «Design-by-Contract»

fashion [5, 27, 31]. However, despite the obvious advantages

of a better acceptance of such languages in the software

engineering community, the common concept is still far

away, to say nothing about the common notation.

The difference of the KVEST results compared to ADL

results can be explained by the difference in the range of API
classes for which this or another methodology can provide
means for specification and automatic test generation. ADL
provides adequate tools for test generation automation only

for procedures which parameters allow independent
enumeration while this set of procedures allows testing
procedures one by one. In the KVEST classification, these
are the APIs of the first and second kind. This means that
procedures with dependent parameters, procedures that

require testing in a group, e.g., «open – close», or those

that require testing in a parallel mode, e.g., «lock – unlock»,

or «send – receive», are left out. Besides, ADL does not
recognize the first kind of API that permits an automatic
generation of the complete test suite including test case

parameters and test oracles.

An interesting moment in ADL is its capability to

generate natural language documentation. It is important

to note that the same mechanism is used for both the
documentation of the target system and the documentation
of the test suites. It seems that ADL authors made a
conscious choice of not using any of the technologies from
the NLG (Natural Language Generation) field. It is easy to
explain in a pragmatic sense, however, it does not mean that
modern natural language generation methods can not help
in the generation of the software documentation. KVEST
capabilities in documentation generation are implemented
in the prototype version. Still, as opposed to ADL, KVEST
uses computer grammar and English dictionary for analysis
and generation of natural language fragments that allows it
to reduce the number of natural language errors and make

the text more readable without any manual work.
The significant advancement of ADL2 compared to

KVEST is its capability of specification and testing of OO
classes. This KVEST shortcoming can be explained by RSL
weakness. Extending KVEST to OO software verification is
the task for 2000.

3.3 Using Test Oracles Generated from Program
Documentation

This work [8] is in a research phase and as such it is not

a technology ready to use in industry. The main interest in

this research is the analysis of factors that, in authors’

opinion, prevent the wide use of formal specifications during

automatic testing of industrial software. The authors

formulate five main problems the common solution of

which, in their opinion, is impossible within the current

state of the art. These five problems have a lot in common

with a group of characteristics that were the basis of API
classification in KVEST. Thus, D. Peters and D. Parnas and
us arrived to the common understanding that those are the

key problems in the task of test automation based on formal
specifications. KVEST continued research in this direction
and proposed a technological scheme for a partial
automation of test suite development for all kinds of APIs.

3.4 Formal Derivation of Finite State Machines

for Class Testing

This work [7] is also a research. At the same time, this

work is interesting in a sense that it proposes a scheme for

organization of procedure group testing similar to the

scheme used in KVEST. Object-Z is used as a specification
language and C++ as a programming language. The task is
stated as follows: to build test suites to verify the

conformance of the implementation to the specification

using formal specifications of the methods for some class.

As a test coverage criterion, a union of two criteria is used:

to cover all equivalency classes that represent areas obtained

as a result of partition analysis, and then, to check the results

on or near boundaries.

The authors of this work do not try to solve the problem

of complete automation of test generation. Nor do they

35 Formal specifications in reverse engineering...

attempt to support any elements of the preparation phase

with some tools. Still, all the steps are described in a very

systematic way and can be boiled down to various

specification transformations.

The partition and boundary analysis is done manually

according to the methodology proposed by the authors. In
a similar way, they build a specification of oracles. Oracles,
once compiled into C++, call target procedures and verify
the conformance of the results to specifications.

The most interesting part is the testing scheme, which

is a framework that dynamically generates test sequences

of procedure calls. The framework is controlled by a Finite

State Machine description that represents an abstraction

of state transition graph of the test class. The authors

describe the methodology of building specifications for the

classes of states and transitions between them while

considering the problem of exclusion of inaccessible states.

The theoretical weakness of this approach is that it does

not try to come up with a formal methodology to build

transformation specifications. It is obvious that serious

problems will be encountered when attempting to apply this

method recommendations to the specifications of real-life

complexity. In practical sense, it is clear that the process of

test derivation from the specifications is a mostly manual

activity, which limits its applicability to the industrial

software.

The main difference of KVEST compared to this work is
that during testing KVEST does not need a full description
of the Finite State Machine that models the states of a
system under test. Instead, KVEST proposes a universal
algorithm that can dynamically provide all accessible states

and all possible transitions between state pairs.

4. Conclusion and further

work

KVEST experience shows that formal methods can be
used in the industrial software production. The level of
complexity and size of KVEST applications support this
thesis.

However, the current state of KVEST and the state of

the art as a whole dictate the necessity of an intensive

development of the approaches, methodologies and

supporting tools. It is possible to formulate the following

important problems to be solved:

• The users of programming languages are not able to

use specification languages and formal methods with

sufficient skill, it is the main factor constraining wider

use of formal methods;

• Methodologies, technologies, CASE systems

supporting software development, as a rule, are aimed

at the development and analysis of implementation

structure (architecture). This approach makes a

consideration of software functionality itself difficult.

There are still no methodologies that successfully

combine advantages of both structural and functional

approaches.

• Static (purely formal) methods of program analysis

provide exhaustive decisions of the problems, but are

aplicable only for fragments of real systems. Dynamic

methods such as modeling or testing are based on some

heuristics and therefore cannot form the basis for an

exhaustive analysis. In this connection, there is the

problem of integration of static and dynamic methods,

to take advantages of each of them.

We see the following ways of solving these problems:

• Rapproachement of specification and programming

languages.

Keeping in mind that it is impossible to force a

programmer to study not only a new specification language,

but just a new programming language, it is easy to conclude

that it is necessary to make а smooth transition from a

programming language to a specification language. The

attempts to pull these languages together were made for a
long time. Examples of such languages are CLU
extension [18], Alphard [19], Eiffel [27, 31], iContract [5],
SDL [16], SPP [20].

Some languages, for example Larch [23], offer to make

this rapproachement purely at the expense of a

simplification of the specification part while simultaneously

expanding the means for displaying of a formal model in

the implementation language. Other languages, for example

SDL, are using the specifities of the problem area, borrow

features of programming languages and thus allow to

generate executable code directly from the specifications.

There is quite a successful experience of a counter
movement. For example, the authors of ADL slightly expand
C, C++, Java, and IDL. As a result, there are no problems
for user of the programming language at least in reading

specifications.

KVEST in its prospective development considers the last

of the listed approaches as the main one. The version of the

system currently under development offers means of C++,

probably enriched by «syntactic sugar» simple in implemen-

tation and in understanding, as a specification tool.

Note that the concept of such updating requires a
thorough study. A consequence of «simple decisions» is
easily illustrated by the example of ADL. Absence of
methods and appropriate means for increasing the level of
abstraction do not allow ADL users to create specifications
of higher levels of abstraction and in a sufficient degree to
automate test generation for groups of procedures or classes.

• Synthesis of program analysis and program

development methods aimed at the description of
functionality and implementation structure.

Some aspects of software behaviour poorly fit in the
framework of API consideration. As an example there are
stacks of telecommunication protocols and distributed
systems. Such software is well described in the form of
executable models, constructed on the basis of FSM, Petri
nets, special kinds of automata, for example, CCS [14].
Common disadvantage of such approaches are the

difficulties with setting invariants for distributed events. In

particular, this problem showed up in attempt to detect a

potential undesirable feature interaction. One of the ways

of structural and functional methods integration are FSM

extended with description of restrictions on transitions [4].

This approach is close to the technique of describing and
testing of procedures groups proposed in KVEST. Thus,
KVEST can be extended by appropriate means for describing
protocols, distributed systems and other kinds of software

requiring combination of the structural and functional

specifications.

• Integration of static and dynamic methods of forward

and reverse engineering.

Among potentially possible applications of the synthesis

of static and dynamic methods of development/analysis, we

31
6

I.B.Bourdonov, A.V.Demakov, A.S.Kossatchev, etc.

recognize means for controlling level of abstraction and

generators of models for static and/or dynamic analysis of

program behaviour.

As a means for increasing level of abstraction,

methodical and tool support for «upwarding» and

«downwarding» together with means for transformation of

explicit specifications into implicit ones (in the form of
post-conditions) is developed within KVEST. Until the

present time these works were carried out completely

manually. Now some of the planned «transformers» are

being developed.

The models under consideration are generalized

descriptions of scenarios of the target system usage. Such

scenarios can be used both for static analysis (this is what

the idea of «model checking» means) and for generation of

test sequences. In KVEST, FSM in the 5-th kind of test
drivers played a role of such models. The fact that such FSM
is developed manually, besides problems connected with

cost and terms of its development, raises a question of
correspondence between FSM and procedure specifications,
of the relation between test coverage criteria defined on the
basis the specifications and those defined on FSM itself.
There are the works on partial automation of such FSM
construction. Unfortunately, problems of FSM extraction
from the specifications of functions with side effect are not
considered in them. KVEST makes an attempt to solve this
problem using specifications of hidden (abstract) states of

target systems.

References

I. Bourdonov, A.Kossatchev, A.Petrenko, and D.Galter. KVEST:

Automated Generation of Test Suites from Formal Specifications.

In Proceedings of World Congress of FM'99 – Formal Methods,

Lecture Notes in Computer science, volume 1708, Springer

Verlag, 1999, pp.608-621.

2. I.Burdonov, V.Ivannikov, A.Kossatchev, G.Kopytov, S.Kuznetsov.

The CLOS Project: Towards an Object-Oriented Environment for

Application Development. – In Next Generation Information

System Technology, Lecture Notes in Computer Science, volume

504, Springer Verlag, 1991, pp. 422–427.

3. I.Burdonov, A.Kossatchev, A.Petrenko, S.Cheng, H.Wong.

Formal Specification and Verification of SOS Kernel. // BNR/

NORTEL Design Forum, June 1996.

4. Pansy Au and Joanne M. Atlee. Evaluation of a State-Based

Model of Feature Interactions. // Proceedings of the Fourth

International Workshop on Feature Interactions in

Telecommunications Software Systems, June 1997, pp. 153–167.

5. R.Kramer. iContract – The Java Design by Contract Tool. // 4th

conference on OO technology and systems (COOTS), 1998.

6. B.Liskov, J.Guttag. Abstraction and Specification in Program

Development. – The MIT Press, McGraw-Hill Book Company,

1986.

7. L.Murray, D.Carrington, I.MacColl, J.McDonald, P.Strooper.

Formal Derivation of Finite State Machines for Class Testing. //

Lecture Notes in Computer Science, volume 1493, pp. 42–59.

8. D.Peters, D.Parnas. Using Test Oracles Generated from Program

Documentation. // IEEE Transactions on Software Engineering,

1998, Vol. 24, N. 3, pp.161–173.

9. A.K.Petrenko. Test specification based on trace description. //

Software and Programming, New York (translated from

Programmirovanie), No. 1, Jan–Feb. 1992, pp. 26–31.

10. A.K.Petrenko. Methods of debugging and monitoring of parallel

programs. // Software and Programming, N. 3, 1994.

11. The RAISE Language Group. The RAISE Specification

Language. – Prentice Hall Europe, 1992.

12. The RAISE Language Group. The RAISE Development

Method. – Prentice Hall Europe, 1995.

13. A.R.Hoare. Communicating Sequential Processes. – Prentice

Hall, 1985.

14. R.Milner. Communication and Concurrency. – Prentice Hall, 1989.

15. D. Bjorner et al eds. The Vienna Development Method: The

Meta-Language. – Lecture Notes in Computer Science, Vol. 61,

Springer Verlag, 1978.

16. Specification and Design Language. ITU-T recommendation

Z100.

17. P.H.J. van Eijk et al eds. The Formal Description Technique

LOTOS. – North Holland, 1989.

18. Barbara Liskov et al. CLU Reference Manual. – Lecture Notes

in Computer Science, volume 114, Springer Verlag, 1981.

19. Mary Shaw. Abstraction and Verification in Alphard: Defining and

Specifying Iteration and Generators. // Communications of the

ACM, Vol. 20, N. 8 (August 1977), pp. 553–563.

20. SPP – specification language description. – KV project report,

Nortel (Northern Telecom), May 1995.

21. C.A.R.Hoare. An axiomatic basis for programming. //

Communications of the ACM, Vol. 12, N. 10 (October 1969),

pp. 576–583.

22. C.A.R.Hoare. Proof of correctness of data representations. //

Acta Informatica, 1(4): 271–281, 1972.

23. J. Guttag et al. The Larch Family of Specification Languages. //

IEEE Software, Vol. 2, N. 5, pp. 24–36 (September 1985).

24. А.А.Марков. Теория алгорифмов. // Москва, Изд-во АН

СССР, 1954.

25. А.А.Ляпунов. О логических схемах программ. Проблемы

кибернетики, вып. 1, Москва, 1958.

26. Ю.И.Янов. О логических схемах алгоритмов. Проблемы

кибернетики, вып. 1, Москва, 1958.

Internet resources

27. http://www.eiffel.com/doc/manuals/language/intro/

28. http://www.fme-nl.org/fmadb088.html

29. http://www.kvatro.no/products/itex/itex.htm

30. http://adl.xopen.org

31. http://www.elj.com/eiffel/intro/

http://www.eiffel.com/doc/manuals/language/intro/
http://www.fme-nl.org/fmadb088.html
http://www.kvatro.no/products/itex/itex.htm
http://adl.xopen.org/
http://www.elj.com/eiffel/intro/

