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Abstract--The application of the finite automaton theory to the problem of program testing is discussed. The 
problem is reduced to testing a finite automaton. Testing of automatons using their state graphs, factor graphs, 
testing using factor graphs, and methods for factor graphs construction are discussed. 

1. INTRODUCTION 

Automatons provide a widely used model of hard- 
ware and software objects. The main difference 
between an automaton and a purely functional depen- 
dence is that the values of output parameters depend 
not only on input parameter values, but also on the 
object state. The idea of an automaton is close to such 
program concepts as abstract data types and class 
objects, with the automaton being their mathematical 
model. For example, in object-oriented programming 
(OOP), one can consider an object of a class as an 
automaton: the state of the automaton is the object 
state, the input symbol is an operation in the object with 
some set of input parameter values, and the output sym- 
bol is the set of output parameter values. 

The abstraction of automaton is used both for design 
and design solution analysis. The present paper is ded- 
icated to problems arising in testing program systems 
that are considered finite automatons; we will call such 
a kind of testing "finite automaton testing" 

The task of testing automation is divided into two 
relatively independent parts: test actions generation and 
automatic verification of the test action results, which is 
usually performed by an oracle program. Recently, the 
oracle construction problem has usually been treated as 
the problem of oracle generation using formal specifi- 
cations. Many studies [1, 3, 6, 7] are dedicated to this 
problem, and we are not going to discuss it here. For 
our purposes, it is enough to know that, for any admis- 
sible pair, <state, input symbol>, an automaton oracle 
can define the validity of the transition to the new state 
(i.e., the validity of the transition function) and the 
validity of the resulting output symbol (i.e., the validity 
of the output function). The task of finite automaton 
testing can be solved under the assumption that its state 
is or is not available for observation from the testing 
system. If the state is unavailable (the "black box" 
automaton), then the testing system must introduce an 
"abstract state" that models the real state of the autom- 
aton. In this situation, the oracle calculates a new 
abstract state instead of checking the transition func- 
tion. The correspondence of the real and abstract states 

is verified indirectly when the output function is 
checked in the oracle during the testing [3]. 

A natural criterion for the completeness of the test 
coverage the automaton testing is the coverage of all 
transitions of the automaton (i.e., admissible pairs, 
<state, input symbol>). To satisfy this criterion, it is 
necessary to generate all required test actions for all 
states of the automaton. Thus, the task of generation is 
divided into the task of "traversar' through all states of 
the automaton and the task of "searching" through the 
test actions for all states of the automaton. Note that the 
automaton output function is not used for performing 
these tasks. 

One widespread method of automaton representa- 
tion is the representation in the form of a graph of states 
(or transition graph) in which vertices correspond to the 
automaton states and arcs correspond to possible tran- 
sitions. In terms of graph theory, the problem of cover- 
age of all transitions of the automaton is formulated as 
the problem of graph traversal, i.e., passing over a route 
that contains all arcs of the graph. 

There are two main problems related to the traversal 
of the automaton state graph: indetermism and the 
overly large size of the graph. 

A nondeterministic automaton is one in which the 
transition function is ambiguous: several arcs of the 
graph correspond to a single pair <state, input symbol>. 
Since the choice of arcs is not determined by the test 
action, it is impossible to guarantee the full traversal of 
the graph (passing through all arcs and, thus, maybe 
through all states) during testing. Note that the ambigu- 
ity of the output function does not produce any addi- 
tional problems: the oracle only requires that a certain 
predicate of the state, input, and output symbol be sat- 
isfied. 

Remark: The nondeterminacy of the modeling 
automaton does not necessarily imply that the object 
being modeled is nondeterministic. In many cases, the 
nondeterminacy of the model arises from the natural 
abstraction from the details of implementation. For 
example, in the request for memory, we may be not 
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interested in the algorithm of  memory allocation; the 
only important thing is that the fragment to be allo- 
cated does not intersect with any of  the fragments 
already allocated. Specifications often do not define 
operation results unambiguously because, as a rule, 
they describe only the requirements the result must 
obey rather than the algorithm for  obtabffng the result. 

A very large size of the graph naturally leads to a 
very long traversal time (testing time). 

There is a common approach to solving both prob- 
lems stated above. It is based on the introduction of an 
equivalence relation of vertices and arcs of the graph. 
The criterion of coverage of all arcs and vertices is 
weakened to covering all equivalence classes. On these 
equivalence classes, the factor graph is constructed that 
is traversed in the process of testing. The homomor- 
phism of the factor graph (under the incidence relation 
of vertices and arcs) to the original graph of the autom- 
aton states is substantially used in testing algorithms. 
With a proper definition of equivalence classes, the fac- 
tor graph can become deterministic and its size can 
slump, 

The concept of operation in an OOP object can 
serve as an example of decomposition of a set of arcs 
into equivalence classes. If certain predicates, which 
split operation domains onto subdomains, are defined 
on operation domains, then we obtain a more "detailed" 
decomposition. 

Note that the equivalence with respect to operations 
can be considered as the equivalence input symbols: all 
calls of the same operation with different parameters 
are considered equivalent. However, the operation sub- 
domain is, in general, a predicate of input parameters 
and the object state. That is why one should speak of 
equivalence of transitions of the automaton (i.e., that of 
the state graph arcs), rather than the equivalent of the 
input symbols. 

We will consider finite automatons with strongly 
connected state graphs. Automatons corresponding to 
OOP objects possess this property (strong connectivity 
is easily obtained by adding the operations of construc- 
tion and destruction of objects). Such automatons have 
the following property that is important for testing: 
after any transition, an opportunity remains to reach 
any state and test any transition from it. 

In subsequent chapters, we will examine automaton 
state graphs, the testing of automatons using such 
graphs, factor graphs, testing of automatons using fac- 
tor graphs, and methods for construction of factor 
graphs. 

2. GRAPH OF AUTOMATON STATES 

Furthermore, we will frequently use the following 
concepts and notations without additional comments: 

�9 equivalence on a set. A is a reflexive, symmetric, 
and transitive binary relation, Z c A x A; relations are 
denoted by a capital Greek letter; 

�9 equivalence Z on a set A induces the decomposi- 
tion of A into classes of Z-equivalence (E classes). The 
set of these classes is denoted by A/E. Inversely, any 
decomposition, A, into non-intersecting classes induces 
the corresponding equivalence relation; 

�9 the decomposition A/E induces the mapping, 
denoted by a small Greek letter or: A , A/E. 
Inversely, any mapping induces a decomposition of the 
domain of definition and the corresponding equiva- 
lence on it; 

�9 subset c ,  intersection n ,  and complement --1, of 
equivalences are understood in the common set-theo- 
retic sense (as for subsets of a Cartesian product). 

Oriented graph,  G = (V, E, ~., p), is determined by 
two non-intersecting sets: the set of vertices V and the 
set of arcs E, and two incidence functions ~,: E �9 V 
and p: E ~ V. For any arc, the incidence functions 
define its initial vertex (origin) and its terminal vertex 
(end). A graph is finite if the sets E and V are finite. 

The incidence functions ~, and p define the adja- 
cency relation of ~ arcs: 

Ve~,e2~ E e l~e2c=~p(e i )  = ~,(e2). 

We will say that a coloring (X, X) is defined on the 
graph G = (V, E, ~., p) if a set X, which we will call the 
alphabet of the coloring, and a mapping of the graph 
arcs onto this set, X: E - X, are defined. We will call 
a coloring regular if multiple arcs are mapped into dif- 
ferent elements (symbols) of X: 

•e 1, e 2 E E~,(el) = ~,(e2) & p(e l )  = p(e2) 

=~ X(el) ~ X(e2). 

In a regularly colored graph, any arc e is unambigu- 
ously defined by the triple, (x, ~ v'), where x = X(e), 
v = ~,(e), and v' = p(e). 

A graph with an arbitrary set arc equivalence Z is 
called E-deterministic if all arcs originating in the same 
vertex are E-nonequivalent: 

'v'el, e2~ E ~,(e 1) = ~,(e 2) ~ e  I ~ E e 2 .  

It is clear that the mapping ~: E , EIE determines a 
regular coloring with the alphabet EIE. 

The route P is a sequence of adjacent arcs of the 
graph, eo . . . . .  et, such that e i_ l ~ e  i for 1 < i < t. If a reg- 
ular coloring (X, X) is defined on the graph, then the 

route can be defined as a sequence of triples (Xo, Vo, Vo ), 

.... (xt,%, v'i ), where X i = X ( e i ) ,  v i = ~ , ( e i ) ,  and v" I = p(ei) 
for every 0 < i < t and el_ ~Dei for any 1 < i < t. The route 
P of a x-deterministic graph can be determined by the 
initial vertex xr 0 and a sequence of symbols in the alpha- 
bet (i.e., by a word in the alphabet X), x0 . . . . .  xt: P = (xr0, 
x0 . . . . .  xt). The traversal of an oriented graph is a route 
that includes all arcs of the graph. For strongly con- 
nected finite graphs, a traversal always exists and can 
begin at any vertex. 
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An automaton A = (X, V, Y, t~, ~, v0), is defined as an 
aggregate of six objects: 

�9 the input alphabet, X; 

�9 the set of the automaton states, V; 

�9 the output alphabet, 

�9 the correspondence ~ c  (X x V) x V called the tran- 
sition function; 

�9 the correspondence ~ c  (X x V) x Y that has the 
same domain of definition as ~ (Dom~ = Domt~). It is 
called the output function; 

�9 the initial state Vo �9 V. 

An automaton is finite if the sets X, V, and Y are 
finite. 

An automaton is called deterministic if the transi- 
tion function is single-valued: 

V(x, v ) e  Dom~ 3!v'  e V t~((x, v), v'). 

In this case, we will write v' = ~(x, v). 

Remark :  The determinancy of  an automaton is 
often understood as being the unambiguity of  both the 
transition and the output functions. However, for our 
purposes, the unambiguity of  the transition function is 
sufficient. 

For an automaton A = (X, V, Y, ~, ~, v0), we can 
assign the graph of its states G = (V, E, ~., p) with a reg- 
ular coloring (X, Z): 

E = {(x, v, v ' ) I x e  X& v 

�9 V & v' �9 V & ~((x, v),  v ')  } 

Z.((x, v, v ' ) )  = v 

p((x, v, v ' ) )  = v '  

Z((x, v, v ' ) )  = x. 

We call x-equivalent arcs having the common initial 
vertex A-equivalent. The equivalence class with respect 
to A, unlike the arc (x, v, v '), is unambiguously deter- 
mined by the pair (x, v). If the automaton is determin- 
istic, the graph of its states is A-deterministic, with 
every arc being A-equivalent to only itself. 

3. TESTING AN AUTOMATON USING ITS 
GRAPH OF STATES 

Testing of a deterministic automaton A on the basis 
of the traversal of its graph of states P = (v  o, x 0 . . . . .  x,) 
is performed by the following algorithm, A(A, P): 

1. On ith step of the algorithm (with i = 0 in the 
beginning), we are in the state vi and we have to walk 
along the arc (xi, vi, vi+O. Since the automaton is 
deterministic, this arc is unambiguously determined by 
the pair (xi, ~). 

2. We supply the symbol xi at the automaton input 
and apply the automaton oracle. 

3. If the oracle produces a negative verdict, the test- 
ing process ends with an error discovered. Otherwise, 
we get a new state, vi + l, from the oracle. 

4. If i < t, we increase i by 1 and proceed to step 1. 
Otherwise, the testing process is considered to be com- 
pleted normally. 

The testing time is determined by the length, t, of 
the traversal of P. For graphs containing n vertices and 
m arcs, it is well-known that the optimal traversal 
length has the order of nm. 

4. HOMOMORPHIC GRAPH 

4.1. Homomorphism of  Graphs and Factor Graph 

H o m o m o r p h i s m  (~, n) of a graph G onto a graph 
G* is a pair of surjective mappings of vertices, ~, and 
arcs, ~, preserving the incidence functions, k and 9: 

Ve e E ~(~.(e)) = ~.(~(e)) & ~(p(e))  = p (n(e ) ) .  

The homomorphism (~, re) of the graph G onto the 
graph G* induces the congruence (E, I-I) on G, which, 
in turn, defines the factor graph GI(E, 1-1) isomorphic to 
G* and the canonical homomorphism G onto GI(E, I-I). 
That is why we will further consider, as a rule, the 
homomorphism of a graph onto its factor graph retain- 
ing the same notation G*, ~, and n. However, in the 
testing algorithm, we use the homomorphism of G onto 
any G* (not necessarily a factor graph). 

The coloring (X*, Z*) of the factor graph G* induces 
a coloring (X*, 0)on the graph G; here 0 = Z*n. If the 
coloring (X*, Z*) is regular, then, for every arc e �9 E, 
the triple (0(e), (~(t(e)), ~(p(e))) unambiguously deter- 
mines the factor arc e* = rt(e). We will call the alphabet 
X* the generalized alphabet to distinguish it from the 
alphabet X, whose symbols are used to color the arcs of 
the state graph G. Note that the generalized alphabet 
X*, in general, is not a factor alphabet (i.e., it is not a 
decomposition of the alphabet X). 

Inversely, let a vertex equivalence E and an arc col- 
oring (X*, 0), which induces the corresponding arc 
equivalence O, be given on the graph G. The equiva- 
lence = induces the canonical equivalence of arcs ,---: 
two arcs are E--equivalent if their initial and terminal 
vertices are E-equivalent. It is the intersection of equiv- 
alences, O ~ = O c7 E-, that generates the decomposition 
of arcs into factor arcs: E* = E/O-,  that is, FI = O-. We 
will speak of the homomorphism (~, 0) as meaning the 
induced homomorphism (~, 0-). 

If only a vertex equivalence E and an arc equiva- 
lence O are given on the graph G = (V, E, k, p), one can 
independently define the factor graph G* = (V, E, ~,, p, 
-- O) = (V*, E*, ~., p): ~..d, 

�9 factor vertex v* �9 V* is a set of E-equivalent ver- 
tices; 

�9 factor arc e* �9 E* is a set of O-equivalent arcs with 
E-equivalent origins and ends; 
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, .  al 

a2~a 2 . b| 

. ~ ] l ~ b  3 
Graph G = (V, E, ~,, p) 
and equivalences ~,l and Ol: 
O i-th vertex 

---"- Equivalence class of vertices under -21 

a! 

b 1 , ' ' '  

b3 

Factor graph G I = (V, E, ~,, p, ~'1, Ol) 

Arcs of the equivalence class a under O t 
. . . .  Arcs of the equivalence class b under Oi 

Fig. 1. An example of factor graph. 

�9 if e* is a factor arc, then ~,(e*) is the factor vertex 
where all arcs from e* begin; 

�9 if e* is a factor arc, then p(e*) is the factor vertex 
where all arcs from e* end. 

For X* = X/O, the coloring (X*, 0) induces a regular 
coloring of the factor graph (X*, 0"): 0(e) = x* 
0*(0- (e) )  = x*. 

Remark :  Under a proper definition of factor arc 
coloring by generalized output symbols, one can assign 
a generalized automaton to the factor graph. In some 
sense, testing of the initial automaton by its factor 
graph can be considered as the testing of the corre- 
sponding generalized automaton. 

4.2. Deterministic Factor Graph 

For an arbitrary equivalence Z on the set of arcs of 
the graph G, we call the factor graph G* = (V, E, ~,, p, 
E, 0), E-deterministic if E-equivalent arcs with = 
equivalent initial arcs belong to the same factor arc; i.e., 
are O-equivalent and have E-equivalent terminal verti- 
ces. The corresponding homomorphism of the graphs is 
called E-deterministic. 

We will be interested in A-determinism and O-deter- 
minism of factor graphs. Note that O-determinism of a 
factor graph coincides with its O*-determinism when it 
is considered as a graph; i.e., the image of the O-deter- 
ministic homomorphism is O*-deterministic. 

The criterion for A-determinism is the condition A c 
O-. It follows from A c O" and O- ~ O that A c O. Note 
that k-determinism does not follow from A-determin- 
ism. 

The criterion for O-determinism is the following 
condition: 

Vel, e 2 E E ~,(el)E~,(e2) & p(e l )  ~ Ep(e2) 

e~ ~ Oe 2. 

In a O-deterministic factor graph, the factor arc 
(0*(e*), ~,(e*), p(e*)) is unambiguously defined by the 
pair (0*(e*), ~,(e*)). 

For example, in the original graph G in Fig. 1, two 
arcs b 2 originating from vertex ~ ,  are A-equivalent; 
these arcs correspond to the same ~ m b o l  b 2. The graph 
G~ is A-nondeterministic. However, the factor graph 

G* is A-deterministic, though it is not Ol-deterministic 
since the two Orequivalent arcs, b 2 and b3, have E~- 
equivalent initial vertices (the factor vertex ~ ) ,  but 
Ernonequivalent  terminal vertices ( ~  a n d S .  

We will call a factor graph simply deterministic if it 
is A-deterministic and O-deterministic at the same 
time. The corresponding homomorphism of graphs will 
be called a deterministic homomorphism. 

4.3. Completely Definite Factor Graph 

Since the factor graph G* is a homomorphic image 
of the original graph G, any route P in G is mapped onto 
a certain route P* in the factor graph G*. If P contains 
only some vertices and arcs but passes through all 
equivalence classes of E and O- vertices and arcs, then 
P* is a traversal of the factor graph G*. It is the route P 
that will traversed in the process of testing, and the suc- 
cessful completion of the traversal P* route is the crite- 
rion of the testing completeness. Since the factor graph 
G* contains fewer vertices and arcs than G, P* (and, 
thus, P) is shorter than the traversal of G. That is, the 
testing time by the factor graph is less than that by the 
original graph. 

However, not every route, P* in the factor graph G* 
has to be the image of a route in G. Here the problem of 
adjacency of arcs arises: a pair of adjacent factor arcs 
e* and e* that follow one another in the traversal P* 

can be the image the pair of arcs e I ~ e* and e 2 ~ e* 
in G that are not adjacent. 
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�9 Vertex of the original graph 

" Arc of the original graph 

O actor vertex 

I ~  Factor arc 

Fig. 2. 

There are several approaches to the solution of the 
problem. 

One of them consists in that every time one has to 
pass over nonadjacent arcs el and e2, a path in G leading 
from the terminal vertex of el the initial vertex of e2 is 
used [4]. Certainly, this causes a cyclic path to be 
passed in the factor graph G*. Thus, instead of passing 
over P*, we actually go a longer route P* ,  which is a 
homomorphic image of P. This approach is applicable 
for any factor graph (if the original graph is strongly 
connected). However, the length of P* (which gives an 
estimate for the testing time) can be much greater than 
the length of P* so that it approaches the length of the 
route on the original graph G; thus, all the benefit from 
using the factor graph instead of the original graph is 
lost. 

Another approach consists in the consideration of 
only factor graphs for which the requirement of strict 
adjacency of arcs is satisfied: if the factor arcs e* and 

e* are adjacent and el e e* ,  then e2 ~ e* exists such 
that el and e2 are adjacent. In this case, every traversal 
P* of the factor graph is an image of at least one route 
P in the original graph. Thus, the testing time is deter- 
mined by the length of P*, which can be significantly 
less than the length of the traversal of the original 
graph. It is this approach that is examined in the present 
paper. 

We call a factor arc e* completely definite if the set 
of initial vertices of arcs e ~ e* coincides with the ini- 
tial factor vertex of e*: {~.(e)le ~ e* } = ~(e*). A factor 
graph is completely definite and O is a completely def- 
inite arc equivalence if all factor arcs are completely 
definite. The corresponding homomorphism is called 
completely definite. For a strongly connected graph G, 
the strict adjacency of the factor graph G* arcs is equiv- 
alent to its complete definiteness. 

For example, for the factor graph G~' in Fig. 1, the 
factor arcs al, bl, a2, and b 2 are completely definite, and 
a 3 and b 3 are not completely definite. 

In terms of graph homomorphisms, one can inter- 
pret the strict adjacency of arcs and the complete defi- 
niteness as follows. 

We call the homomorphism (of algebraic systems) 
x: A , A* a strict (from left) with respect to s if: 

~/x ~ A, y* ~ A *'c(x)Ey* 

3y~ Az(y) = y* & xZy. 

Strict adjacency of arcs means that the homomorphism 
of graphs with respect to the equivalence f~ of arc adja- 
cency is strict; complete definiteness means that the 
homomorphism of graphs by the incidence function ~, 
is strict, with the incidence function interpreted as the 
relation v~.e. Note that if the incidence ~, is interpreted 
as the relation e~.v, then the corresponding property is 
true for any homomorphism of graphs. 

5. AUTOMATON TESTING USING 
A HOMOMORPHIC GRAPH 

5.1. Homomorphism of Graphs 
and Symbol Calculation Function 

Consider a deterministic completely definite homo- 
morphism, (~, 0) of the graph G of states of an autom- 
aton A onto the graph G*. It follows from the complete 
definiteness that any traversal P* of G* is the image of 
a certain route P in the original graph G. From the O- 
determinism, it follows that the traversal P* can be 
determined by the initial vertex v~' of G* and the 
sequence of generalized symbols (a generalized word) 
of the form x~ . . . . .  x*.  In a strongly connected graph, 
traversal can be started from any vertex; we choose the 
image of the initial state v0 of A (i.e., ~(v0)) as the start- 
ing vertex of P*. Then the traversal can be determined 
as P* = (v0, x* ..... x* ). 

In the testing algorithm, the symbol calculation 
function is used. Given an arc (x*, v*, v*') of G*, a gen- 
eralized symbol x*, and the automaton state v from the 
preimage of v*, this function calculates the (input) 
symbol x of the automaton so that it is guaranteed that 
any arc (x, v, v') belongs to the preimage of (x*, v*, v'). 
The following requirements must be satisfied: 

�9 first, the pair (x*, ~(v)) defines only one arc, (x*, 
v*, v*'). This is guaranteed by the graph O-determin- 
ism. 

�9 second, for any v from the preimage of v-*, there 
must be an arc, (x, v, v'), that is mapped into (x*, ~(v)). 
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. al  - al. 

' b! 

a 2 ' ~  , i a3 

. l i b3  
b3 

Graph G = (V, E, ~, p) Factor graph G 2 = (V, E, ~., p, ~'1, 02) 
and equivalences "-1 and 02: 
O i-th vertex 

Equivalence class of vertices under E l 
�9 . Arcs of the equivalence class a under 02 

�9 - - ,.- Arcs of the equivalence class b under 02 

Fig. 3. 

This is guaranteed by the complete definiteness of 
the homomorphism. 

�9 Third, the entire A-class (x, v) to which such an arc 
(x, v, v'), belongs must be mapped is reflected into a 
single arc (x*, ~(v)). This is guaranteed by the A-deter- 
minism of the homomorphism. 

Under these conditions, the symbol calculation 
function finds at least one solution to the equation 0(x, 
v) =x* inx. 

R e m a r k :  The symbol calculation function can be 
implemented as a function that tries all symbol x and 
tests, whether O(x, v) = x*. 

Thus, in fact, the testing algorithm uses only the pre- 
defined mappings ~ and 0 (i.e., the homomorphism of 
the original graph G onto G*), and the given traversal 
P* of G*. 

5.2. The Testing Algorithm 

Let a deterministic and completely definite homo- 
morphism (~, 0) of the state graph G = (V, E, ~., p) onto 
the graph G* = (V*, E*, ~., p) be given for an automaton 
A. The automaton testing on the basis of the traversai 
P* = (v  0, x* . . . . .  x* ) on the G* graph is performed by 
the following algorithm A(A, P*). 

1. On the ith step of the algorithm (i = 0 at the begin- 
ning), we are in the state v,., and we are going to pass 
the arc e* G* that is unambiguously defined by the pair 
(x* ,  ~(vi)). Using the symbol calculation function, we 
define x i, which is the solution to the equation O(xi,vj) = 

x* .  

2. We send the symbol xi to the input of the automa- 
ton and apply the automaton oracle. 

3. If the oracle produces a negative verdict, the test- 
ing is finished and an error is fixed. Otherwise, we 
obtain a new state V/+l from the oracle such that 
~(vi+ I) = p(e*). 

4. If i < t, we increase i by 1 and proceed to step 1. 
Otherwise, the testing is considered to be completed 
normally. 

In the process of testing, we traverse G* by the route 
P* = (v0, x* . . . . .  x* ). In the process, the route P = (v  0, 
x 0 . . . . .  x t) in the state graph of the automaton A is 
passed. 

5.3. An Example o f  Testing Using Homomorphic Graph 

Consider the factor graph G* = (V, E, ~., p, El, O1) 
shown in Fig. 1. This factor graph is deterministic but 
not completely definite. We modify the relation ~-t so as 

to obtain the completely definite factor graph G~' = (V, 
E, k, P, =-2, Oi) as shown in Fig. 3. For this purpose, it 
is sufficient to treat vertices ~ and ~ as being non- 
equivalent. 

There exist several traversal of G* .  For example, 

The following two possible routes, Pn  and P22, in the 

original graph G correspond to P* : 

These routes differ in the last transition from the 
vertex to the vertex A'Z--c~-] lass. Thus, th ~ or ~] by one of the arcs b 2 of 

ch0Tce of P21 and P22 is not same 
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deterministic. Note that, in both cases, not all arcs of 

the original graph are passed (arc ~] a~, [~ and one of 

the arcs of the A-class, ~ b--~2 ~] or ~] b--~2 ~]). 

6. CONSTRUCTION OF A TRAVERSAL 
IN THE PROCESS OF TESTING 

The general problem of constructing a traversal of a 
graph is well known. Here we examine the problem of 
constructing a traversal of a graph in the process of test- 
ing. 

6.1. Testing an Automaton Using Its Graph of States 

There is a tool implementing the universal algo- 
rithm A(A, 0 )  for testing any automaton A with deter- 
ministic, finite, and strongly connected state graph; 
simultaneously, a traversal of the state graph is con- 
structed [3]. In contrast to the algorithm A(A, P), A(A, 
0 )  does not require the traversal P to be given (it is con- 
structed automatically). Moreover, the algorithm A(A, 
0 )  does not use any information about the automaton 
and its graph of states except for what is defined by the 
following parameters of the algorithm: 

�9 the automaton initial state; 

�9 the operation of state comparison for equality; 

�9 input symbols iterator; 

�9 the automaton oracle. 

Given a pair (state, input symbol), the iterator of 
input symbols produces the following input symbol 
admissible for the given state: 

It: V x X u { O }  �9 X u { O }  

To obtain the initial input symbol, an "empty" sym- 
bol O is specified that is added to the input alphabet. 
The iterator must guarantee that, for every vfrom V, the 
sequence It(v, 0),  It(v, l t(~ 0))  . . . .  runs through 
all symbols admissible in the state ~ At the end of 
this sequence, the iterator returns the empty input sym- 
bol 0 .  

Remark: The iterator may run through all input 
symbols, rather than only through those allowed in the 
given state. In this case, a special admissibility verifi- 
cation function is used to filter out inadmissible input 
symbols. In terms of formal specifications, the admissi- 
bility verification is the verification of the operation 
precondition. 

The algorithm learns about admissible states of the 
automaton when, having sent an admissible input sym- 
bol to the automaton input, it gets the value of the state 
the automaton goes to from the oracle. 

The length of the traversal constructed by the algo- 
rithm A(A, 0 )  has the length of the same order that the 
optimal traversal of the graph (the product of the num- 
ber of vertices by the number of arcs). 

G*ma x 

A--Deterministic 
. . . .  _fa.cto_r gr_a~h.s 

G 

Fig.  4 .  

6.2. Testing of  an Automaton Using 
Homomorphic Graph 

There is a modification of this algorithm for testing 
by the homomorphic image of the graph. This modifi- 
cation is denoted by A*(A, 0) .  The homomorphism (~, 
0) of the graph of states G of the automaton A onto the 
graph G* must be deterministic and completely defi- 
nite, and G* must be finite and strongly connected. 
Unlike the algorithm A*(A, P*), A*(A, O) uses only 
the given mappings ~ and 0; i.e., it uses the specified 
homomorphism of the original graph G onto G* and 
does not require the traversal P* of G* to be given (the 
traversal is constructed automatically). Moreover, the 
algorithm A*(A, O) does not use any information about 
the automaton, its state graph, and the homomorphic 
graph except for what is defined by the following 
parameters of the algorithm: 

�9 the automaton initial state; 
�9 the mapping ~: V ,. V* of the state of the graph 

G into the state of G*; 
�9 the generalized input symbol iterator (iterator 

through X*); 
�9 the symbol calculation function which, in turn, 

depends only on the mappings ~ and 0; 
�9 the automaton oracle. 
Instead of the mapping ~, one can use a predicate of 

two variables on the set of states V implementing the E- 
equivalence similar to how the operation of comparison 
for equality is used in the algorithm A(A, 0) .  

The traversal of the homomorphic graph G* that is 
constructed automatically by A*(A, 0 )  has the length 
of the same order as the optimal traversal of G* (the 
product of the number of vertices by the number of 
arcs). 

7. CONSTRUCTION OF DETERMINISTIC 
COMPLETELY DEFINITE FACTOR GRAPHS 

Suppose that equivalences of vertices ~, and arcs O 
of an automaton state graph G = (V, E, ~,, p) are defined 
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Fig. 5. 

on the basis of a certain criterion of test coverage. 
These equivalences define the following boundary 
requirement: nonequivalent vertices and arcs must be 
distinguished during the testing. However, it does not 
mean that we cannot make a more detailed differentia- 
tion of vertices and arcs; i.e., use equivalences E' c F, 
and O' c O. Partly, it already happens in testing by the 
homomorphic graph; in fact, we distinguish arcs by the 
equivalence O- c O, rather than by O. In the general 
case, the boundary requirement is satisfied for any 
graph embedded into G* if graph embedding is defined 
through the homomorphism mappings or, which is the 
same, through embedding of equivalences E and O- 
that define it: G*' c G* r E,' c E & O'- c O-. (Note 
that O' c O ~ O'- c O-, but the inverse is not true.) 

If, therefore, for a given initial equivalences E and 
| the factor graph G* = (V, E, k, p, E, O) turned out to 
be A-nondeterministic and/or O-nondeterministic 
and/or not completely definite, we can try to construct 
equivalences E 4f, t and 0 4f d such that "~ afd. C__ ,.,, -~ OAf  d C__ 1~) , 

and the factor graph G2fd = (V, E, ~,, p, Eafd, Og~t) is 
deterministic and completely definite. 

Consider a factor graph G*y = (V, E, X, p, E4r, O4f) 
that is A-deterministic and completely definite, but not 
Oaf-deterministic. In this case, we can choose any 

G*ma X 

Completely 
_ factor _gr_ap_ hs. 

_ A_Ig_ori_[h_m _2 _ 

G 

Fig. 6. 

equivalence Oafd between O~i and Oaf satisfying the 
Oafd-determinism criterion 

'V'el, e2 e E ~,(el)EAi~.(e2) 

& p(el)  --, EAyp(e 2) :=*' el ~ Oafde 2 �9 

Obviously, such an equivalence exists; e.g., Oa~t = O~,f. 
In general, all such equivalences Oay d are easily 
obtained by determining all possible subdecomposi- 
tions of the set of factor arcs originating from a single 
factor vertex and the O*y equivalent. 

So, further, we solve the problem of constructing a 
A-deterministic and completely definite factor graph 
G*/ = (V, E, ~., p, ~"-~-'af, OAf). Since the embedded factor 
graph has the number of vertices and arcs that is not less 
(greater, if the embedding is strict) than the initial 
graph, it is natural to construct maximum (with respect 
to embedding) equivalences Earl,la x and Oaj;,a~. 

7.1. The A-determinism Criterion o f  the Factor Graph 

It is clear that if G'* c G* and G* is A-nondetermin- 
istic, then G'* is also A-nondeterministic: O'- ~ O-& 
-(A c_ O-) =, -,(A _ O'-). 

Since O- = O n E-, the A-determinism condition, A 
c O-, means the fulfillment of two embedding condi- 
tions: A c O and A ~ -=-. We now show that there exists 
a minimum equivalence of vertices, •Amin, such that it 
is necessary and sufficient for A c F,'; that is, A c E- r 
~Amin C ~. 

Algorithm 1: Construction of the equivalence 
~Amin' 

1. We declare the terminal vertices of Eam~n-equiva- 
lent arcs to be A-equivalent; 

2. Find the transitive closure of this reflexive and 
symmetric relation to obtain the required equivalence. 

Thus, the A-determinism criterion is formulated as 
the fulfillment of two embedding conditions: A c_ O and 
~-'Amin ~ ~'" 

This condition is satisfied for all factor graphs in the 

[GA,,;,,, with respect to embedding, where range * * Gm~x] 

. - (V ,E,~ . ,O,  Gamin = (V, E, ~., p, ""ami,,, A) and Gm,,~* = 
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M= F-m,~, Omax); here E , ~  and Oma x are maximum equiva- 
lences of vertices and arcs (all vertices and arcs are 
equivalent). The graph * Gm~x contains one factor vertex 
and one factor arc (loop). 

)Me(-=3) 

Mo(~-2) 7.2. Constructing a Completely Definite Factor Graph 

It is clear for any factor graph G* = (V, E, ~., p, E, 
O), an embedded completely definite factor graph 
exists. An example is the state graph G itself. We will 
construct a maximum (with respect to embedding), 

* - -  G * .  completely definite factor graph G fm~ x c In the 
process, we will only change the equivalence of verti- 

* = (V, E, ~., - O) ,  where ces; that is, Gfmax P, ~-'fmax, 
c__ E. 

A l g o r i t h m  2: Constructing the Gfmax factor graph. 

The algorithm begins with the factor graph G~' = 
G* = (V, E, t ,  p, E, O) and consists of a sequence of 
steps of the same kind. Every ith step of the algorithm 
transforms the factor graph G *  1 into the factor graph 

G*.  The following condition is called the embedding 
condition: every completely definite factor graph 

embedded in G* is embedded into G* .  To prove that 
, 

our algorithm constructs the factor graph Gfmax, it is 
sufficient to prove that the algorithm satisfies the fol- 
lowing conditions: 

1. In the beginning of the algorithm work, the 
embedding condition is satisfied for the factor graph 
G* (which is obvious). 

2. Every ith step of the algorithm retains the embed- 

ding condition for the factor graph G* if this condition 

is satisfied in the beginning of the step (for G*_ l ). 

3. If G* is completely definite, the algorithm termi- 
nates after the ith step. 

4. The algorithm terminates after a finite number of 
steps. 

The ith step of the algorithm consists in the follow- 
ing: 

If G*_ l = (V, E, t ,  p, E, l, O) is a completely defi- 
nite factor graph, then the algorithm terminates (and, 
thus satisfies condition 3). Otherwise, a not completely 

definite factor arc e* e E/O~_ t exists; that is, {l(e)le 
e* } ~ 3,(e*). Now we decompose the factor vertex v* = 

l (e*)  into two subsets, v* = {~(e)le ~ e*} and v* = 

v*\ v~'. Thus, we obtain a new equivalence -,= and a 
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Me(~.d 

Fig. 7. 

Decompositions factor arcs 
preserving A-determinism 
and complete definiteness: 
�9 (al ,  a2, c)(b, di,  d2) 
�9 (al ,  a2, dl ,  d2)(b, c) 

- A---equivalent arcs 

Fig. 8. 

new factor graph G* = (V, E, ~, p, Ei, O): 

VVl, v2 e Vv,Ev~ r (viE~_~v2) 

a -"l(Vl E V: ~ V2E V| V Vl E V~ a I)2E V:). 

We need to prove condition 2: if the embedding con- 

dition was satisfied for G*_ i ,  then it is satisfied for G * .  

Consider any two vertices V I • V ?  and Vo e v~'. 
For Vl, an arc e I e e* exists such that it has Vl as its ini- 
tial and v2 e p(e*) as its terminal vertex. It is obvious 
that p(e*) e ~i- ~(v2). Since the embedding condition is 

satisfied for G*_ 1 , the condition ~/(v2) ~ ~i- l(e2) must 
be satisfied for the vertex v 2 of any completely definite 

factor graph G 7 . No arc from the set e* originates in 
the vertex Vo. Since e* contains (by the definition of the 
factor arc) all O-equivalent arcs leading from v* to 
p(e*), no arcs originate in Vo that are O-equivalent to 
the arc e I and lead to p(e*) = ~i- l(Vz), much the less, to 
into its subset ~f(v2). Thus, the arc el leads from v~ to 

~ (v2), while no arc O-equivalent to e~ leads from v 0 to 
(v2). Hence, due to complete definiteness, the verti- 

ces v~ and Vo cannot belong to the same factor vertex of 

the factor graph GT. 
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,. Ticket sale for flight 1 (tickets 0 and 1) .. i i-th return ofticket i for flight 1 ( i=0 ,  1) 
. . . .  Ticket sale for flight 2 (tickets 2 and 3) -.., [ - - Return of ticket i for flight 2 (i = 2, 3) 

�9 Ticket sale for flight 2 upon the request for flight 1 (all tickets for flight I are sold out) 

Q State in which tickets i andj  are sold 

Classes of -9 = "-/, equivalence of states 

Classes of E s equivalence of states 

Fig.  9. An example  of  graph o f  states. 

Therefore, any factor vertex of any completely defi- 
nite factor graph G7 c G*_ I embedded in v* must be 

embedded in v* or xr*. In other words, the decompo- 
sition of the factor vertex v* into two factor vertices 

v* or xr~' does not decompose any factor vertex of any 

completely definite factor graph G7 c G*_ i.  Thus, the 
embedding condition is retained. 

It remains to prove condition 4: the algorithm termi- 
nates in a finite number of steps. Indeed, every step of 
the algorithm increases the number of factor vertices in 
the factor graph, and that number is limited above by 
the number of vertices of the graph G (the graph is 
finite). 

This completes the proof of conditions 1-4. 

All completely definite factor graphs lie in the range 

[G, * G,,ox ]; however, not all factor graphs in this range 
are completely definite. Nevertheless, the Algorithm 2 

G,,ax ], shows that, for any factor graph in the range [G, * 
one can construct an embedded, completely definite 

. 
factor graph Gfmox. 

7.3. Existence Criterion and Algorithm of Constructing 
A-deterministic and Completely Definite Factor Graph 

Summarizing the above subsections, one can say 
that not for any factor graph G* of a given graph G 
there exists a A-deterministic, completely definite fac- 
tor graph G*f c G*. Algorithm 2 constructs a maxi- 

. 
mum, completely definite factor graph Gfmax  C G * ,  

which can be tested for A-determinism using the crite- 

rion A c _ O~.;,,a~ & Ea.m c _ E~i,,,,x. where '-'mi,, = is con- 
structed from E by Algorithm 1. Thus. if factor graphs 

, G*f exist, then Gfm~x is maximal among them; other- 
. wise, G f n, a x i s  A-nondeterministic. 

On the other hand, for any graph G = (V, E, ~., p), one 
can find such equivalences E4r and OAf that the corre- 

sponding factor graph G*y = (V, E, ~,, p, F.ar, O4r ) is A- 
deterministic and completely definite. An example of 

G,,ax = (V, E, ~, p, such a factor graph is provided by * 
= O,,,,~), in which all vertices are equivalent and all 
arcs are equivalent. 

It is easy to show that, for any A-deterministic and 
completely definite factor graph (V, E, ~., p, Eat~ Oat), 
the factor graph that., corresponds, to the pair (=A.'7r O,,ax) 
is also A-determmtstlc and completely defimte. Thus, 
the set of all A-deterministic and completely definite 
factor graphs can be described in two stages: 

�9 One describes the set Mz of equivalences of verti- 
ces E,vfor which the factor graph, constructed using Ear 
and O~,,ax, is A-deterministic and completely definite. - 

�9 For Ear ~ M=, one describes the set Mo(Eaf) of 
equivalences of arcs OAr for which the factor graph (V, 
E, ~., p, E4t~ Oaf) is A-deterministic and completely def- 
inite. 

The set M_~ lies in the range [Ea,,i,,, -=,X,.ax]. If (V, E, 
~,, P, Eami,,. O.m) is not completely definite, then the 
interval is open from below: (~--amin, E,,,~r]" For all E in 
this range, the factor graph (V, E, ~., p, - ,  Gmax) is A- 
deterministic, but not necessarily completely definite. 
For any E a in this range, Algorithm 2 constructs the 
maximum embedding Efm~x c_ E a for which the factor 
graph (V, E, ~,, p, Efma~, Om~x) is completely definite. 
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Factor  graph 

G* ! = (V, E, ~, p, -~rnax, Omax) 

- I F -  - tP ' -  ~tlF- ~ 0  

�9 . Ticket sale ., Ticket return 

O State in which tickets sold i a t e  

for both flights in sum 

Factor graph G 5 = (V, E, ~., p, ~"5, 05) 

Fig. 10. Factor graphs. 

However, Efr~ax can lie beyond the range: Eami, , is not 
embedded in Efmax; thus, (V, E, ~,, p, Efm,~, Omax) is A- 
nondeterministlc. 

The equivalence of vertices EAy e M- induces the 

equivalence of arcs E~/, which determines a certain 
basic decomposition of arcs for which the factor graph 

(V, E, ~,, p, Eaf, E~.r ) is A-deterministic and completely 
definite. For any basic arc e*, the equivalence of arcs 
OAf e Mo(Eaf) determines a decomposition for which 
A-determinism and complete definiteness are not bro- 
ken. A-determinism is not broken if the decomposition 
of e* does not decompose embedded A-classes. Com- 
plete definiteness is not broken if every class of the 
decomposition of e* includes at least one arc leading 
from every vertex, v ~ ~,(e*). 

For O~. r . . . .  e MO(EA ), one can consider equivalences 
Oafd satisfying the following condmons: 

O-Ay ~ O Ayd ~ Oay, 

Vel, e2 ~ E~,(ej)Eaf~,(e2) 

& p(el)  ~ Eafp(e2) ~ el  ~ Oafde2. 

(The latter one is a criterion of Oafd-determinism.) 

All such equivalences Ova are obtained using all 

possible subdecompositions of the sets of O*/-equiva- 
lent factor arcs originating from one and the same fac- 
tor vertex. The corresponding factor graphs will be 
deterministic and completely definite. 

8. AN EXAMPLE OF AUTOMATON STATE 
GRAPH AND ITS FACTOR GRAPHS 

By way of example, we consider the booking of air- 
plane tickets. Two operations are defined: ticket sale 
and ticket return. 

The ticket sale operation has one input parameter-- 
flight number--and returns the number of an available 
ticket for this flight. In case all tickets for the requested 
flight are sold out, a ticket to the same destination for a 
later flight can be issued, The operation has a precondi- 
tion: there are tickets for the requested or latter flights 
available. If there are several tickets satisfying the 

request, the operation is nondeterministic, as it is 
unspecified exactly which ticket will be sold. 

The ticket return operation has one parameter--the 
number of the ticket being returned--and the precondi- 
tion: the ticket must be one of the earlier sold tickets. As 
a result of performing this operation, the ticket goes on 
sale. 

For the convenience of discussion, we restrict our- 
selves to the case of two flights to the same destination 
and two-seater airplanes. Tickets are numbered 0 and 1 
for flight 1; 2 and 3, for flight 2. The graph of states, G, 
is shown in Fig. 9. This graph is A-nondeterministic. 

The set M.- consists of three equivalences: E9 = Emit, 
(nine factor states), E~ = Ema~ (all states are equiva- 
lent---one factor state), and an intermediate equiva- 
lence, E 5 (five factor states) that is obtained from E 9 by 
merging classes shown in one vertical line in Fig. 9. 

The set Mo(E0 consists of the only equivalence of 
arcs, O~ = Om,~, for which we do not distinguish opera- 
tions (all arcs are equivalent; i.e., there is the only factor 
arc--a  loop). This case of the deterministic and com- 
pletely definite factor graph is not an interesting object 
for testing. 

In the case when the initial equivalence of arcs, E 5, 
distinguishes the operations (ticket sale or return) but 
does not distinguish subdomains of operations, the 
equivalence of states 05 is constructed by Algorithm 2. 
The factor state is defined by the number of tickets sold 

(for both flights in total). The factor graph G* = (V, E, 
~,, p, Es, 05) is deterministic and completely definite 
(Fig. 10). 

The equivalence of s ta tes  ~9 = *'~min is constructed by 
Algorithm 1. The generalized state is defined by the 
pair of numbers of tickets sold for flights 1 and 2. ~,9 is 
also constructed by Algorithm 2 if the initial equiva- 
lence of arcs, 09, distinguishes the operations (ticket 
sale or return) and two subdomains of the sale opera- 
tion. These subdomains are determined by the opera- 
tion parameter (request for a ticket for flight 1 or 2). 

The factor graph G~' = (V, E, ~,, p, -9, 09) is A-deter- 
ministic and completely definite; however, it is O9-non- 
deterministic.The point is that the ticket return takes 
any factor state except for the initial one (no tickets 
sold) to different factor states, depending on the flight 
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~- Ticket sale for flight I t Ticket return for flight 1 
. . . .  Ticket sale for flight 2 -.* - - - Ticket return for flight 2 

. Ticket sale for flight 2 upon the request for flight i (all tickets for flight 1 are sold out) 

O state in which i tickets for flight 1 andj  tickets for flight 2 are sold 

F a c t o r  g r a p h  G 9 = (V, E,  k ,  p,  F.9, 0 9 )  

Fig. I I .  

number of the ticket returned. It is natural to introduce 

a sub-equivalence 0'9 c 09 that would distinguish two 
subdomains of the ticket return operation: the return of 
ticket for flight 1 and for flight 2. In this case, the gen- 
eralized alphabet consists of four symbols: ticket sale 
or return for one or another flight. The factor graph 

G*' = (V, E, ~, p, =-9, 0'9 ) is deterministic and com- 

pletely definite (Fig. 11). Consider the factor graph G~ 
I !  

corresponding to the pair (=-9, 09 ) in which one more 
subdomain of the sale operation is distinguished: the 
sale of a ticket for flight 2 when a ticket for flight 1 was 
requested (when all tickets for the earlier flight 1 are 
sold out). This factor graph is also deterministic and 
completely definite. 

9. COMPARISON WITH ANALOGOUS STUDIES 

The problem of finite automaton testing has been 
under study for a long time; it has even been included 
in textbooks [2]. But the applications of different gen- 
eralizations of the state graph for testing OOP classes 
have only come under study in recent years [1,4, 5, 8]. 
In these papers, the concepts of the "abstract model of 
finite automaton" are used. Homomorphic graphs (fac- 
tor graphs, in particular) are a special case of such 
abstract models. 

In [8], the methodology of OOP class testing using 
the class model as a finite automaton is expounded in 
detail. After the analysis of traditional testing methods, 
the concepts of a finite automaton, its states and transi- 
tions, are introduced. An example is discussed that 
shows how the states of an abstract automaton are 
extracted from the description of a C++ class and how 
transition functions are described as scenarios of the 
dynamic change of state. Further, stages of generation 
of test sequences on the basis of the descriptions 
obtained are examined. Prototypes of tools for test 
sequence generation and test run are described very 
briefly. They are test script files compilers rather than 

their automatic generators. That paper can serve as a 
good introductory textbook. 

In [4], a tool (called ClassBench) for the automatic 
construction of a traversal of a finite automaton state 
graph is described. For ClassBench, it is necessary to 
create an explicit description of the automaton--all 
vertices of the state graph and all its arcs. All loops 
(arcs with coinciding initial and terminal vertices) are 
described as a part of the corresponding vertex. They 
are passed through upon every passage through the ver- 
tex. In addition to this description, the classes Driver 
and Oracle are created. The class Driver provides for 
the execution of the testing itself. The following meth- 
ods are declared in this class: reset (resetting the autom- 
aton to its initial state), transit (transition from the cur- 
rent state to a new one through an arc specified), and 
node (performs all the required actions upon the arrival 
to the current node (passes through loops)). During the 
performance of transitions and passages through loops, 
the class Driver invokes methods of the object of the 
class being tested and uses the class Oracle to verify the 
correctness of the work of the object. ClassBench pro- 
vides the testing for different test coverage criteria: 
coverage of all states, arcs, or paths. It is provided with 
auxiliary means for creating the automaton description 
and the implementation of the classes Driver and Ora- 
cle. 

A technique of an abstract finite automaton con- 
struction using formal specifications of a class written 
in the Object-Z language is described in [5]; this study 
is closely related to [4]. The automaton description is 
constructed in accordance with the requirements of the 
tool used (CiassBench). 

In [1, 3], the toolkit implementing the testing by the 
algorithm A*(A, ~ )  and automating the creation of the 
corresponding generator of test sequences is described. 
Only the following test components are created manu- 
ally: the mapping function real states onto abstract 
states, the generalized input symbol iterator, and the 
symbol calculation function. All the remaining parts 
are generated automatically from formal specifications 
in the RAISE (RSL) language. It is important to men- 
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tion that [4, 5, 8] are of a theoretical and experimental 
nature, whereas [1, 3] describe a practical result--a 
technology, applied in the process of the development 
and verification of a large software project. 

The present paper elaborates the line of investiga- 
tions suggested in [1, 3]. It provides a rigorous treat- 
ment of empirical solutions found in the process of the 
implementation of real software projects. The tech- 
nique considered here differs from that proposed in the 
theoretical papers mentioned above in three basic posi- 
tions. The first difference is in the approach to the solu- 
tion of the arc adjacency problem, which was men- 
tioned above. Because of this difference, in Class- 
Bench, generally speaking, a path in the real graph 
corresponds to a passage through a single arc of the 
abstract graph; in our algorithms, this is a passage 
through exactly one arc of the real graph. On the one 
hand, this difference leads to a difference in the testing 
time estimates; on the other hand, it results in different 
requirements to the relationship between the real and 
the abstract graphs. In particular, the abstract graph for 
ClassBench can be non-homomorphic to the real one. 

The second difference of our study is the opportu- 
nity of constructing the graph traversal and the graph 
itself in the process of testing; i.e., no explicit descrip- 
tion of the graph is required. All information about the 
automaton is grouped in the oracle, which is generated 
automatically using specifications. The correspondence 
of the abstract and the real graphs is defined by the most 
economical way--by the reflection of real states into 
abstract states (or a predicate of the equivalence of 
states), a generalized input symbol iterator, and a sym- 
bol calculation function. It is also important to mention 
that no special reset operation is required for our algo- 
rithms; only the strong connectedness of the graph is 
required. 

Finally, the third difference is as follows: the appli- 
cation of the technique involved in nondeterministic 
automatons is not described in [4, 5]. 

10. CONCLUSION 

A natural line of further investigations is a formal- 
ization of the extraction process from formal specifica- 
tions of the information necessary for the generation of 
the components that are currently created manually. 
The formalization should result, on the one hand, in 
formal requirements (methodology) to the form of 
specifications and, on the other hand, in a toolkit (tech- 
nology) for automatic generation of test set compo- 
nents from formal specifications. In particular, one can 

design tools for constructing deterministic and com- 
pletely definite factor graphs (Algorithms 1 and 2). 

Another line of investigations can be aimed at the 
use of other abstract models of automatons and their 
state graphs, in particular, models investigated in [4, 5]. 
We note here that, in practice, when manually imple- 
menting the test components discussed above, we fre- 
quently used methods that were not formalized in the 
present paper. In particular, sometimes a path, rather 
than an arc, of the real graph corresponded to an arc of 
the abstract graph. In some special cases, testing by the 
algorithm ~*(A, 0 )  was successful using non-deter- 
ministic factor graphs. However, not all expedients that 
are useful in manual implementation can be imple- 
mented as a tool. Therefore, it seems to be important to 
analyze the accumulated experience in order to extract 
formalizable techniques and implement them in the 
form of tools. 
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