
Experiences in using testing tools and
technology in real-life applications1

A.K.Petrenko, I.B.Bourdonov, A.S.Kossatchev, V.V.Kuliamin
Institute for System Programming of Russian Academy of Sciences (ISPRAS)

{ petrenko, igor, kos,kuliamin } @ ispras.ru
http://www.ispras.ru/~RedVerst/

Abstract
The Institute for System Programming of the Russian Academy of Sciences (ISPRAS) in cooperation with
Nortel Networks has gained a unique experience in the practical application of formal specifications of
Application Program Interface (API) functionality and automated specification based test generation. This
approach and supported tools have been used in several industry projects and presented in a several world
conferences and workshops. This paper presents an outline of the this approach and issues gained from its
application during the last six years. The newly developed UniTesK concept is presented as an alternative
method for Object-Oriented software development and test generation. The specification based testing
provides new opportunities in shorting total software life cycle length, decreasing maintenance and regression
testing cost, and increasing software reliability. Furthermore the paper considers the problems of specification
based testing introduction in industry and prospective features that facilitate the introduction.

1 Introduction
1.1 Technical, management, and human problems
Verification and validation are necessary components of software development process.
Both ones need wide range of specifications from general requirements specification
(maybe informal or semiformal descriptions) to detail specification of implementation
units. The only specification use allows to conduct full and qualitative checking software
product and analyzing development processes progress and quality. However specification
based testing, corresponding techniques and tools still are not widely used in comparison
with techniques and tools for implementation based (“white box”) testing. There are three
sets of reasons and, correspondingly, explanations of the current specification based testing
situation: technical, management and human related ones. Unfortunately, in the issue there
is not any “philosopher’s stone” that solves all problems. In industry context we have to
find a common, compromising solution. From this point of view ISPRAS’s methods and
tools are probably interesting not only as themselves but as example of compromise
between the advanced techniques and industry reality.
Technical context. The key technical problems are as follows:

• How to specify requirements, behavior, or functionality of target software
• How to design to meet the requirements
• How to verify

Lets consider first item “how to specify”. There are several specification approaches and
languages. Selection and adaptation of the features is undoubtedly important issue.
However, an answer here depends on:

• Goal of the specification (for documenting, verification, understanding and so on)
• Who will use the specification (personnel background, preferences)

1 The work was partially supported by RFBR grant 99-01-00207.

• Timeframes (does one have time for studying new notations and technique, how
long time period of the technique use)

• Quality requirements (strong or moderate ones)
It is example of close relation technical and non-technical facets of specification based
testing in industry context.
The management issues themselves have an influence on and depend on prioritization in
software development processes goals. The most significant goals are as follows:

• To short time of development and delivery
• To decrease effort and cost of development
• To build comfortable, creative, productive atmosphere in a development team
• To decrease effort and cost of maintenance
• To guarantee high quality (to obtain good reputation)

The only last item directs introduction of formal specifications and specification based
techniques. But the goals should be considered in the context of others ones, so in fact
always a manager finds a compromise.
Human facet of any innovation introduction is very important. Here we face usual
situation, there are some evident advantages of specification based testing, however the
introduction raises new problems for everybody and nobody likes any extra problems. For
example, the designers and testers have to study formal specification languages, they have
to install and additional tools, they face problem of conversion of specification notions and
formats into programming language ones. These problems cause the resistance of potential
users to introduction of formal specification and specification based testing. To overcome
the resistance we could facilitate studying and introduction of the techniques and integrate
the techniques and supported tools with usual software development tools and environment.
It is, again, an example of the close relations of between technical and non-technical
problems in the area.
Finalizing the section, lets resume once more: to introduce specification based testing in
real life we should solve three sets of problems declared in the above heading together.

The issue is confirmed by ISPRAS experience in academic research and industry programs.
Because Russian (Soviet) scheme of cooperation between academy and industry is fully
different from western one, it is pertinent to briefly describe the ISPRAS’s background
summered below.

1.2 ISPRAS history, background, partners
The Institute for System Programming of the Russian Academy of Sciences (ISPRAS)
experience was gained in academic research and Soviet space programs [ISPRAS].
ISPRAS took participation in development of software for soviet mainframes, mission
control centre software, space shuttle on-board computer operating system and real-time
programming language. ISPRAS has long-term partnership relations with RFBR (Russian
Foundation for Basic Research), Nortel Networks, Microsoft Research, ATS APS
(Advanced Technical Services APS), IFAD (Denmark), GMD (Germany), INRIA (France)
and others. ISPRAS has concentrated the verification and specification activities in

RedVerst2 group [RedVerst]. This lecture presents RedVerst group’s research and industry
results.
RedVerst has developed Kernel VErification and Specification Technology (KVEST)
[KVEST, KVEST2000]. The technology is based on automated test generation from formal
specifications. To date, the methodology and toolset have been applied to over six
industrial projects dealing with the verification of large-scale system and
telecommunications software. The first project, Kernel Verification, gave its name to the
methodology and the toolset as a whole – KV and then KVEST technology. The results of
this project are presented in the Formal Method Europe Applications database [FME]. It is
one of the largest applications of formal methods presented in the database.

1.3 Scope of the consideration
First we present position and keystones of the RedVerst approach. Next sections introduce
terminology details and brief state of the art. The main sections of the paper present
specification and test generation approach themselves. We begin from KVEST technology
and then present UniTesK technology.
The given techniques are applicable to wide area of software and have close relations with
other approaches to verification and validation of software. However, to concrete focus of
our consideration following issues will be (almost) omitted below

• White box testing
• Analytical verification
• Applicability and particularity of the approach in case of specific kinds of software

like compilers, real-time systems, databases, protocols, distributed systems and so
on.

2 Position
We are considering both methodological and real-life industry problems. So we split the
views into 2 parts.
Methodological view:

o Software development improvement needs joint consideration of both the
software development techniques and software development processes issues
and both software design (forward engineering) and software verification and
validation activities.

o Main paradigm of RedVerst approach is the thesis about the consideration of
software and SDP as models. It is acceptable and, moreover, is fruitful to take
into consideration a variety of models of an entity.

o The multiplicity of the models, their joint consideration and comparison is the
only way to know how to establish that the target task is solved correctly and
completely.

Industry view. To obtain industry strength the verification and validation technology
should solve following problems:

2 RedVerst stands for Research and development for Verification, specification and testing.

• Scalability of the techniques
• Through computer aided process
• Both reverse- and forward-engineering processes should be support
• Always, in case of the legacy reverse-engineering and re-design, and in case of

newly developed software, there are some (re-usable) artifacts, which can be,
and should be used. Producing re-usable artifacts could be considered as a
surplus with relation to main workflow. However, the surplus is very important,
so, aims of the process are simplifying accumulation and use of these surpluses
for re-use. We like to push the developer to produce and keep these surpluses
for future use.

• Among the different kinds of legacy there are not only target software
components, but also components of the specifications and test suites, so we will
jointly consider re-use of specifications and test suites.

• Although reducing time length of development of each release is very valuable,
we should not overlook the long-term prospect. It is important to decrease
terms and efforts, needed for the series of releases. It means, that realizing
«rapid development» it is not necessary to save of each of the release,
excessively. The reasonable additional effort will be paid back on the following
releases.

• Any solution of a problem, both traditional and super-modern, should be
oriented to the user mentality: the complexity should be compensated by
efficiency, the novelty - saving of time and effort, additional efforts - aesthetic
pleasure, which gains «well-clean» result.

3 Terminology and background
The section is intended clarifying some terms related with specification and testing.

3.1 Testing
Verification vs. testing. Verification is “the process of evaluating a system or component
to determine whether or not the products of a given development phase satisfy the condition
imposed at the start of that phase” [ESI-verification]. So, verification makes an accent on
partitioning development process onto steps, stages, or phases as opposed to validation
where one is interested in evaluating the target system only at the end of the development
process. The validation is closer to acceptance testing and system testing, whereas
verification is conducted both during development and when target system is completed
too. So verification is closer to unit and integration testing. Verification approach does not
restrict means for evaluating a system. Testing is one of means for verification that include
executing part or a whole target system. Both testing and verification need requirements
description to be able to compare actual and expected (or right) behavior. Formal
specification is the means for rigorous description of the requirements.
Model checking is a technique that relies on building a finite model of a system and
checking that a desired property holds in that model [Clarke&Wing]. Because testing has to
restrict number of tests, test designer has to follow a finite model too. The most researches

related with model-checking consider analytical verification approach (without model
execution). In fact model-checking consists of two sub-tasks: how to build an adequate
finite model and how to verify the model. Testing could use the same techniques to
building the finite models but compare the model behavior with target system behavior by
means of executing target system. So, sometimes testing and model-checking could follow
the same way.
Black box and white box testing. There are two well-known terms: black box and white
box testing. Black box approach considers a system or a component whose inputs, outputs,
and general function are known but whose contents or implementation are unknown or
irrelevant [ESI-black box]. In fact there is a wide spectrum of testing approaches that use
different combinations of black and white box testing. Below we consider one of the
combinations open-state testing (as opposed to hidden-state one). The open-state testing
considers a system as a black box whose internal state (at least informative components) is
known but whose implementation (algorithm) is unknown or irrelevant. The open-state
approach opens good prospects for quality testing improving.
Test coverage, test coverage criteria, test coverage metrics. There are well known test
coverage criteria based on the source code structure. They include criteria based on control
flow and data flow structures. The same approach could be applied to formal specification.
The test coverage criteria could consider checking test situations related with execution of a
specification branch or a combination of logical terms constituted the branch conditions.
Because we consider the specification testing below we mean only specification based test
coverage criteria.
Testware components: test oracles, test sequences, test scripts, test harness, test bed,
test suite, specification suite, verification suite.There is well known term “test case”. We
are trying to do not use the term because it is poly-semantic one. The following components
of the “testing world” are considered:

• test oracles (KVEST’s basic driver) is a program unit (e.g. function, procedure,
object) that checks pre-condition; invokes target operation (operation under
test), checks post-condition, assigns a verdict (passed or fault), and generate
trace and other data for test coverage and test execution analysis;

• test scenarios (KVEST’s script driver) is a program unit (e.g. module or main
program) that invokes (possibly indirectly via test oracles) target operations; test
scenario checks test oracle verdicts and maybe some additional assertions and
assigns a final verdict; in common case, scenario could represent a parallel
combination of test oracle invocations;

• test scripts (KVEST’s test plan) is a test job description for batch test execution,
usually includes a set of test scenarios with definite parameters for each test run;

• test harness is an executable testing program that represents whole test
environment for system under test; test harness consists of test bed and test suite
in an executable representation;

• test bed is the invariant part of the test harness (used for a range of systems
under test), function of test bed is run-time support, process and resource
management, communication with remote testing tools and databases;

• test suite is a target system specific (non-invariant) part of test harness, consists
of the test oracles, test scenarios, data iteraters, filters, and so on;

• specification suite is a set of specifications (pre- and post-conditions of
operations/functions/methods, data type invariants, axioms, specification units
like modules or classes, etc.) and auxiliary components like model state,
mapping functions for up- and down-warding;

• verification suite is a composition of specification and test suites, and test
scenarios; the verification suite is static environment of the target system under
consideration.

3.2 Specification
There are a few kinds of classification of specification approaches like model-oriented vs.
property-oriented and state-based vs. action-based. We are suggesting following
classification: executable, algebraic (in fact, co-algebraic), use cases or scenarios, and
constraints. Below you find short descriptions of the approaches and examples of
methodologies and tools used the approaches.
Executable specifications, executable models. The approach supposes developing a
prototype system to demonstrate feasibility and functionality of further implementation.
The examples of the approach are SDL, VDMTools, explicit function definitions in RAISE.
Algebraic specifications assumes a description of properties of some operations’
compositions (serial, parallel, random, or some combinations). Usually the approach is
tightly related with axiomatic approach. SDL use the approach to specify data types (ASN);
RAISE provides quite powerful mechanism of axiomatic specification.
Use case/Scenario based specification approach suggests considering the scenarios of use
instead of properties of the implementation. The approach is developed and propagated by
OMG [OMG], Rational Corporation [RUP], SDL community uses MSC [MSC] notation
for scenario description. The informative review of the scenario-based techniques is
presented in [Ryser].
Constraint specification assumes the description of data type invariants and pre- and post
conditions for each operation (function, procedure). There are specific techniques for OO
classes and objects specification. The constraint specification approach is followed by
classic VDM [Bjorner, Jones], Design-by-contract in Eiffel [Eiffel], implicit function
definition style in RAISE, iContract [iContract], ADL and ADL2 [ADL].

The most kinds of specification notations are usually non convenient for software engineers
and non-expert customers, it is common drawback of formal specification techniques. Use
case and scenario like specifications maybe the most suitable for non-professional society,
however the kinds of specification do not contain some knowledge needed for documenting
and exhaustive testing.
Each above approach has some advantages and drawbacks. For example, algebraic
specifications are very suitable for test scenario generation include case of concurrent and
distributed software, however the approach provides test oracle3 generation techniques only

3 Test oracle is a program or program component automatically compared actual behavior or result of a target
operation against its specification.

for pure function, so real-life software designers face some troubles in attempt specifying
their software using only algebraic approach. Notice, the algebraic specifications provide
very poor base for partition analysis4. Maybe the most drawback of the algebraic
specifications is non-scalability of the approach. Such specifications for toy example are
very short and attractive, however as the size increases, the understandability of the
algebraic specification drastically drops.
Lets anticipate a little and clarify RedVerst position. The RedVerst approach follows last
direction. We consider constraint specification as main part of specification suite. Other
kinds of specification could be used too, but they are additional and optional features for
the most specification and verification activities in RedVerst processes. The reason of the
choice is as follows. The constraints specification (pre- and post-conditions and data type
invariants) allows automatic test oracle generation and conduct partition of domain areas. It
is well-grounded base for most reverse-engineering activities and, partially, forward-
engineering activities including, test scenario design, test coverage criteria establishment,
test coverage estimation, documentation, representation of reverse-engineering results,
redesign, and improving design.

4 State of the Art
Below we are considering the notations and tools related with the specification based
testing.
Eiffel [Eiffel]: Eiffel is an OO programming language with facilities for assertion
specification and support of debugging. Eiffel proposes a methodology “Design-by-
contract” supported step-by-step process for description of interface functionality and
implementation of the functionality. There are interesting results in building re-use Eiffel
libraries. Eiffel has wide user community, however, it is known in academic area rather
than in industry. We know no specific tool for test generation based on Eiffel specifications
that is applicable for industry software.
iContract [iContract]: iContract is an annotated extension of the Java language, which
allows users to define pre-, post-conditions and constraints related to the data structures.
With the help of a pre-processor, instrumented code is produced, which is used to
automatically track the preservation of these conditions throughout the execution of the
code. This extension lacks the methodology and dedicated tools for the design of the tests,
and is not integrated with software development environments.
Larch [Larch]: Larch is a very well thought out system consisting of a shared specification
language and a language binding the specification to the target implementation. The system
lacks test suite design tools. Also, it has the same drawback as KVEST, having a formal
specification language at the centre of the technique, thus requiring expertise in the
specification language as well as the programming language.
VDM-SL, VDM++ [VDM_SL], [VDM++]: Meta-IV (language of classic VDM), VDM-
SL, and VDM++ form a widely used family of specification languages, well integrated with

4 Partition analysis divides domain area into a set of equivalence classes or sub-domains. Sub-domains’
enumeration and geometry is very informative source for test generation and test coverage estimation.

such popular programming languages as С/С++ and Java. However, no test suite design
tools have been provided for industry use yet.
ADL/ADL2 [ADL]: The ADL/ADL2 family of notations is based on conventional
programming languages (С, С++, Java, and IDL). The notations offer capabilities to create
specifications suitable for the generation of test suites and user documentation. A
shortcoming of ADL is in the weakness of the test suite generation tools of operation group
testing.
SDL [SDL], MSC [MSC], TTCN [TTCN]: Specification languages formally supported by
international standards bodies and targeted to the telecommunications include SDL, MSC
and TTCN. The first two languages are intended for the specification of real-time, reactive
systems such as those encountered in the telecommunications industry. TTCN is intended
for specification of test suites in similar areas. These languages are widely used in their
niche areas of application, and they have well-integrated support for specification,
implementation and testing. On the downside, aside from their narrow specialization, these
techniques require at least two different languages as well as a programming language. This
drawback is partially compensated for by the well-defined standards, and by the widespread
use of these languages in their niche applications.
There are two valuable researches related with specification based testing. D.Peters and
D.Parnas suggested a tabular notation for assertion description and a technique for test
oracle generation. They investigated troubles faced during introduction of the approach into
real-life software verification processes. L.Murray et al. [Murray] consider the possibility
of extracting FSM specification from pre- and post-conditions. Such FSM could be used for
test scenario generation for OO class testing. The approach result is very promised, but we
know nothing on product tools supported the idea.
There are some researches on application of algebraic like specification for test generation.
The most known classical work is [Doong&Frankl]. One of the most recent results was
published in [Antoy&Hamlet]. It seems the results still are academic- rather than industry-
oriented ones. However, notice, S.Antoy and D.Hamlet have begun to consider in the
context of algebraic approach the mapping problem. The problem is considering formal
description of the relation between specification (model) and implementation. The mapping
problem is usually solved in model-oriented specifications and very important for
specification based testing. So, these authors have suggested a promised technique for
deployment algebraic specifications in a practical use.

5 RedVerst techniques, experience, and results
5.1 KV: KVEST prototype
In 1994, Nortel Networks (Bell-Northern Research and Nortel (Northern Telecom) are the
former names of Nortel Networks) proposed ISP RAS to develop a methodology and
supporting toolset for automation of conformance testing of Application Program
Interfaces (API). A real-time OS kernel was selected as a first practical target for the
methodology. ISP was to rigorously describe software contract definition of the kernel and
produce test suites for the kernel conformance testing. In case of success, Nortel Networks
was obtaining a possibility to automate conformance testing for the next OS kernel porting

and for the new release of the OS. In addition, Nortel Networks was improving its product
software structure as a whole, since during software contract definition ISPRAS promised
to establish minimal and orthogonal set of interfaces for the OS kernel.

The Kernel Verification project gave name to KV and then KVEST methodology. Duration
of prototype phase of the project was about 1 year. The prototype KV approach suggested

• Specification extension of Nortel’s in-house programming language – SPP;

• Techniques for implicit specification writing and test oracles generation;

• Specification of the most OS kernel interface procedures.

• A part of test scenarios that were manually produced

5.2 KVEST methodology
During next 1.5 year product version of KV methodology and tools were developed. Later
the methodology and toolset have been named KVEST – Kernel VErification and
Specification Technology. To cover all OS kernel subsystems KVEST team designed 6
kinds of test scenario schemes. The simplest schemes were intended for separate testing of
pure functions (without side effect) and allowed fully automatic test generation. The most
complex schemes allowed testing parallel execution of resource managers, like memory
and process management, messaging subsystems, exception handling, and so on. The
schemes classification is described in [KVEST].
RAISE specification language (RSL) [RAISE-language] was used for specification.
KVEST included techniques for automatic and semi-automatic test generation, automatic
test execution and test result analysis and reporting. The techniques were oriented on use in
real-life processes, so re-generation and repeated re-run of tests were developed in fully
automatic fashion.
Five patent applications have been filed based on the KVEST development experience. The
most valuable issues covered by the patents are as follows:

• Enhanced test generation technique that allows to exclude from consideration the
inaccessible and redundant test situations.

• Programming language independent technology scheme for test generation.
• Automatic integration of generated and manually developed component of test

suites for semi-automatic test generation. The technique allows to exclude any
manual customization during (after) repeated re-generations of test suites. The
feature is valuable for both test design and regression testing period.

• Test generation for parallel using procedures based only serial behavior
specification.

Besides, an umbrella patent application covers total technology scheme of KVEST
specification based process.

5.3 Applications
As we mentioned above KVEST is intended for specification and testing of API. However
there are specific requirements in case of testing a specific software and specification and
test have to solve the problems. Up to now KVEST users have gained successful
experience in verification of the following kinds of software.

• Operating system kernel and utilities
• Fast queuing system for multiprocessor systems and for ATM framework
• Telecommunication protocols as a whole and some protocol implementation

subsystems like parsers.

5.4 Software verification processes
The KVEST are applied in two kinds of software verification processes. First one is
“Legacy reverse-engineering and improving process” and second one is “Regression testing
process”.
“Legacy” process has been described in details in [KVEST]. It consists of the following
phases:

• Software contract content definition;
• Specification development;
• Test suite production;
• Test execution and test result analysis.

The same work provides statistics for effort distribution and results (detecting errors) of the phases. In
general, specification and test design need the same time (specification needs more experience). At least 1/3
of the defects are detected during specification phase and about 1/3 are detected by means of test execution. A
significant part of errors and other inconsistencies are detected during test result analysis. Evidently, some
errors are located in the specifications too, so testing (as by-product) is aimed for both the target software and
the specification improving.

5.4.1 Regression testing
The KVEST regression testing process consists of:

• New release reception, determining difference in interface contents
• Specification suite and test suite content fixing
• Test suites re-generation
• Test suites running, comparison of results, error localization and description,

recommendation on improving, test result reporting, (optionally) specification
fixing if a new functionality appears

Now length of the regression testing cycle is about 2-3 weeks. The rate is quite acceptable
for matured software products. Newly developed software requires higher rate. To meet the
requirements KVEST has suggested a specific verification process scheme called “co-
verification”.

5.4.2 Co-verification in forward-engineering processes
The development of formal specifications and the test suites in parallel with the
implementation results in the early availability of the test suites before the completion (or
even beginning) of the implementation phase. This reduces the cycle by many weeks.
Another important benefit of the process is a clear scheme of work “parallelisation” when
high quality and fast delivery of the software is a must. When several parallel development
streams are started, it is known that an increase of the number of the developers can reduce

the effectiveness of the group and may lead to a drop in the software quality. The
integration of the resulting work and timely cross-propagation of changes is a daunting
task. When a co-verification team is in place, integration of the product comes naturally, as
such a team would view the product from an orthogonal point of view. The target of their
work is a formal specification of the product, which is more or less independent of the
implementation, but ensures the functional consistency of the components.

5.5 Basic research
The RedVerst group conducts three kinds of mutual related activities: academic research,
education, and participation in industry projects. All three directions are tightly and
mutually related because they need inputs and stimulus from each other. Our basic research
directions are as follows:

• FSM extraction from implicit specification
• FSM factorization for test scenario set minimization
• Specification extension of programming languages
• Scenario-based test scenario design

The results of first two topics have been published [Bourdonov]. Two last items are
considered below in the section “UniTesK – specification based testing for practitioners”.

6 Further prospects. UniTesK – specification based
testing for practitioners

The KVEST [KVEST] methodology uses RSL as a specification language and successfully
manages the above problems. However, several projects carried out according to this
methodology showed that the use of formal specification languages is a serious obstacle for
wide application of the developed technique in industrial software production. First, the
specification language and programming language often use different semantics and may
even use different paradigms (object-oriented and functional, for example), so the special
conversion technique must be used for each target language. Second, only developers
having special skills and knowledge can efficiently use a specialized specification
language.
The solution of these problems is the specification extensions of widely used programming
languages. This article presents J@va, a specification extension of Java language, and
concerns J@va solutions of problems of specification design and test development. The
development of J@va used the KVEST experience and extended it significantly with such
features as user-written test scenarios, axioms and algebraic specifications.
The decision to develop a new Java specification extension was based on the fact that
existing ones such as ADL and iContract are ill-suited for our goals. They both support
oracle generation, but do not support any specification of required test coverage. This fact
makes them inapplicable for serious automated test scenario generation. Only ADL permits
to write specifications separately from the code specified, but ADL specifications are
linked with the corresponding source code in a too rigid way. This constitutes the great
obstacle for specification reuse and abstraction level management. A main drawback of
ADL and iContract in comparison with KVEST is the lack of support for object state

specification and state-oriented testing. These features are necessary for testing of
combined behavior of several class methods.

UniTesK stands for Uniform Testing and Specification toolKit. UniTesK is both
approach and technology supported by a set of tools. The keystones of the approach are
as follows:

• UniTesK provides specification extension of widely used programming
languages (now only Java extension “J@va” has been designed and formally
described, C++ extension is expected by the mid of 2001).

• UniTesK includes facilities for constraint (pre- and post-conditions, class
invariants) specification and test design (axioms, equations, test scenarios).

• UniTesK tools can be tightly integrated with the most Software Development
Environment (SWDE).

6.1 JavaTesK Technology Overview
JavaTesK is projection of UniTesK concept to Java platform. JavaTesK technology
process description, like any other software development process (SWDP) description,
must include the following components:

• Process Phases
• Process Workflows
• Process Activities
• Process Workers (the roles of process users)
• Process Artifacts

JavaTesK technology can be used as a separate technology process for test development
based on formal specifications of existing system (reengineering approach) or can be
integrated in forward-engineering. i.e. usualsoftware development process to introduce
specification based tests in it (forward engineering approach).

In this overview we shall concentrate only on specific JavaTesK components concerning
formal specifications, test scenarios and tests based on them.

6.2 Process Phases
The JavaTesK process has, as many other software development processes, four phases.
Inception. The general goal of this phase is to achieve an agreement among all
stakeholders on the global objectives for the project.
If JavaTesK is used as a part of general software development process, the objectives for all
JavaTesK-specific activities should be clearly defined.
Elaboration. The overall goal of elaboration phase is to baseline the architecture of the
product to provide a stable basis for the bulk of design and implementation in the
construction phase. JavaTesK technology demands to supply the baseline architecture with
a set of critical use case or test scenarios and specifications, which become the formal
expression of the architecture.
Construction. The goal of this phase is to complete the development of the product based
upon the architecture elaborated at the previous phase.
JavaTesK specific activity at this phase is the verification suite development, which should
be closely integrated with design in forward engineering approach. All the unit tests

mailto:extension J@va

developed for this phase should be used immediately after the implementation is
completed.
Transition. The focus of the transition phase is to ensure that the product is available for its
end users.
When JavaTesK is used as a part of general software development process this phase is
mostly target process specific. In the case of JavaTesK reverse-engineering projects the
product is the resulting verification suite included both specifications and tests. Contents
and nature of the results are essentially different from outcome of usual reverse-engineering
activities.

6.3 Process Workflows, Main Activities and Workers
Requirements Elaboration. Used in software forward engineering JavaTesK demands

to record the requirements in the form of use case scenarios and formal specifications
written in J@va. Scenarios are convenient for capturing complex behavior and
simultaneously for contacts with different stakeholders. Specifications are used in this
activity to describe clearly the properties and simple functions of entities we meet with in
problem domain.

In JavaTesK reengineering project this activity is performed in parallel with Target
System Analysis.

Target System Analysis. This activity is specific for JavaTesK reengineering projects.
Its purpose is to educe the requirements for the target system, its architecture and design
decision made during its development. Unfortunately, critical design decisions as well as
requirements often can hardly be educed from target system source code, binaries and
documentation. This problem can be solved only by permanent contacts with target system
architects and designers or even by inclusion some of them in the project team.

Design. JavaTesK requires using J@va specifications to settle all design decisions. This
work not only produces a storehouse of knowledge and design decisions, which are
formulated in unambiguous and rigorous form, but also helps greatly to clarify the design
details for designers themselves and developers.

In JavaTesK project design of specifications and test scenarios plays an important role.
As in general software development to organize specifications, test scenarios, mediators
and iteration classes in a proper way may be critical for project success.

Specification design is an iterative activity. At first, the specification designer should
determine the functionality to be specified according to the project architecture and design
of the target system. In the case when objects of one class or clusters of objects with one
dominant represent this functionality in existing system so called prime specification can be
developed. They consist of proper specifications describing the necessary functionality in
implementation terms and mediators linking these specifications with corresponding
implementation. Often prime specifications can be generated completely automatically after
pointing at the corresponding source code.

At next steps specifications are elaborated to become more abstract and implementation
independent. After several steps they should describe only the necessary functionality in a
full and precise form, leaving implementation details outside of their scope — they become
complete specifications of the target system.

mailto:J@va
mailto:J@va

One feature of J@va specifications is not intended directly to describe the functionality
— it’s coverage metrics. They became important when we want to estimate the
effectiveness of testing and often designed according to the structure of implementation and
some general hypotheses on possible errors in the target system. Several coverage metrics
are extracted automatically from specification structure. The usage of these metrics is valid
because in most cases general structure of implementation resemble the structure of
corresponding functionality, and so, specifications structure.

JavaTesK technology requires test scenarios to be developed before full specification
based test suite can be obtained. While specifications are necessary to describe what is the
proper behavior of the target system, test scenarios determine the sequence of target
operations to be called to obtain the necessary test coverage. So, the main problem of test
scenario design is to organize the “right” scenario of calls with “right” parameters. The use
case scenarios recorded during requirements elaboration can greatly help in developing test
scenarios, because they define most often used scenarios of calls and important control flow
branches.

Another way to design test scenarios used for simple specifications is to organize the
systematic traversal of corresponding state-transition graph trying to traverse every
transition. Such scenario can be developed with minimal developer intervention. The
developer should only specify the way of parameters iteration in consecutive calls. J@va
language contains special iteration constructions for this purpose. They can be used in one
scenario only or put into the shape of iterator class that can be used in several test scenarios.

Several test scenarios can be composed in an arbitrary manner in one test script.
Implementation. The peculiarity of project using JavaTesK technology is specifications

and test scenarios implementation. As ordinary software artifacts they should be
implemented and debugged.

The test suite can be derived from a set of implemented specifications and scenarios
automatically. Then the developer starts debugging both the tests and the implementation of
the target system by running the tests.

6.4 Specification facilities
J@va uses the ADL-like specification architecture. The specifications are written in
separate files that contain also auxiliary Java code, which is used for convenience and to
support reuse of once written operations. Auxiliary classes and methods have no special
modifiers as specification, invariant or some else. There are a variety of constructs for
specifying the behavior of a single method and also the constraints on the objects' state and
behavior that can involve several different methods. The specification of method in J@va
can be expressed in the form of pre- and post-conditions and access constraints. The second
kind of specifications is the class specifications which consist of invariants and axioms. A
user is free in choice what kind of specifications to use. Each kind of them is translated into
some kind of assertions and in most cases they are interchangeble, for example, all
constraints can be expressed in the form of axioms and invariants can be viewed as
common parts of pre- and post-conditions of all class methods.

mailto:J@va
mailto:J@va

6.5 The Specification of Methods
A method specification always is marked with specification modifier. It includes access
constraints, which describes the kind of access method has to its parameters and other
objects. J@va access constraints are similar to RSL ones [RAISE-language] and used to
check that the method keeps the values of objects, which are read-accessible for it, and to
iterate parameters while test cases generation.
specification class Stack {
 specification synchronized int size()
 access (read this)
 { ... }
 specification synchronized void push(Object obj)
 access (read obj; read write this)
 { ... }
}
Pre- and post-conditions are used to specify the behavior of the method in terms of pre- and
post-states of target system. In J@va post-conditions the pre-call operator @ and post-value
operator ` can be used. @ has the semantics similar to ADL but it can not be applied to
identifiers. All identifiers stand for pre-values of corresponding objects. To indicate the
post-value of variable x we use x`. Pre- and post-conditions are used to generate oracles for
specified methods. J@va has several special constructs for test coverage description. These
constructs and some restrictions on post-condition structure help to make the test coverage
analysis automatically.

6.6 Invariants
The classes that specify some target classes are marked with specification modifier and
named specification classes. Such classes usually include specification methods, specifying
target methods (as above considered), invariants and axioms. Invariant represents the
constraint on the object state that must be obeyed during all object lifetime. In J@va
invariants are boolean read-only methods marked with invariant modifier. The invariants
of some class are checked for an object of this class in oracles every time the object's state
is changed.
class Department { ... }
specification class Employee {
 public int age;
 public Employee boss;
 public Department department;

 invariant boolean I1()
 {
 return (age > 0);
 }
 invariant boolean I2()
 {
 return (boss != null) ==> (department == boss.department);
 }
}

6.7 Test Scenarios
The test scenarios represent a powerful facility for test development. In general, a scenario
defines a model of target system called the testing model. Scenario must define the state
class for this model and the transitions, which must be described in terms of target methods.
The testing model represents a FSM, which is a factorization of the FSM representing the
target system. One can find details of this approach in [Bourdonov]. In a simple case the
test scenario represents the scenario of tested operations calls that can lead to some verdict
on their operation. The test constructed from such scenario executes the stated scenario and
checks the verdict, it also checks the results of each operation with the help of its oracle.
The J@va allows to use in scenarios such constructs as iterations, non-deterministic choice
and serialization. The scenario iteration mean is powerful feature. In addition to usual
enumeration of iteratable values the construct builds test scenarios, which starts from the
same state of testing model. For example, the code
iterate(int i = 0; i < 10; i++)
{
 object.method(i);
}
denotes that when the test finds itself in some state at first time it executes
object.method(0), at second time - object.method(1), and so on until it comes in this state at
eleventh time - than it has nothing to do in this state and must look for some other state of
the testing model, where there exists untested operation. If it does not find such state, the
test finishes.

6.8 Axioms
An axiom in J@va is represented as boolean method marked with axiom modifier. The
axioms can be located only in a specification class. There are no restrictions on called
methods and their behavior in axiom. An axiom states some general constraint on the
behavior of an object of specified class. Axioms may have pre-conditions. Well known
algebraic and co-algebraic specifications in general case can be reduced to the axioms, but
J@va axioms provide a special, more convenient construction. We call the mixed algebraic
and co-algebraic specifications simply algebraic for short. Such a specification claim that
two or more chains of operations are equivalent, that is if one carries out any of this chains
from one state, he will obtain the same results of last operations and the same final state.
Algebraic specification in J@va can be represented as a pseudo-method in specification
class marked with equivalence modifier and having several bodies, each realizing a chain
of operations.
specification class Stack {
 public int size;
 public final static int MAX_STACK_SIZE
 = java.lang.Integer.MAX_INT;

 specification synchronized Object pop() { ... }
 specification synchronized void push(Object obj) { ... }

 axiom boolean A1()
 {

mailto:J@va

 pre { return (size != 0); }
 {
 int old_size = size;
 pop();
 return (size == old_size - 1);
 }
 }
 equivalence void E1()
 {
 pre { return (size != 0); }
 { push(pop()); }
 { ; }
 }
 equivalence Object E2(Object obj)
 {
 pre { return (size != MAX_STACK_SIZE); }
 { push(obj); return pop(); }
 { return obj; }
 }
}
Axioms serve for generation of test scenarios, which use them as test scenarios and also
check their verdicts. Similar to the scenarios J@va allows to use iterations, non-
deterministic choice and serialization in axioms. The iterate construct in axioms can be
considered as typed generality quantifier.
Here are all main features of J@va, the only exception specification mechanism left out
scope of the consideration. So, the J@va (from syntax point of view) might be truly
considered as slight extension of Java.
6.8.1.1 Sample J@va Specifications
Below we are presenting an example of J@va specifications for bounded stack class. This
example demonstrates the main features itemized in previous section.
import java.util.Vector;
specification class StackSpecification {
static final public int MAX—SIZE = 2048;
final public Vector items = new Vector(MAX—SIZE); // model state
// object intergity constraint
invariant I1()
 { return items.size() ?= 0 && items.size() != MAX—SIZE; }
// auxiliary comparison method
boolean synchronized auxIsEqual(StackSpecification other) {
if(items.size() != other.items.size()) return false;
for(int i = 0; i ! items.size(); i++)
if(items.elementAt(i) != other.items.elementAt(i))
return false;
return true;
}
// specifications of target operations
specification synchronized Object pop() access(read write this) {

mailto:J@va
mailto:J@va

pre { return items.size() != 0; }
post {
branch ''Single branch'';
// x` denotes postvalue of x
// @!expr? denotes execution of the expr in prestate
return pop` == @items.lastElement() && pop` != null
&& this`.auxIsEqual(
@(this.items.removeElementAt(items.size()1)));
}
}
specification synchronized void push(Object obj)
access(read obj; read write this) {
pre { return obj != null && items.size() != MAX—SIZE; }
post {
branch ''Sinlge branch'';
return this`.auxIsEqual(@(this.items.addElement(obj)));
}
}
// axioms
equivalence synchronized Object A1(Object obj) {
pre { return items.size() != MAX—SIZE; }
 { push(obj); return pop(); }
 { return obj; }
}
equivalence synchronized void A2() {
pre { return items.size() != 0; }
 { push(pop()); return; }
 { return; }
}
}
The following test scenario example verifies the behavior of Stack in the states close to
empty and full. The parameter of scenario denotes the number of calls of the target
operations in such states.

class StackScenario implements Scenario {
final protected StackSpecification s;
// the scenario main method
scenario boolean main(int n)
 {
if(s.items.size() == 0) s.push(new Object());
else if(s.items.size() ? 1)
while(s.items.size() != 1) s.pop();
for(int i = 0; i ! n; i++)
 { s.pop(); s.push(new Object()); }
if(s.items.size() != 1) return false;
while(s.items.size() != StackSpecification.MAX—SIZE1)
s.push(new Object());
for(int j = 0; j ! n; j++)

 { s.push(new Object()); s.pop(); }
if(s.items.size() != StackSpecification.MAX—SIZE1)
return false;
 }
 }

6.9 Process Artifacts
Project Requirements. JavaTesK requires project requirement to be recorded in the

form of use case scenarios set and J@va specifications set. This form allows easy
elaboration of general requirements into as detailed ones as we need and after applying
some design — transformation into complete specification suite of the target system.

Target System Model. This artifact is necessary in reengineering JavaTesK projects,
especially when source code is badly commented and system documentation is out of date.
Target system model can be obtained by automatic analysis of the target system by some
set of reengineering tools. We cannot advise to use some specific tool here. On the
contrary, our experience showed that different tools often educe different views of the
target system, every of which may be important in system architecture comprehension. So,
usually the target system model consists of several representations produced by different
tools.

Verification Suite. The main specific for JavaTesK projects artifact is the verification
suite consisting of three parts: specification suite, test scenarios, and test suite. The latter is
generated from the former two with the help of J@va translator. Let us consider these
artifacts in more detail.

Specification Suite. Specification suite consists of target system formal specifications
written in J@va specification language. The most part of it is a set of J@va specification
classes representing the full functionality of units in the target system.

J@va specification class represents the precise description of a chunk of functionality
implemented in the target system. This functionality can be implemented by one object or
by a group of linked objects.

State is specified by means of class attributes and state constraints, represented as
invariants. Behavior is specified by the set of methods’ specifications, which determine the
sufficient conditions that must hold for given method to work properly (pre-condition) and
what is its proper behavior (post-condition, expressed in the form of constraints on the
system state before method call, the parameters of method call and the system state after the
method ends).

Specification classes can use other specification classes or Java library classes. The
important (but technical) restriction is that specification class can extend only another
specification class and cannot extend Java class. The extension between specification
classes can be specified as functional or LSP-compliant (Liskov’s Substitution Principle).

The only new kind of relationships (new in Java-world) between specifications is
refinement. The refinement can be used to improve reuse of the specifications. It allows to
create a specification library for some problem domain and to use it while specifying any
application in this domain. Such development strategy can dramatically decrease the labor-
intensiveness of specification development.

mailto:J@va
mailto:J@va
mailto:J@va
mailto:J@va
mailto:J@va

Another part of specification suite is mediators. Mediator is a special J@va class, which
main purpose is to link some specification class with corresponding implementation.
Mediator should translate the calls of specification methods into the corresponding calls of
target methods and to build the post-state of specification class on the base of the state of

Test Scenarios

implementation.

. Test scenario is a special J@va class describing a sheaf of possible calls
of

may use its own model of the target system state called the testing model.
Fo

 specifications and scenarios
by

 model class, oracle class and coverage
information classes (for each specification method one coverage information class is
generated).

some target methods. We use the word “sheaf” here because the control flow of
scenarios can be arbitrary complex, every path in it should determine some sequence of
target methods.

Test scenario
r ease of scenario development and its correspondence with automated testing there exist

predefined Java interface of testing model state called TS_GenState. The testing model
must be recorded as Java class implementing this interface. Test scenario itself must
implement predefined TS_Scenario interface.

Test Suite. The test suite consists of a part generated from
J@va translation to Java and some predefined part, which is represented by a steady part

of test system and supporting classes for generated ones.
The generated part structure is as follows.
Every specification class gives rise to

Figure 1.

mailto:J@va

Model class is Java class having the interface and the attributes specified
corresponding specification classes. It also has special methods for checking all the
specified invariants. Oracle class is Java class having methods corresponding to

 in

co

as

Figure 2.

specification methods of the specification class. Oracle object is linked with some model
object, which behavior it checks. Each oracle method must check pre-condition of

rresponding specification, then call the model method and then check the post-condition.
Coverage information class object is intended to store information on coverage obtained

according to the chosen criteria. This information is used for run-time optimization of test
— if the next call of some target method cannot obtain better coverage, it can be skipped.

Each J@va mediator class for some specification produces corresponding Java mediator
class, which extends the model class for the same specification. Object of this class is used

model, which behavior is checked by the oracle object. Mediator defines specification
methods in terms of implementation, so the oracle object checks implementation behavior
in the long run. Another responsibility of the mediator object is to make its state consistent
with implementation after every call.

Scenario class gives rise to scenario driver class in Java. This class has several standard
methods helping it to cooperate with predefined so-called test engine class. The
collaboration of test engine object and scenario driver object constitute the test sequence
generation mechanism. This mechanism is based on state-transition graph traversal
algorithm, where test engine implements the common part of algorithm and scenario driver

the

enario driver uses corresponding CoverageInfo object to get
inf

stem
in

•
ification is high-level

de

g requirements to accuracy of the
e additional requirements to specifications and common problems of

 for

nded for legacy reverse engineering and improving, second one

a

. First

 variable one concerning the description of possible states and transitions. There are
several used algorithms designed for different graph types, each implemented in different
test engine class.

Figure 2. shows the sequence of calls between test suite components corresponding to
one target method call in typical test (the calls are enumerated as 1, 2,…). At first test
engine object aTestEngine calls next() method in scenario driver object
aScenarioDriver to determine which next call will enlarge the coverage obtained until
this moment. Sc

ormation about already obtained coverage, iterates target method calls until it finds the
necessary one, then it stores the information about this call and returns true to the engine. If
scenario driver does not find a suitable call, it returns false and the engine uses underlying
traversal algorithm to find a path to another state.

When the suitable call is found the engine calls call() method in scenario driver and
this call is translated through oracle and mediator to actual call to implementation. After the
end of implementation method mediator object invokes the static method update() in
MediatorObserver class. This method in turn invokes updates in all mediator objects
— this makes their states consistent with target sy state — and then checks invariants

all mediator objects to make sure that the call of target method does not break any of
them.

After that the control is returned to the oracle, it checks the post-condition of the method
called and return the control to the engine through scenario driver.

Such activity goes on until the necessary coverage obtained or neither of target method
calls in either state can enlarge the coverage.

Conclusion
Feasibility in industrial context. Traditional niche for formal spec

sign in forward engineering processes. Now application of such approach in industrial
context is restricted because software engineers need more detailed specifications. Reverse
engineering of legacy requests especially stron
specifications. Thes
test generation explain position of skeptics said impossibility of deploying specification
based testing in industry.
RedVerst experience has shown feasibility of the approach. During 6 last years RedVerst
has produced over 200 Kline formal specification in RSL and has developed tools
specification support and test generation. Size of generated test suites is over 10Mline in
target programming languages. RedVerst has introduced 2 kinds of software verification
processes. First one is inte
is regression testing including maintenance of formal specifications and test suites
maintenance. RedVerst has demonstrated high degree of specifications and test design
artifacts re-use. The high re-usability causes advantages of specification based testing for
long term prospects, and, in particularly, in case of regression testing.
Reason of specification based testing lag. In industry specification based testing falls
behind traditional “white box” testing. There are a few reasons causing the situation
ones are as follows:

• the lack of personnel with skills in formal specification languages;
• the lack of test design skills;
• the lack of tools;
• the limitations on the software development process structure and timing.
There are a few other lacking issues causing the troubles of specification based testing

ed testing is
port [Ryser].

ecification based testing innovations. The following are necessary
es:

nd

ation languages and specification and test

massive

• e integration with widely used Software Development Environments (SWDE).

Con
of s f the listed features should not deter the deployment of formal methods. Rather a

The o
not ndeed we should provide tools and

tion

t of the problem is
reative nature of a design as a whole. The specification based testing requires first to

r.

r visions.

deployment. The detail analysis of current situation in specification bas
provided in J.Ryser’s technical re
How to introduce sp
for successful deployment of formal methods in industry development process
• A presence of a critical mass of capabilities and features of notations, techniques, a

tools.
• Industry needs both specific formal specific

design extensions of programming languages. First ones facilitate study and first
phases of deployment of formal techniques, second ones will used as notation
use.
A clos
The instruments for the specification and testing must be tightly integrated with (or,
better, be an integral part of) any SWDE.
sidering the conditions needed to achieve the critical mass, we should note that the lack
ome o

gradual, incremental accumulation of the features is viewed as a preferred strategy.
re is no real sense to directly overcome resistance of software engineers. We should d

 make to use specification based approach, i
techniques that facilitate their work, that help them to do good work.

At the same time there is a favorable obstacle that facilitates deploying the specifica
based testing into practices. Testing is usually considered as tedious, fatigue, wearisome
work. It is true, but why do we not apply this appreciation to software design and
development - the work includes a lot of routine activities too. The roo
c
model a system under test. A test designer can (and must) compete with software designe
They stand on parity positions, both test and software designers present their own models
of a target system and testing only demonstrates coincidence or differences of thei
This human factor will play important role in propagation of the specification based testing
to practice.
Acknowledgements
We are grateful to RedVerst team and Alexander Vorobiev (Nortel Networks), he reviewed
early version of the paper and participated in discussion on deployment of advanced
techniques in industry processes.

7 References
[ADL] http://www.sun.com/960201/cover/language.html
[Antoy&Hamlet] S.Antoy, D.Hamlet. Automatically Checking an Implementation ag
Its Formal Specification. IEEE tra

ainst
ns. On Soft.Eng, No.1, Vol.26, Jan. 2000, pp.55-69.

[Bjorner] D.Bjorner. Formal specification is an experimental science.
ing and Computer

 2,

.-

Programmirovanie, No. 2, Moscow. English version in Programm
Software, ISSN 0361-7688, N-Y, Vol. 20, No. 2, March-April, 1994.
[Bourdonov] I. B. Burdonov, A. S. Kossatchev, V. V. Kuliamin. Application of Finite

ol. 26, No.Automatons for Program Testing.- Programming and Computer Software, V
2000, pp. 61–73.
[Clarke&Wing]E.M. Clarke, J.M.Wing. Formal Methods: State of the Art and Future
http://www.cs.cmu.edu/afs/cs/usr/wing/www/mit/paper/paper.ps
[Doong&Frankl] R.-K.Doong, P.Frankl. Case Studies on testing Object-Oriented Programs,
Proc. Symp. Testing, Analysis, and Verification (TAV4), 1991, pp.165-177.
[Eiffel] http://www.eiffel.com
[ESI-black box] ESSI Std 610.12-1990.
[ESI-verification] http://www.esi.es/Help/Dictionary/Definitions/Verification.html
[FME] http://www.fme-nl.org/fmadb088.html

t] The Java Design by Contract Tool. Fou[iContrac R.Kramer. iContract – rth conference
), 1998. on OO technology and systems (COOTS

[ISPRAS] http://www.ispras.ru/
[Jones] C.B. Jones. Systematic Software Development Using VDM. Prentice Hall

ons. Proceedings of World Congress of

A.Petrenko, A.Vorobiev. Industrial Experience in Using Formal

. IEEE

hines for Class Testing. In Lecture Notes in Computer

3.
ge.

International, 1986.
[KVEST] I.Bourdonov, A.Kossatchev, A.Petrenko, and D.Galter. KVEST: Automated

ificatiGeneration of Test Suites from Formal Spec
Formal Methods, Toulouse, France, LNCS, No. 1708, pp. 608-621, 1999.

[KVEST2000]
Methods for Software Development in Nortel Networks.- Proc. Of the TCS2000 Conf.,
Washington.,DC, June, 2000.

[Larch] J.Guttag et al. The Larch Family of Specification Languages
Software, Vol. 2, No.5, September 1985, pp.24-36.
[Murray] L. Murray, D. Carrington, I. MacColl, J. McDonald, P. Strooper. Formal
Derivation of Finite State Mac
Science, 1493, pp. 42-59
[OMG] http://www.omg.org
[Peters&Parnas] D. Peters, D. Parnas. Using Test Oracles Generated from Program
Documentation. IEEE Transactions on Software Engineering, Vol. 24, No. 3, pp. 161-17
[RAISE-language] The RAISE Language Group. The RAISE Specification Langua
Prentice Hall Europe, 1992.
[RUP] http://www.rational.com
[RedVerst] http://www.ispras.ru/~RedVerst/

i.u[Ryser] ftp://ftp.if nizh.ch/pub/techreports/TR-2000/ifi-2000.03.pdf
 [VDM_SL] N.Plat, P.G.Larsen. An Overview of the ISO/VDM-SL Standard. SIGPLAN

2.

[MSC] Message Sequence Charts. ITU recommendation Z.120.

Notes, Vol. 27, No. 8, August 199
[VDM++] http://www.csr.ncl.ac.uk/vdm/

Standards

http://www.cs.cmu.edu/afs/cs/usr/wing/www/mit/paper/paper.ps

[SDL] Specification and Design Language. ITU recommendation Z.100.
[TTCN] ISO/IEC 9646-3. Tree and Tabular Combined Notation (TTCN).

	Introduction
	Technical, management, and human problems
	ISPRAS history, background, partners
	Scope of the consideration

	Position
	Terminology and background
	Testing
	Specification

	State of the Art
	RedVerst techniques, experience, and results
	KV: KVEST prototype
	KVEST methodology
	Applications
	Software verification processes
	Regression testing
	Co-verification in forward-engineering processes

	Basic research

	Further prospects. UniTesK – specification based testing for
	JavaTesK Technology Overview
	Process Phases
	Process Workflows, Main Activities and Workers
	Specification facilities
	J@va uses the ADL-like specification architecture. The speci

	The Specification of Methods
	Invariants
	Test Scenarios
	Axioms
	Sample J@va Specifications

	Process Artifacts
	Conclusion

	References

