
Programming and Computer Software, Vol. 26, No. 2, 2000, pp. 61-73.
Original Russian Text Copyright �9 2000 by Burdonov, Kossatchev, Kulyamin.

Application of Finite Automatons for Program Testing
I. B. Burdonov, A. S. Kossatchev, and V. V. Kulyamin

Institute of System Programming, Russian Academy of Sciences, Bol'shaya Kommunisticheskaya 25, Moscow, 109004 Russia
e-mail: igor@ ispras.ru, kos@ ispras.ru, kuliamin@ ispras.ru

Received July 12, 1999

Abstract--The application of the finite automaton theory to the problem of program testing is discussed. The
problem is reduced to testing a finite automaton. Testing of automatons using their state graphs, factor graphs,
testing using factor graphs, and methods for factor graphs construction are discussed.

1. INTRODUCTION

Automatons provide a widely used model of hard-
ware and software objects. The main difference
between an automaton and a purely functional depen-
dence is that the values of output parameters depend
not only on input parameter values, but also on the
object state. The idea of an automaton is close to such
program concepts as abstract data types and class
objects, with the automaton being their mathematical
model. For example, in object-oriented programming
(OOP), one can consider an object of a class as an
automaton: the state of the automaton is the object
state, the input symbol is an operation in the object with
some set of input parameter values, and the output sym-
bol is the set of output parameter values.

The abstraction of automaton is used both for design
and design solution analysis. The present paper is ded-
icated to problems arising in testing program systems
that are considered finite automatons; we will call such
a kind of testing "finite automaton testing"

The task of testing automation is divided into two
relatively independent parts: test actions generation and
automatic verification of the test action results, which is
usually performed by an oracle program. Recently, the
oracle construction problem has usually been treated as
the problem of oracle generation using formal specifi-
cations. Many studies [1, 3, 6, 7] are dedicated to this
problem, and we are not going to discuss it here. For
our purposes, it is enough to know that, for any admis-
sible pair, <state, input symbol>, an automaton oracle
can define the validity of the transition to the new state
(i.e., the validity of the transition function) and the
validity of the resulting output symbol (i.e., the validity
of the output function). The task of finite automaton
testing can be solved under the assumption that its state
is or is not available for observation from the testing
system. If the state is unavailable (the "black box"
automaton), then the testing system must introduce an
"abstract state" that models the real state of the autom-
aton. In this situation, the oracle calculates a new
abstract state instead of checking the transition func-
tion. The correspondence of the real and abstract states

is verified indirectly when the output function is
checked in the oracle during the testing [3].

A natural criterion for the completeness of the test
coverage the automaton testing is the coverage of all
transitions of the automaton (i.e., admissible pairs,
<state, input symbol>). To satisfy this criterion, it is
necessary to generate all required test actions for all
states of the automaton. Thus, the task of generation is
divided into the task of "traversar' through all states of
the automaton and the task of "searching" through the
test actions for all states of the automaton. Note that the
automaton output function is not used for performing
these tasks.

One widespread method of automaton representa-
tion is the representation in the form of a graph of states
(or transition graph) in which vertices correspond to the
automaton states and arcs correspond to possible tran-
sitions. In terms of graph theory, the problem of cover-
age of all transitions of the automaton is formulated as
the problem of graph traversal, i.e., passing over a route
that contains all arcs of the graph.

There are two main problems related to the traversal
of the automaton state graph: indetermism and the
overly large size of the graph.

A nondeterministic automaton is one in which the
transition function is ambiguous: several arcs of the
graph correspond to a single pair <state, input symbol>.
Since the choice of arcs is not determined by the test
action, it is impossible to guarantee the full traversal of
the graph (passing through all arcs and, thus, maybe
through all states) during testing. Note that the ambigu-
ity of the output function does not produce any addi-
tional problems: the oracle only requires that a certain
predicate of the state, input, and output symbol be sat-
isfied.

Remark: The nondeterminacy of the modeling
automaton does not necessarily imply that the object
being modeled is nondeterministic. In many cases, the
nondeterminacy of the model arises from the natural
abstraction from the details of implementation. For
example, in the request for memory, we may be not

0361-7688/00/2602-0061 $25.00 �9 2000 MAIK "Nauka/lnterperiodica"

62 BURDONOV et al.

interested in the algorithm of memory allocation; the
only important thing is that the fragment to be allo-
cated does not intersect with any of the fragments
already allocated. Specifications often do not define
operation results unambiguously because, as a rule,
they describe only the requirements the result must
obey rather than the algorithm for obtabffng the result.

A very large size of the graph naturally leads to a
very long traversal time (testing time).

There is a common approach to solving both prob-
lems stated above. It is based on the introduction of an
equivalence relation of vertices and arcs of the graph.
The criterion of coverage of all arcs and vertices is
weakened to covering all equivalence classes. On these
equivalence classes, the factor graph is constructed that
is traversed in the process of testing. The homomor-
phism of the factor graph (under the incidence relation
of vertices and arcs) to the original graph of the autom-
aton states is substantially used in testing algorithms.
With a proper definition of equivalence classes, the fac-
tor graph can become deterministic and its size can
slump,

The concept of operation in an OOP object can
serve as an example of decomposition of a set of arcs
into equivalence classes. If certain predicates, which
split operation domains onto subdomains, are defined
on operation domains, then we obtain a more "detailed"
decomposition.

Note that the equivalence with respect to operations
can be considered as the equivalence input symbols: all
calls of the same operation with different parameters
are considered equivalent. However, the operation sub-
domain is, in general, a predicate of input parameters
and the object state. That is why one should speak of
equivalence of transitions of the automaton (i.e., that of
the state graph arcs), rather than the equivalent of the
input symbols.

We will consider finite automatons with strongly
connected state graphs. Automatons corresponding to
OOP objects possess this property (strong connectivity
is easily obtained by adding the operations of construc-
tion and destruction of objects). Such automatons have
the following property that is important for testing:
after any transition, an opportunity remains to reach
any state and test any transition from it.

In subsequent chapters, we will examine automaton
state graphs, the testing of automatons using such
graphs, factor graphs, testing of automatons using fac-
tor graphs, and methods for construction of factor
graphs.

2. GRAPH OF AUTOMATON STATES

Furthermore, we will frequently use the following
concepts and notations without additional comments:

�9 equivalence on a set. A is a reflexive, symmetric,
and transitive binary relation, Z c A x A; relations are
denoted by a capital Greek letter;

�9 equivalence Z on a set A induces the decomposi-
tion of A into classes of Z-equivalence (E classes). The
set of these classes is denoted by A/E. Inversely, any
decomposition, A, into non-intersecting classes induces
the corresponding equivalence relation;

�9 the decomposition A/E induces the mapping,
denoted by a small Greek letter or: A , A/E.
Inversely, any mapping induces a decomposition of the
domain of definition and the corresponding equiva-
lence on it;

�9 subset c , intersection n , and complement --1, of
equivalences are understood in the common set-theo-
retic sense (as for subsets of a Cartesian product).

Oriented graph, G = (V, E, ~., p), is determined by
two non-intersecting sets: the set of vertices V and the
set of arcs E, and two incidence functions ~,: E �9 V
and p: E ~ V. For any arc, the incidence functions
define its initial vertex (origin) and its terminal vertex
(end). A graph is finite if the sets E and V are finite.

The incidence functions ~, and p define the adja-
cency relation of ~ arcs:

Ve~,e2~ E e l~e2c=~p(e i) = ~,(e2).

We will say that a coloring (X, X) is defined on the
graph G = (V, E, ~., p) if a set X, which we will call the
alphabet of the coloring, and a mapping of the graph
arcs onto this set, X: E - X, are defined. We will call
a coloring regular if multiple arcs are mapped into dif-
ferent elements (symbols) of X:

•e 1, e 2 E E~,(el) = ~,(e2) & p(e l) = p(e2)

=~ X(el) ~ X(e2).

In a regularly colored graph, any arc e is unambigu-
ously defined by the triple, (x, ~ v'), where x = X(e),
v = ~,(e), and v' = p(e).

A graph with an arbitrary set arc equivalence Z is
called E-deterministic if all arcs originating in the same
vertex are E-nonequivalent:

'v'el, e2~ E ~,(e 1) = ~,(e 2) ~ e I ~ E e 2 .

It is clear that the mapping ~: E , EIE determines a
regular coloring with the alphabet EIE.

The route P is a sequence of adjacent arcs of the
graph, eo et, such that e i_ l ~ e i for 1 < i < t. If a reg-
ular coloring (X, X) is defined on the graph, then the

route can be defined as a sequence of triples (Xo, Vo, Vo),

.... (xt,%, v'i), where X i = X (e i) , v i = ~ , (e i) , and v" I = p(ei)
for every 0 < i < t and el_ ~Dei for any 1 < i < t. The route
P of a x-deterministic graph can be determined by the
initial vertex xr 0 and a sequence of symbols in the alpha-
bet (i.e., by a word in the alphabet X), x0 xt: P = (xr0,
x0 xt). The traversal of an oriented graph is a route
that includes all arcs of the graph. For strongly con-
nected finite graphs, a traversal always exists and can
begin at any vertex.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 2 2000

APPLICATION OF FINITE AUTOMATONS 63

An automaton A = (X, V, Y, t~, ~, v0), is defined as an
aggregate of six objects:

�9 the input alphabet, X;

�9 the set of the automaton states, V;

�9 the output alphabet,

�9 the correspondence ~ c (X x V) x V called the tran-
sition function;

�9 the correspondence ~ c (X x V) x Y that has the
same domain of definition as ~ (Dom~ = Domt~). It is
called the output function;

�9 the initial state Vo �9 V.

An automaton is finite if the sets X, V, and Y are
finite.

An automaton is called deterministic if the transi-
tion function is single-valued:

V(x, v) e Dom~ 3!v' e V t~((x, v), v').

In this case, we will write v' = ~(x, v).

Remark : The determinancy of an automaton is
often understood as being the unambiguity of both the
transition and the output functions. However, for our
purposes, the unambiguity of the transition function is
sufficient.

For an automaton A = (X, V, Y, ~, ~, v0), we can
assign the graph of its states G = (V, E, ~., p) with a reg-
ular coloring (X, Z):

E = {(x, v, v ') I x e X& v

�9 V & v' �9 V & ~((x, v), v ') }

Z.((x, v, v ')) = v

p((x, v, v ')) = v '

Z((x, v, v ')) = x.

We call x-equivalent arcs having the common initial
vertex A-equivalent. The equivalence class with respect
to A, unlike the arc (x, v, v '), is unambiguously deter-
mined by the pair (x, v). If the automaton is determin-
istic, the graph of its states is A-deterministic, with
every arc being A-equivalent to only itself.

3. TESTING AN AUTOMATON USING ITS
GRAPH OF STATES

Testing of a deterministic automaton A on the basis
of the traversal of its graph of states P = (v o, x 0 x,)
is performed by the following algorithm, A(A, P):

1. On ith step of the algorithm (with i = 0 in the
beginning), we are in the state vi and we have to walk
along the arc (xi, vi, vi+O. Since the automaton is
deterministic, this arc is unambiguously determined by
the pair (xi, ~).

2. We supply the symbol xi at the automaton input
and apply the automaton oracle.

3. If the oracle produces a negative verdict, the test-
ing process ends with an error discovered. Otherwise,
we get a new state, vi + l, from the oracle.

4. If i < t, we increase i by 1 and proceed to step 1.
Otherwise, the testing process is considered to be com-
pleted normally.

The testing time is determined by the length, t, of
the traversal of P. For graphs containing n vertices and
m arcs, it is well-known that the optimal traversal
length has the order of nm.

4. HOMOMORPHIC GRAPH

4.1. Homomorphism of Graphs and Factor Graph

H o m o m o r p h i s m (~, n) of a graph G onto a graph
G* is a pair of surjective mappings of vertices, ~, and
arcs, ~, preserving the incidence functions, k and 9:

Ve e E ~(~.(e)) = ~.(~(e)) & ~(p(e)) = p (n(e)) .

The homomorphism (~, re) of the graph G onto the
graph G* induces the congruence (E, I-I) on G, which,
in turn, defines the factor graph GI(E, 1-1) isomorphic to
G* and the canonical homomorphism G onto GI(E, I-I).
That is why we will further consider, as a rule, the
homomorphism of a graph onto its factor graph retain-
ing the same notation G*, ~, and n. However, in the
testing algorithm, we use the homomorphism of G onto
any G* (not necessarily a factor graph).

The coloring (X*, Z*) of the factor graph G* induces
a coloring (X*, 0)on the graph G; here 0 = Z*n. If the
coloring (X*, Z*) is regular, then, for every arc e �9 E,
the triple (0(e), (~(t(e)), ~(p(e))) unambiguously deter-
mines the factor arc e* = rt(e). We will call the alphabet
X* the generalized alphabet to distinguish it from the
alphabet X, whose symbols are used to color the arcs of
the state graph G. Note that the generalized alphabet
X*, in general, is not a factor alphabet (i.e., it is not a
decomposition of the alphabet X).

Inversely, let a vertex equivalence E and an arc col-
oring (X*, 0), which induces the corresponding arc
equivalence O, be given on the graph G. The equiva-
lence = induces the canonical equivalence of arcs ,---:
two arcs are E--equivalent if their initial and terminal
vertices are E-equivalent. It is the intersection of equiv-
alences, O ~ = O c7 E-, that generates the decomposition
of arcs into factor arcs: E* = E/O-, that is, FI = O-. We
will speak of the homomorphism (~, 0) as meaning the
induced homomorphism (~, 0-).

If only a vertex equivalence E and an arc equiva-
lence O are given on the graph G = (V, E, k, p), one can
independently define the factor graph G* = (V, E, ~,, p,
-- O) = (V*, E*, ~., p): ~..d,

�9 factor vertex v* �9 V* is a set of E-equivalent ver-
tices;

�9 factor arc e* �9 E* is a set of O-equivalent arcs with
E-equivalent origins and ends;

PROGRAMMING AND COMPUTER SOFFWARE Vol. 26 No. 2 2000

64 BURDONOV et al.

, . al

a2~a 2 . b|

. ~] l ~ b 3
Graph G = (V, E, ~,, p)
and equivalences ~,l and Ol:
O i-th vertex

---"- Equivalence class of vertices under -21

a!

b 1 , ' ' '

b3

Factor graph G I = (V, E, ~,, p, ~'1, Ol)

Arcs of the equivalence class a under O t
. . . . Arcs of the equivalence class b under Oi

Fig. 1. An example of factor graph.

�9 if e* is a factor arc, then ~,(e*) is the factor vertex
where all arcs from e* begin;

�9 if e* is a factor arc, then p(e*) is the factor vertex
where all arcs from e* end.

For X* = X/O, the coloring (X*, 0) induces a regular
coloring of the factor graph (X*, 0"): 0(e) = x*
0*(0- (e)) = x*.

Remark : Under a proper definition of factor arc
coloring by generalized output symbols, one can assign
a generalized automaton to the factor graph. In some
sense, testing of the initial automaton by its factor
graph can be considered as the testing of the corre-
sponding generalized automaton.

4.2. Deterministic Factor Graph

For an arbitrary equivalence Z on the set of arcs of
the graph G, we call the factor graph G* = (V, E, ~,, p,
E, 0), E-deterministic if E-equivalent arcs with =
equivalent initial arcs belong to the same factor arc; i.e.,
are O-equivalent and have E-equivalent terminal verti-
ces. The corresponding homomorphism of the graphs is
called E-deterministic.

We will be interested in A-determinism and O-deter-
minism of factor graphs. Note that O-determinism of a
factor graph coincides with its O*-determinism when it
is considered as a graph; i.e., the image of the O-deter-
ministic homomorphism is O*-deterministic.

The criterion for A-determinism is the condition A c
O-. It follows from A c O" and O- ~ O that A c O. Note
that k-determinism does not follow from A-determin-
ism.

The criterion for O-determinism is the following
condition:

Vel, e 2 E E ~,(el)E~,(e2) & p(e l) ~ Ep(e2)

e~ ~ Oe 2.

In a O-deterministic factor graph, the factor arc
(0*(e*), ~,(e*), p(e*)) is unambiguously defined by the
pair (0*(e*), ~,(e*)).

For example, in the original graph G in Fig. 1, two
arcs b 2 originating from vertex ~ , are A-equivalent;
these arcs correspond to the same ~ m b o l b 2. The graph
G~ is A-nondeterministic. However, the factor graph

G* is A-deterministic, though it is not Ol-deterministic
since the two Orequivalent arcs, b 2 and b3, have E~-
equivalent initial vertices (the factor vertex ~) , but
Ernonequivalent terminal vertices (~ a n d S .

We will call a factor graph simply deterministic if it
is A-deterministic and O-deterministic at the same
time. The corresponding homomorphism of graphs will
be called a deterministic homomorphism.

4.3. Completely Definite Factor Graph

Since the factor graph G* is a homomorphic image
of the original graph G, any route P in G is mapped onto
a certain route P* in the factor graph G*. If P contains
only some vertices and arcs but passes through all
equivalence classes of E and O- vertices and arcs, then
P* is a traversal of the factor graph G*. It is the route P
that will traversed in the process of testing, and the suc-
cessful completion of the traversal P* route is the crite-
rion of the testing completeness. Since the factor graph
G* contains fewer vertices and arcs than G, P* (and,
thus, P) is shorter than the traversal of G. That is, the
testing time by the factor graph is less than that by the
original graph.

However, not every route, P* in the factor graph G*
has to be the image of a route in G. Here the problem of
adjacency of arcs arises: a pair of adjacent factor arcs
e* and e* that follow one another in the traversal P*

can be the image the pair of arcs e I ~ e* and e 2 ~ e*
in G that are not adjacent.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 2 2000

APPLICATION OF FINITE AUTOMATONS 65

�9 Vertex of the original graph

" Arc of the original graph

O actor vertex

I ~ Factor arc

Fig. 2.

There are several approaches to the solution of the
problem.

One of them consists in that every time one has to
pass over nonadjacent arcs el and e2, a path in G leading
from the terminal vertex of el the initial vertex of e2 is
used [4]. Certainly, this causes a cyclic path to be
passed in the factor graph G*. Thus, instead of passing
over P*, we actually go a longer route P* , which is a
homomorphic image of P. This approach is applicable
for any factor graph (if the original graph is strongly
connected). However, the length of P* (which gives an
estimate for the testing time) can be much greater than
the length of P* so that it approaches the length of the
route on the original graph G; thus, all the benefit from
using the factor graph instead of the original graph is
lost.

Another approach consists in the consideration of
only factor graphs for which the requirement of strict
adjacency of arcs is satisfied: if the factor arcs e* and

e* are adjacent and el e e* , then e2 ~ e* exists such
that el and e2 are adjacent. In this case, every traversal
P* of the factor graph is an image of at least one route
P in the original graph. Thus, the testing time is deter-
mined by the length of P*, which can be significantly
less than the length of the traversal of the original
graph. It is this approach that is examined in the present
paper.

We call a factor arc e* completely definite if the set
of initial vertices of arcs e ~ e* coincides with the ini-
tial factor vertex of e*: {~.(e)le ~ e* } = ~(e*). A factor
graph is completely definite and O is a completely def-
inite arc equivalence if all factor arcs are completely
definite. The corresponding homomorphism is called
completely definite. For a strongly connected graph G,
the strict adjacency of the factor graph G* arcs is equiv-
alent to its complete definiteness.

For example, for the factor graph G~' in Fig. 1, the
factor arcs al, bl, a2, and b 2 are completely definite, and
a 3 and b 3 are not completely definite.

In terms of graph homomorphisms, one can inter-
pret the strict adjacency of arcs and the complete defi-
niteness as follows.

We call the homomorphism (of algebraic systems)
x: A , A* a strict (from left) with respect to s if:

~/x ~ A, y* ~ A *'c(x)Ey*

3y~ Az(y) = y* & xZy.

Strict adjacency of arcs means that the homomorphism
of graphs with respect to the equivalence f~ of arc adja-
cency is strict; complete definiteness means that the
homomorphism of graphs by the incidence function ~,
is strict, with the incidence function interpreted as the
relation v~.e. Note that if the incidence ~, is interpreted
as the relation e~.v, then the corresponding property is
true for any homomorphism of graphs.

5. AUTOMATON TESTING USING
A HOMOMORPHIC GRAPH

5.1. Homomorphism of Graphs
and Symbol Calculation Function

Consider a deterministic completely definite homo-
morphism, (~, 0) of the graph G of states of an autom-
aton A onto the graph G*. It follows from the complete
definiteness that any traversal P* of G* is the image of
a certain route P in the original graph G. From the O-
determinism, it follows that the traversal P* can be
determined by the initial vertex v~' of G* and the
sequence of generalized symbols (a generalized word)
of the form x~ x*. In a strongly connected graph,
traversal can be started from any vertex; we choose the
image of the initial state v0 of A (i.e., ~(v0)) as the start-
ing vertex of P*. Then the traversal can be determined
as P* = (v0, x* x*).

In the testing algorithm, the symbol calculation
function is used. Given an arc (x*, v*, v*') of G*, a gen-
eralized symbol x*, and the automaton state v from the
preimage of v*, this function calculates the (input)
symbol x of the automaton so that it is guaranteed that
any arc (x, v, v') belongs to the preimage of (x*, v*, v').
The following requirements must be satisfied:

�9 first, the pair (x*, ~(v)) defines only one arc, (x*,
v*, v*'). This is guaranteed by the graph O-determin-
ism.

�9 second, for any v from the preimage of v-*, there
must be an arc, (x, v, v'), that is mapped into (x*, ~(v)).

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 2 2000

66 BURDONOV et al.

. al - al.

' b!

a 2 ' ~ , i a3

. l i b3
b3

Graph G = (V, E, ~, p) Factor graph G 2 = (V, E, ~., p, ~'1, 02)
and equivalences "-1 and 02:
O i-th vertex

Equivalence class of vertices under E l
�9 . Arcs of the equivalence class a under 02

�9 - - ,.- Arcs of the equivalence class b under 02

Fig. 3.

This is guaranteed by the complete definiteness of
the homomorphism.

�9 Third, the entire A-class (x, v) to which such an arc
(x, v, v'), belongs must be mapped is reflected into a
single arc (x*, ~(v)). This is guaranteed by the A-deter-
minism of the homomorphism.

Under these conditions, the symbol calculation
function finds at least one solution to the equation 0(x,
v) =x* inx.

R e m a r k : The symbol calculation function can be
implemented as a function that tries all symbol x and
tests, whether O(x, v) = x*.

Thus, in fact, the testing algorithm uses only the pre-
defined mappings ~ and 0 (i.e., the homomorphism of
the original graph G onto G*), and the given traversal
P* of G*.

5.2. The Testing Algorithm

Let a deterministic and completely definite homo-
morphism (~, 0) of the state graph G = (V, E, ~., p) onto
the graph G* = (V*, E*, ~., p) be given for an automaton
A. The automaton testing on the basis of the traversai
P* = (v 0, x* x*) on the G* graph is performed by
the following algorithm A(A, P*).

1. On the ith step of the algorithm (i = 0 at the begin-
ning), we are in the state v,., and we are going to pass
the arc e* G* that is unambiguously defined by the pair
(x* , ~(vi)). Using the symbol calculation function, we
define x i, which is the solution to the equation O(xi,vj) =

x* .

2. We send the symbol xi to the input of the automa-
ton and apply the automaton oracle.

3. If the oracle produces a negative verdict, the test-
ing is finished and an error is fixed. Otherwise, we
obtain a new state V/+l from the oracle such that
~(vi+ I) = p(e*).

4. If i < t, we increase i by 1 and proceed to step 1.
Otherwise, the testing is considered to be completed
normally.

In the process of testing, we traverse G* by the route
P* = (v0, x* x*). In the process, the route P = (v 0,
x 0 x t) in the state graph of the automaton A is
passed.

5.3. An Example o f Testing Using Homomorphic Graph

Consider the factor graph G* = (V, E, ~., p, El, O1)
shown in Fig. 1. This factor graph is deterministic but
not completely definite. We modify the relation ~-t so as

to obtain the completely definite factor graph G~' = (V,
E, k, P, =-2, Oi) as shown in Fig. 3. For this purpose, it
is sufficient to treat vertices ~ and ~ as being non-
equivalent.

There exist several traversal of G* . For example,

The following two possible routes, Pn and P22, in the

original graph G correspond to P* :

These routes differ in the last transition from the
vertex to the vertex A'Z--c~-] lass. Thus, th ~ or ~] by one of the arcs b 2 of

ch0Tce of P21 and P22 is not same

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 2 2000

APPLICATION OF FINITE AUTOMATONS 67

deterministic. Note that, in both cases, not all arcs of

the original graph are passed (arc ~] a~, [~ and one of

the arcs of the A-class, ~ b--~2 ~] or ~] b--~2 ~]).

6. CONSTRUCTION OF A TRAVERSAL
IN THE PROCESS OF TESTING

The general problem of constructing a traversal of a
graph is well known. Here we examine the problem of
constructing a traversal of a graph in the process of test-
ing.

6.1. Testing an Automaton Using Its Graph of States

There is a tool implementing the universal algo-
rithm A(A, 0) for testing any automaton A with deter-
ministic, finite, and strongly connected state graph;
simultaneously, a traversal of the state graph is con-
structed [3]. In contrast to the algorithm A(A, P), A(A,
0) does not require the traversal P to be given (it is con-
structed automatically). Moreover, the algorithm A(A,
0) does not use any information about the automaton
and its graph of states except for what is defined by the
following parameters of the algorithm:

�9 the automaton initial state;

�9 the operation of state comparison for equality;

�9 input symbols iterator;

�9 the automaton oracle.

Given a pair (state, input symbol), the iterator of
input symbols produces the following input symbol
admissible for the given state:

It: V x X u { O } �9 X u { O }

To obtain the initial input symbol, an "empty" sym-
bol O is specified that is added to the input alphabet.
The iterator must guarantee that, for every vfrom V, the
sequence It(v, 0), It(v, l t(~ 0)) runs through
all symbols admissible in the state ~ At the end of
this sequence, the iterator returns the empty input sym-
bol 0 .

Remark: The iterator may run through all input
symbols, rather than only through those allowed in the
given state. In this case, a special admissibility verifi-
cation function is used to filter out inadmissible input
symbols. In terms of formal specifications, the admissi-
bility verification is the verification of the operation
precondition.

The algorithm learns about admissible states of the
automaton when, having sent an admissible input sym-
bol to the automaton input, it gets the value of the state
the automaton goes to from the oracle.

The length of the traversal constructed by the algo-
rithm A(A, 0) has the length of the same order that the
optimal traversal of the graph (the product of the num-
ber of vertices by the number of arcs).

G*ma x

A--Deterministic
. . . . _fa.cto_r gr_a~h.s

G

Fig. 4 .

6.2. Testing of an Automaton Using
Homomorphic Graph

There is a modification of this algorithm for testing
by the homomorphic image of the graph. This modifi-
cation is denoted by A*(A, 0) . The homomorphism (~,
0) of the graph of states G of the automaton A onto the
graph G* must be deterministic and completely defi-
nite, and G* must be finite and strongly connected.
Unlike the algorithm A*(A, P*), A*(A, O) uses only
the given mappings ~ and 0; i.e., it uses the specified
homomorphism of the original graph G onto G* and
does not require the traversal P* of G* to be given (the
traversal is constructed automatically). Moreover, the
algorithm A*(A, O) does not use any information about
the automaton, its state graph, and the homomorphic
graph except for what is defined by the following
parameters of the algorithm:

�9 the automaton initial state;
�9 the mapping ~: V ,. V* of the state of the graph

G into the state of G*;
�9 the generalized input symbol iterator (iterator

through X*);
�9 the symbol calculation function which, in turn,

depends only on the mappings ~ and 0;
�9 the automaton oracle.
Instead of the mapping ~, one can use a predicate of

two variables on the set of states V implementing the E-
equivalence similar to how the operation of comparison
for equality is used in the algorithm A(A, 0) .

The traversal of the homomorphic graph G* that is
constructed automatically by A*(A, 0) has the length
of the same order as the optimal traversal of G* (the
product of the number of vertices by the number of
arcs).

7. CONSTRUCTION OF DETERMINISTIC
COMPLETELY DEFINITE FACTOR GRAPHS

Suppose that equivalences of vertices ~, and arcs O
of an automaton state graph G = (V, E, ~,, p) are defined

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 2 2000

68 BURDONOV et al.

Fig. 5.

on the basis of a certain criterion of test coverage.
These equivalences define the following boundary
requirement: nonequivalent vertices and arcs must be
distinguished during the testing. However, it does not
mean that we cannot make a more detailed differentia-
tion of vertices and arcs; i.e., use equivalences E' c F,
and O' c O. Partly, it already happens in testing by the
homomorphic graph; in fact, we distinguish arcs by the
equivalence O- c O, rather than by O. In the general
case, the boundary requirement is satisfied for any
graph embedded into G* if graph embedding is defined
through the homomorphism mappings or, which is the
same, through embedding of equivalences E and O-
that define it: G*' c G* r E,' c E & O'- c O-. (Note
that O' c O ~ O'- c O-, but the inverse is not true.)

If, therefore, for a given initial equivalences E and
| the factor graph G* = (V, E, k, p, E, O) turned out to
be A-nondeterministic and/or O-nondeterministic
and/or not completely definite, we can try to construct
equivalences E 4f, t and 0 4f d such that "~ afd. C__ ,.,, -~ OAf d C__ 1~) ,

and the factor graph G2fd = (V, E, ~,, p, Eafd, Og~t) is
deterministic and completely definite.

Consider a factor graph G*y = (V, E, X, p, E4r, O4f)
that is A-deterministic and completely definite, but not
Oaf-deterministic. In this case, we can choose any

G*ma X

Completely
_ factor _gr_ap_ hs.

_ A_Ig_ori_[h_m _2 _

G

Fig. 6.

equivalence Oafd between O~i and Oaf satisfying the
Oafd-determinism criterion

'V'el, e2 e E ~,(el)EAi~.(e2)

& p(el) --, EAyp(e 2) :=*' el ~ Oafde 2 �9

Obviously, such an equivalence exists; e.g., Oa~t = O~,f.
In general, all such equivalences Oay d are easily
obtained by determining all possible subdecomposi-
tions of the set of factor arcs originating from a single
factor vertex and the O*y equivalent.

So, further, we solve the problem of constructing a
A-deterministic and completely definite factor graph
G*/ = (V, E, ~., p, ~"-~-'af, OAf). Since the embedded factor
graph has the number of vertices and arcs that is not less
(greater, if the embedding is strict) than the initial
graph, it is natural to construct maximum (with respect
to embedding) equivalences Earl,la x and Oaj;,a~.

7.1. The A-determinism Criterion o f the Factor Graph

It is clear that if G'* c G* and G* is A-nondetermin-
istic, then G'* is also A-nondeterministic: O'- ~ O-&
-(A c_ O-) =, -,(A _ O'-).

Since O- = O n E-, the A-determinism condition, A
c O-, means the fulfillment of two embedding condi-
tions: A c O and A ~ -=-. We now show that there exists
a minimum equivalence of vertices, •Amin, such that it
is necessary and sufficient for A c F,'; that is, A c E- r
~Amin C ~.

Algorithm 1: Construction of the equivalence
~Amin'

1. We declare the terminal vertices of Eam~n-equiva-
lent arcs to be A-equivalent;

2. Find the transitive closure of this reflexive and
symmetric relation to obtain the required equivalence.

Thus, the A-determinism criterion is formulated as
the fulfillment of two embedding conditions: A c_ O and
~-'Amin ~ ~'"

This condition is satisfied for all factor graphs in the

[GA,,;,,, with respect to embedding, where range * * Gm~x]

. - (V ,E,~ . ,O, Gamin = (V, E, ~., p, ""ami,,, A) and Gm,,~* =

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 2 2000

M= F-m,~, Omax); here E , ~ and Oma x are maximum equiva-
lences of vertices and arcs (all vertices and arcs are
equivalent). The graph * Gm~x contains one factor vertex
and one factor arc (loop).

)Me(-=3)

Mo(~-2) 7.2. Constructing a Completely Definite Factor Graph

It is clear for any factor graph G* = (V, E, ~., p, E,
O), an embedded completely definite factor graph
exists. An example is the state graph G itself. We will
construct a maximum (with respect to embedding),

* - - G * . completely definite factor graph G fm~ x c In the
process, we will only change the equivalence of verti-

* = (V, E, ~., - O) , where ces; that is, Gfmax P, ~-'fmax,
c__ E.

A l g o r i t h m 2: Constructing the Gfmax factor graph.

The algorithm begins with the factor graph G~' =
G* = (V, E, t , p, E, O) and consists of a sequence of
steps of the same kind. Every ith step of the algorithm
transforms the factor graph G * 1 into the factor graph

G*. The following condition is called the embedding
condition: every completely definite factor graph

embedded in G* is embedded into G* . To prove that
,

our algorithm constructs the factor graph Gfmax, it is
sufficient to prove that the algorithm satisfies the fol-
lowing conditions:

1. In the beginning of the algorithm work, the
embedding condition is satisfied for the factor graph
G* (which is obvious).

2. Every ith step of the algorithm retains the embed-

ding condition for the factor graph G* if this condition

is satisfied in the beginning of the step (for G*_ l).

3. If G* is completely definite, the algorithm termi-
nates after the ith step.

4. The algorithm terminates after a finite number of
steps.

The ith step of the algorithm consists in the follow-
ing:

If G*_ l = (V, E, t , p, E, l, O) is a completely defi-
nite factor graph, then the algorithm terminates (and,
thus satisfies condition 3). Otherwise, a not completely

definite factor arc e* e E/O~_ t exists; that is, {l(e)le
e* } ~ 3,(e*). Now we decompose the factor vertex v* =

l (e*) into two subsets, v* = {~(e)le ~ e*} and v* =

v*\ v~'. Thus, we obtain a new equivalence -,= and a

APPLICATION OF FINITE AUTOMATONS 69

Me(~.d

Fig. 7.

Decompositions factor arcs
preserving A-determinism
and complete definiteness:
�9 (al , a2, c)(b, di, d2)
�9 (al , a2, dl , d2)(b, c)

- A---equivalent arcs

Fig. 8.

new factor graph G* = (V, E, ~, p, Ei, O):

VVl, v2 e Vv,Ev~ r (viE~_~v2)

a -"l(Vl E V: ~ V2E V| V Vl E V~ a I)2E V:).

We need to prove condition 2: if the embedding con-

dition was satisfied for G*_ i , then it is satisfied for G * .

Consider any two vertices V I • V ? and Vo e v~'.
For Vl, an arc e I e e* exists such that it has Vl as its ini-
tial and v2 e p(e*) as its terminal vertex. It is obvious
that p(e*) e ~i- ~(v2). Since the embedding condition is

satisfied for G*_ 1 , the condition ~/(v2) ~ ~i- l(e2) must
be satisfied for the vertex v 2 of any completely definite

factor graph G 7 . No arc from the set e* originates in
the vertex Vo. Since e* contains (by the definition of the
factor arc) all O-equivalent arcs leading from v* to
p(e*), no arcs originate in Vo that are O-equivalent to
the arc e I and lead to p(e*) = ~i- l(Vz), much the less, to
into its subset ~f(v2). Thus, the arc el leads from v~ to

~ (v2), while no arc O-equivalent to e~ leads from v 0 to
(v2). Hence, due to complete definiteness, the verti-

ces v~ and Vo cannot belong to the same factor vertex of

the factor graph GT.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 2 2000

70 B U R D O N O V et al.

,. Ticket sale for flight 1 (tickets 0 and 1) .. i i-th return ofticket i for flight 1 (i=0 , 1)
. . . . Ticket sale for flight 2 (tickets 2 and 3) -.., [- - Return of ticket i for flight 2 (i = 2, 3)

�9 Ticket sale for flight 2 upon the request for flight 1 (all tickets for flight I are sold out)

Q State in which tickets i andj are sold

Classes of -9 = "-/, equivalence of states

Classes of E s equivalence of states

Fig. 9. An example of graph o f states.

Therefore, any factor vertex of any completely defi-
nite factor graph G7 c G*_ I embedded in v* must be

embedded in v* or xr*. In other words, the decompo-
sition of the factor vertex v* into two factor vertices

v* or xr~' does not decompose any factor vertex of any

completely definite factor graph G7 c G*_ i. Thus, the
embedding condition is retained.

It remains to prove condition 4: the algorithm termi-
nates in a finite number of steps. Indeed, every step of
the algorithm increases the number of factor vertices in
the factor graph, and that number is limited above by
the number of vertices of the graph G (the graph is
finite).

This completes the proof of conditions 1-4.

All completely definite factor graphs lie in the range

[G, * G,,ox]; however, not all factor graphs in this range
are completely definite. Nevertheless, the Algorithm 2

G,,ax], shows that, for any factor graph in the range [G, *
one can construct an embedded, completely definite

.
factor graph Gfmox.

7.3. Existence Criterion and Algorithm of Constructing
A-deterministic and Completely Definite Factor Graph

Summarizing the above subsections, one can say
that not for any factor graph G* of a given graph G
there exists a A-deterministic, completely definite fac-
tor graph G*f c G*. Algorithm 2 constructs a maxi-

.
mum, completely definite factor graph Gfmax C G * ,

which can be tested for A-determinism using the crite-

rion A c _ O~.;,,a~ & Ea.m c _ E~i,,,,x. where '-'mi,, = is con-
structed from E by Algorithm 1. Thus. if factor graphs

, G*f exist, then Gfm~x is maximal among them; other-
. wise, G f n, a x i s A-nondeterministic.

On the other hand, for any graph G = (V, E, ~., p), one
can find such equivalences E4r and OAf that the corre-

sponding factor graph G*y = (V, E, ~,, p, F.ar, O4r) is A-
deterministic and completely definite. An example of

G,,ax = (V, E, ~, p, such a factor graph is provided by *
= O,,,,~), in which all vertices are equivalent and all
arcs are equivalent.

It is easy to show that, for any A-deterministic and
completely definite factor graph (V, E, ~., p, Eat~ Oat),
the factor graph that., corresponds, to the pair (=A.'7r O,,ax)
is also A-determmtstlc and completely defimte. Thus,
the set of all A-deterministic and completely definite
factor graphs can be described in two stages:

�9 One describes the set Mz of equivalences of verti-
ces E,vfor which the factor graph, constructed using Ear
and O~,,ax, is A-deterministic and completely definite. -

�9 For Ear ~ M=, one describes the set Mo(Eaf) of
equivalences of arcs OAr for which the factor graph (V,
E, ~., p, E4t~ Oaf) is A-deterministic and completely def-
inite.

The set M_~ lies in the range [Ea,,i,,, -=,X,.ax]. If (V, E,
~,, P, Eami,,. O.m) is not completely definite, then the
interval is open from below: (~--amin, E,,,~r]" For all E in
this range, the factor graph (V, E, ~., p, - , Gmax) is A-
deterministic, but not necessarily completely definite.
For any E a in this range, Algorithm 2 constructs the
maximum embedding Efm~x c_ E a for which the factor
graph (V, E, ~,, p, Efma~, Om~x) is completely definite.

P R O G R A M M I N G AND C O M P U T E R SOFTWARE Vol. 26 No. 2 2000

APPLICATION OF FINITE AUTOMATONS 71

Factor graph

G* ! = (V, E, ~, p, -~rnax, Omax)

- I F - - tP ' - ~tlF- ~ 0

�9 . Ticket sale ., Ticket return

O State in which tickets sold i a t e

for both flights in sum

Factor graph G 5 = (V, E, ~., p, ~"5, 05)

Fig. 10. Factor graphs.

However, Efr~ax can lie beyond the range: Eami, , is not
embedded in Efmax; thus, (V, E, ~,, p, Efm,~, Omax) is A-
nondeterministlc.

The equivalence of vertices EAy e M- induces the

equivalence of arcs E~/, which determines a certain
basic decomposition of arcs for which the factor graph

(V, E, ~,, p, Eaf, E~.r) is A-deterministic and completely
definite. For any basic arc e*, the equivalence of arcs
OAf e Mo(Eaf) determines a decomposition for which
A-determinism and complete definiteness are not bro-
ken. A-determinism is not broken if the decomposition
of e* does not decompose embedded A-classes. Com-
plete definiteness is not broken if every class of the
decomposition of e* includes at least one arc leading
from every vertex, v ~ ~,(e*).

For O~. r e MO(EA), one can consider equivalences
Oafd satisfying the following condmons:

O-Ay ~ O Ayd ~ Oay,

Vel, e2 ~ E~,(ej)Eaf~,(e2)

& p(el) ~ Eafp(e2) ~ el ~ Oafde2.

(The latter one is a criterion of Oafd-determinism.)

All such equivalences Ova are obtained using all

possible subdecompositions of the sets of O*/-equiva-
lent factor arcs originating from one and the same fac-
tor vertex. The corresponding factor graphs will be
deterministic and completely definite.

8. AN EXAMPLE OF AUTOMATON STATE
GRAPH AND ITS FACTOR GRAPHS

By way of example, we consider the booking of air-
plane tickets. Two operations are defined: ticket sale
and ticket return.

The ticket sale operation has one input parameter--
flight number--and returns the number of an available
ticket for this flight. In case all tickets for the requested
flight are sold out, a ticket to the same destination for a
later flight can be issued, The operation has a precondi-
tion: there are tickets for the requested or latter flights
available. If there are several tickets satisfying the

request, the operation is nondeterministic, as it is
unspecified exactly which ticket will be sold.

The ticket return operation has one parameter--the
number of the ticket being returned--and the precondi-
tion: the ticket must be one of the earlier sold tickets. As
a result of performing this operation, the ticket goes on
sale.

For the convenience of discussion, we restrict our-
selves to the case of two flights to the same destination
and two-seater airplanes. Tickets are numbered 0 and 1
for flight 1; 2 and 3, for flight 2. The graph of states, G,
is shown in Fig. 9. This graph is A-nondeterministic.

The set M.- consists of three equivalences: E9 = Emit,
(nine factor states), E~ = Ema~ (all states are equiva-
lent---one factor state), and an intermediate equiva-
lence, E 5 (five factor states) that is obtained from E 9 by
merging classes shown in one vertical line in Fig. 9.

The set Mo(E0 consists of the only equivalence of
arcs, O~ = Om,~, for which we do not distinguish opera-
tions (all arcs are equivalent; i.e., there is the only factor
arc--a loop). This case of the deterministic and com-
pletely definite factor graph is not an interesting object
for testing.

In the case when the initial equivalence of arcs, E 5,
distinguishes the operations (ticket sale or return) but
does not distinguish subdomains of operations, the
equivalence of states 05 is constructed by Algorithm 2.
The factor state is defined by the number of tickets sold

(for both flights in total). The factor graph G* = (V, E,
~,, p, Es, 05) is deterministic and completely definite
(Fig. 10).

The equivalence of s ta tes ~9 = *'~min is constructed by
Algorithm 1. The generalized state is defined by the
pair of numbers of tickets sold for flights 1 and 2. ~,9 is
also constructed by Algorithm 2 if the initial equiva-
lence of arcs, 09, distinguishes the operations (ticket
sale or return) and two subdomains of the sale opera-
tion. These subdomains are determined by the opera-
tion parameter (request for a ticket for flight 1 or 2).

The factor graph G~' = (V, E, ~,, p, -9, 09) is A-deter-
ministic and completely definite; however, it is O9-non-
deterministic.The point is that the ticket return takes
any factor state except for the initial one (no tickets
sold) to different factor states, depending on the flight

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 2 2000

72 BURDONOV et al.

~- Ticket sale for flight I t Ticket return for flight 1
. . . . Ticket sale for flight 2 -.* - - - Ticket return for flight 2

. Ticket sale for flight 2 upon the request for flight i (all tickets for flight 1 are sold out)

O state in which i tickets for flight 1 andj tickets for flight 2 are sold

F a c t o r g r a p h G 9 = (V, E, k , p, F.9, 0 9)

Fig. I I .

number of the ticket returned. It is natural to introduce

a sub-equivalence 0'9 c 09 that would distinguish two
subdomains of the ticket return operation: the return of
ticket for flight 1 and for flight 2. In this case, the gen-
eralized alphabet consists of four symbols: ticket sale
or return for one or another flight. The factor graph

G*' = (V, E, ~, p, =-9, 0'9) is deterministic and com-

pletely definite (Fig. 11). Consider the factor graph G~
I !

corresponding to the pair (=-9, 09) in which one more
subdomain of the sale operation is distinguished: the
sale of a ticket for flight 2 when a ticket for flight 1 was
requested (when all tickets for the earlier flight 1 are
sold out). This factor graph is also deterministic and
completely definite.

9. COMPARISON WITH ANALOGOUS STUDIES

The problem of finite automaton testing has been
under study for a long time; it has even been included
in textbooks [2]. But the applications of different gen-
eralizations of the state graph for testing OOP classes
have only come under study in recent years [1,4, 5, 8].
In these papers, the concepts of the "abstract model of
finite automaton" are used. Homomorphic graphs (fac-
tor graphs, in particular) are a special case of such
abstract models.

In [8], the methodology of OOP class testing using
the class model as a finite automaton is expounded in
detail. After the analysis of traditional testing methods,
the concepts of a finite automaton, its states and transi-
tions, are introduced. An example is discussed that
shows how the states of an abstract automaton are
extracted from the description of a C++ class and how
transition functions are described as scenarios of the
dynamic change of state. Further, stages of generation
of test sequences on the basis of the descriptions
obtained are examined. Prototypes of tools for test
sequence generation and test run are described very
briefly. They are test script files compilers rather than

their automatic generators. That paper can serve as a
good introductory textbook.

In [4], a tool (called ClassBench) for the automatic
construction of a traversal of a finite automaton state
graph is described. For ClassBench, it is necessary to
create an explicit description of the automaton--all
vertices of the state graph and all its arcs. All loops
(arcs with coinciding initial and terminal vertices) are
described as a part of the corresponding vertex. They
are passed through upon every passage through the ver-
tex. In addition to this description, the classes Driver
and Oracle are created. The class Driver provides for
the execution of the testing itself. The following meth-
ods are declared in this class: reset (resetting the autom-
aton to its initial state), transit (transition from the cur-
rent state to a new one through an arc specified), and
node (performs all the required actions upon the arrival
to the current node (passes through loops)). During the
performance of transitions and passages through loops,
the class Driver invokes methods of the object of the
class being tested and uses the class Oracle to verify the
correctness of the work of the object. ClassBench pro-
vides the testing for different test coverage criteria:
coverage of all states, arcs, or paths. It is provided with
auxiliary means for creating the automaton description
and the implementation of the classes Driver and Ora-
cle.

A technique of an abstract finite automaton con-
struction using formal specifications of a class written
in the Object-Z language is described in [5]; this study
is closely related to [4]. The automaton description is
constructed in accordance with the requirements of the
tool used (CiassBench).

In [1, 3], the toolkit implementing the testing by the
algorithm A*(A, ~) and automating the creation of the
corresponding generator of test sequences is described.
Only the following test components are created manu-
ally: the mapping function real states onto abstract
states, the generalized input symbol iterator, and the
symbol calculation function. All the remaining parts
are generated automatically from formal specifications
in the RAISE (RSL) language. It is important to men-

P R O G R A M M I N G A N D C O M P U T E R S O F T W A R E Vol. 26 No. 2 2000

APPLICATION OF FINITE AUTOMATONS 73

tion that [4, 5, 8] are of a theoretical and experimental
nature, whereas [1, 3] describe a practical result--a
technology, applied in the process of the development
and verification of a large software project.

The present paper elaborates the line of investiga-
tions suggested in [1, 3]. It provides a rigorous treat-
ment of empirical solutions found in the process of the
implementation of real software projects. The tech-
nique considered here differs from that proposed in the
theoretical papers mentioned above in three basic posi-
tions. The first difference is in the approach to the solu-
tion of the arc adjacency problem, which was men-
tioned above. Because of this difference, in Class-
Bench, generally speaking, a path in the real graph
corresponds to a passage through a single arc of the
abstract graph; in our algorithms, this is a passage
through exactly one arc of the real graph. On the one
hand, this difference leads to a difference in the testing
time estimates; on the other hand, it results in different
requirements to the relationship between the real and
the abstract graphs. In particular, the abstract graph for
ClassBench can be non-homomorphic to the real one.

The second difference of our study is the opportu-
nity of constructing the graph traversal and the graph
itself in the process of testing; i.e., no explicit descrip-
tion of the graph is required. All information about the
automaton is grouped in the oracle, which is generated
automatically using specifications. The correspondence
of the abstract and the real graphs is defined by the most
economical way--by the reflection of real states into
abstract states (or a predicate of the equivalence of
states), a generalized input symbol iterator, and a sym-
bol calculation function. It is also important to mention
that no special reset operation is required for our algo-
rithms; only the strong connectedness of the graph is
required.

Finally, the third difference is as follows: the appli-
cation of the technique involved in nondeterministic
automatons is not described in [4, 5].

10. CONCLUSION

A natural line of further investigations is a formal-
ization of the extraction process from formal specifica-
tions of the information necessary for the generation of
the components that are currently created manually.
The formalization should result, on the one hand, in
formal requirements (methodology) to the form of
specifications and, on the other hand, in a toolkit (tech-
nology) for automatic generation of test set compo-
nents from formal specifications. In particular, one can

design tools for constructing deterministic and com-
pletely definite factor graphs (Algorithms 1 and 2).

Another line of investigations can be aimed at the
use of other abstract models of automatons and their
state graphs, in particular, models investigated in [4, 5].
We note here that, in practice, when manually imple-
menting the test components discussed above, we fre-
quently used methods that were not formalized in the
present paper. In particular, sometimes a path, rather
than an arc, of the real graph corresponded to an arc of
the abstract graph. In some special cases, testing by the
algorithm ~*(A, 0) was successful using non-deter-
ministic factor graphs. However, not all expedients that
are useful in manual implementation can be imple-
mented as a tool. Therefore, it seems to be important to
analyze the accumulated experience in order to extract
formalizable techniques and implement them in the
form of tools.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
for Basic Research (project nos. 96-01-01277 and 99-
01-00207).

REFERENCES

1. Wong, H., Barantsev, A., Burdonov, I., and Kosachev, A.,
Report on Test Generation Methodology, NORTEL,
1997.

2. Beizer, B., Software Testing Techniques, New York: Van
Nostrand Reinhold, 1990, 2nd edition.

3. Burdonov, I., Kosachev, A., Petrenko, A., Cheng, S., and
Wong, H., Formal Specification and Verification of SOS
Kernel, BNR/NORTEL Design Forum, 1996.

4. Hoffman, D. and Strooper, P., ClassBench: a Framework
for Automated Class Testing, Software Maintenance: Prac-
tice and Experience, 1997, vol. 27, no. 5, pp. 573-579.

5. Murray, L., Carrington, D., MacColl, I., McDonald, J.,
and Strooper, P., Formal Derivation of Finite State
Machines for Class Testing, ZUM'98: The Z Formal
Specification Notation, llth Int. Conf. of Z Users,
Bowen, J.P., Fett, A., and Hinchey, M.G., Eds., Lect. Notes
Comput. Sci., Springer, 1998, vol. 1493, pp. 42-59.

6. Peters, D.K and Parnas, D.L., Using Test Oracles Gener-
ated from Program Documentation, IEEE Trans. Soft-
wareEng., 1998, vol. 24, no. 3, pp. 161-173.

7. Petrenko, A.K., Burdonov, I.B., Drojjina, A.Yu., Kossa-
tchev, A.S., Maximov, A.V., Sazanov, Yu.L., and Sumar, H.,
Preliminary Test Methodology and Test System Report,
NORTEL, 1995.

8. Turner, C.D. and Robson, D.J., The State-based Testing
of Object-Oriented Programs, Proc. IEEE Conf. Soft-
ware Maintenance, 1993, pp. 302-310.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 26 No. 2 2000

