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Abstract. The article presents the main components of the test suite
architecture underlying UniTesK test development technology, an au-
tomated specification based test development technology for use in in-
dustrial testing of general-purpose software. The architecture presented
contains such elements as automatically generated oracles, components
to monitor formally defined test coverage criteria, and test scenario spec-
ifications for test sequence generation with the help of an automata based
testing mechanism. This work stems from the ISP RAS results of aca-
demic research and 7-years experience in industrial application of formal
testing techniques [1].
Keywords: specification based testing, partition testing, automata
based testing, test suite architecture.

1 Introduction

An automated technology of industrial test development applicable for general
purpose software is a dream of several generations of test designers and testers.
During past decades many views concerning both the possibility of such a tech-
nology and various approaches to its implementation were expressed in research
community. At the same time, the industry has attained such a level of software
complexity that some rigorous testing technology is recognized as an urgent need.

But the industry is not in a hurry to accept the first technology to appear. In-
dustrial software development processes require some “critical mass” of features
from test development techniques to benefit actually from them. RedVerst [1]
group of ISP RAS proposes UniTesK test development technology as a candidate.
UniTesK is a successor of KVEST test development technology [2, 3] developed
by RedVerst group of ISP RAS for Nortel Networks. UniTesK is based on a
ground experience in specification based testing obtained from 7-years work in
several software verification projects performed with the help of KVEST tech-
nology. The total size of software tested in these projects is about 0.5 million
lines of code. UniTesK tries to keep all the positive experience of KVEST usage.
It also introduces some improvements in flexibility of technology, heightens the
reusability of various artifacts of test development process, and lessens the skills
required to start using the technology in an effective way.



To be successful, a test development technology should be based on con-
sidered test suite architecture. Test suite architecture should consist of clearly
described components with neatly defined responsibilities, interfaces, relations,
and interactions with each other, but all this is not sufficient. UniTesK technol-
ogy is based on a new approach to automated test development: it proposes some
architecture framework that can be used to construct effective tests for almost
any kind of software system and makes testing process completely automated.
The technology determines the immutable part of this framework and compo-
nents depending on target system or test goals. Then, it defines the procedures
that help to minimize the amount of manual work necessary to develop these
components.

Although completely automated test generation is impossible, except for
some very simple or very special cases, our experience shows that the work
required to produce the manual components is usually much more simple than
the one required to develop the similar test suite in traditional approaches. The
use of the UniTesK technology is similar to the use of rich libraries of templates
and classes — the developer specifies only actually important details and control
specifics, uses library elements for routine tasks, and obtains the result without
doing much tedious and mechanical work.

UniTesK technology can be used to produce tests for any kind of software. For
each reasonable criterion of correctness of the system behavior we can construct
a test, which convinces us of this correctness if it is successful, or can find some
incorrectness. In simple case we can produce such a test at once, in more complex
ones several iterative steps of test development is required.

This article presents the main elements of the test suite architecture under-
lying UniTesK test development technology. We also tried to provide the defini-
tions of the main concepts used in UniTesK method and to supply each concept
and architecture component with comments containing arguments in favor of
the architecture decisions proposed. See [8] for some additional arguments.

2 Goals of Testing Determine Test Suite Structure

Since there is no sense in discussion of test suite architecture used in a technology
irrespective from testing goals and main techniques used to test something in
this technology, we start with some general considerations that clarify the goals
of UniTesK and methods used to reach them.

The main question, the answer to which lies in the heart of each testing
technology, is ”What is the main goal of testing?” The short form of this an-
swer accepted by UniTesK test development technology is that testing should
demonstrate that the system under test works correctly. This answer raises more
questions: ”What is a correct work of the system under test? And how it can be
demonstrated?” Let us try to give detailed answers.

The system under test works correctly if it behaves according to its require-
ments. This statement holds for all kinds of requirements, but UniTesK tech-
nology pays more attention on so-called functional requirements. They describe
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what the system should do regardless of methods used and such issues as scal-
ability, performance, dependability, etc. To make requirements more clear and
to enable automatic checking of system’s behavior accordance to requirements,
they should be formulated in a rigorous, clear, and unambiguous form. Such
form is often called formal specifications. So, UniTesK approach is a kind of con-
formance testing — it presumes that we have formal specifications of the system
behavior and they are given in such a form that enables us to generate an or-
acle, a program that can check the results of the target system’s work against
the constraints given in specifications.

Unfortunately for testing, most software systems are so complex and can
interoperate with their environment in so many different ways, that there is a
huge, often infinite, set of possible testing situations. To demonstrate the correct
work of the system by trying all possible situations in such a case is obviously
impossible. The only way to actually rigorous and convincing arguments in favor
of correct or incorrect work of the system is to consider the structure of the sys-
tem implementation and specifications and to look for some natural equivalence
on the set of all possible situations induced by this structure. The main thesis
of partition testing, also used by UniTesK technology, is that there are often a
finite number of equivalence classes of all situations, which possess the following
property: if the system behaves in correspondence with its specifications in one
situation of such a class, then it behaves so in every situation of the same class,
and, conversely, if it behaves improperly in one situation of a class, then it does
the same way in every situation of the same class. Obviously, if this statement
holds, we can test the behavior of the target system only in a finite number of
situations representing all the equivalence classes.

The percent of situations (from some set of testing situations) that are tested
during some test is called test coverage. The corresponding set of testing situa-
tions is called coverage model or test coverage criterion. The partition described
in the previous paragraph can be used to define coverage model. For practical
reasons we cannot restrict our consideration by only one coverage model. In an
industrial project other coverage models are often considered as a base measure
of the effectiveness of a test. So, to be useful in the industry a test development
method should be able to provide tests based on different test coverage crite-
ria for target component’s domain. UniTesK technology does so. The criterion
chosen as a test coverage criterion for a test we call the target criterion of this
test.

Since we want to be able to test the component with different target criteria,
we need to generate a kind of universal oracle from its specifications. Such an
oracle should be able to check the correctness of the component’s behavior for
an arbitrary input (see [3–5] for more details on automatic generation of such
kind of oracles). It is different from commonly implied by the term “oracle”
input/outcome oracle, which can be used only for the prescribed input.

Let us have a more detailed look at possible mechanism of testing that is
intended to achieve some coverage criterion. In most cases the only interesting
part of the system’s behavior is its interactions with its environment, when an
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environment acts on it in some way and the system reacts in some way. Other
aspects, as the internal state of the system, are considered only in so far as they
have an influence on possible system’s reactions. So, from this point of view the
system can be adequately modeled by some automaton having some states and
transitions. Each transition is caused by some external action, or input, and,
along with moving the automaton into other state, produces some reaction, or
output.

The target coverage criterion defines some equivalence relation on the tran-
sitions of the modeling automaton of the system under test. We often can trans-
form this automaton into an other one in the following way: a state of the
resulting automaton corresponds to some set of states of the initial one, a tran-
sition of the resulting automaton corresponds to a set of equivalent transitions
of the initial one, one for each state corresponding to the starting state of the
transition in the resulting automaton, and each equivalence class of initial tran-
sitions has at least one corresponding resulting transition in some resulting state
(the particular case of such transformation, factorization technique, is discussed
in [6]). If we can construct a traversal of the resulting automaton (a path that
contains each transition at least once) and we can find the corresponding path
on the initial automaton and execute the corresponding sequence of calls, we
shall achieve the target criterion. Obviously, we cover all the transitions of the
resulting automaton; hence, on the initial one we cover at least one transition of
every equivalence class as we need.

So, we see that the general purpose testing mechanism can be based on traver-
sal of finite automata. This is one of the main points of UniTesK technology.

Let us now look at the details of UniTesK test suite architecture.

3 Details of UniTesK Test Suite Architecture

The core of UniTesK test suite is the traversal mechanism for finite automata.
To provide additional flexibility, it is divided into two parts: a test engine compo-
nent encapsulating a traversal algorithm of finite automata of some wide class,
and a test sequence iterator component, which contains all the details of the
particular automaton. Test engine and test sequence iterator interact via well-
defined interface consisting of three following operations defined in test sequence
iterator.

– State getState(). This operation returns the identifier of the current state
of the automaton. State identifiers can be stored by test engine to facilitate
a traversal, but the only thing it can do with them is comparison, which
shows whether two identifiers designate one state of the automaton under
traversal or two different states.

– Input next(). This operation seeks for the next input symbol in the current
state, which has not been applied yet during this traversal. If there exists
some, it returns anyone of such symbols, else it returns null. The objects
of Input type are identifiers of input symbols. As state identifiers, they also
may be stored by test engine and can be compared with each other.
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– void call(Input param). This operation applies the input symbol iden-
tified by the param object in the current state. It actually performs the
corresponding transition in the automaton under traversal.

Notice, that the interface specified requires that the traversal algorithm im-
plemented by test engine component is able to work on base of only data pro-
vided by these operations. This means, in particular, that test engine has no
full description of the automaton under traversal. It can use only the structure
of already traversed part of it. We call algorithms of automata traversal that
require only this information undemanding.

Why the use of undemanding automata traversal algorithms is justified? It
may seem that more traditional automata testing based on full description of
the state-transition graph is more appropriate. But, notice, that undemanding
traversal algorithm requires only the information on applicable input symbols in
each state, and traditional approach needs also to know the end of each transition
(for nondeterministic automata — all possible ends). Our experience shows that
the first way to describe an automaton is much simpler and more scalable on the
size of the automaton under test. To obtain the information on all the possible
ends of each transition we need to examine deeply the specifications. So, along
with additional data, full description of an automaton requires much more human
work, because such an analysis can hardly be automated in usual case. But, if we
already have the specifications, why don’t describe only applicable input and let
oracles generated from these specifications check the correctness automatically,
instead of hard manual work?

UniTesK technology is intended to use implicit specifications that describe
only properties of admissible input. So, the specifications contain enough infor-
mation to generate inputs only for very simple software components. In general
case, it takes much less effort to specify necessary input by hand than to de-
rive it from such specifications (see below the discussion of the structure of test
sequence iterator component).

The main idea of UniTesK testing technique is separating test sequence gen-
eration from the behavior verification. Test engine and test sequence iterator are
responsible for test sequence generation and require only a part of description
of an automaton under test — the set of states and applicable input symbols
for each state. Oracles of target components are called during the work of test
sequence iterator’s call() method and, in turn, call the corresponding target
methods and perform the verification of their behavior against the specifications.

Fig. 1 shows the basic architecture of UniTesK test suite. We do not con-
sider here auxiliary components responsible for trace gathering and run-time
test support, because they have no UniTesK specifics.

Let us say some words on the origin of the components presented. Test engine
component is a predefined part of a test suite. There are several test engine
components intended to traverse different classes of finite automata. The test
developer does not need to write such a component himself, instead it should
use one of the existing ones. Oracles are supposed to be generated automatically
from specifications, which in turn are always developed by hand.
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Automata based test sequence generation

Test Engine Implements an undemanding al-
gorithm of automata traversal

?
Test Sequence Iterator

Retrieves current state, iterates
input symbols in current state
and applies them

?
Oracle

Performs call of target compo-
nent and checks its results against
specifications

?
Target Component

Fig. 1. Basic architecture of UniTesK test suite

Now we consider test sequence iterator component structure in more details
paying more attention to the mechanism of iteration of applicable input symbols.

Test sequence iterator should provide all possible input symbols for each state
of the automaton under traversal. Remember, that we construct this automaton
from the behavior of the system under test and target coverage criterion. Input
symbol of the automaton under traversal corresponds to some class of possible
inputs for the system under test.

An arbitrary coverage criterion can be described by a number of predicates
depending on the target operation identifier, a list of its input parameters, and
system’s state. Each of these predicates determines one coverage task. The set of
predicates, describing the criterion based on the structure of implementation or
specification could be extracted from them, but it is not an easy task in general
case. To facilitate this work, UniTesK technology requires specification designer
to emphasize the basic functionality partition of the specified operation domain
by means of special constructs, branch operators. The elements of this basic par-
tition correspond to subdomains where the specified operation has substantially
different functionality.

But how can we use the predicates describing coverage criterion? In most
simple cases we can consider and solve the corresponding boolean equations to
produce automatically the set of test cases that ensures the test coverage needed.
We have seen that it is impossible in general and even for common software
components used in the industry, because, for example, the equations obtained
can be unsolvable by an algorithm. In spite of the fact that all the data in real
computers are from some finite sets, such equations are practically unsolvable
due to enormous amount of time required for that.
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Thus, the general case solution should allow the test designer to facilitate
test case generation with some handmade components of test system, which are
called iterators in UniTesK. But the predicates defined above do remain useful.
They can be used to filter the test cases provided by iterators, and, so, iterators
need not to be very precise. An iterator used for some component under test may
provide a wide range of possible inputs, including at least one representative of
each coverage class. In UniTesK test case filters generated from the predicates
describing the target coverage criterion are called coverage trackers.

Iteration of applicable input symbols

Test Sequence Iterator

Iterators
Iterates some set of input sym-
bols, which should contain repre-
sentatives from all target coverage
classes6

Target Coverage Tracker
Performs filtering of input sym-
bols produced by iterators and
stores information on already ap-
plied ones to optimize the test

?

State Converter
Constructs and returns the iden-
tifier of current state on the base
of the state of the oracle

Caller
Performs the call of the oracle of
the target method corresponding
to the identifier of the input sym-
bol parameter

?
Oracle

Fig. 2. Typical structure of a test sequence iterator component

Such coverage tracker is used as a part of test sequence iterator component.
It determines the coverage task corresponding to a call of the target operation
generated by an iterator and checks whether this task has been achieved before
during the test. If not, this call is considered as the next unapplied input symbol,
and the tracker marks the corresponding coverage task as covered (because the
test engine actually performs this call later), else the coverage tracker pushes the
iterator for the next call. When all the coverage tasks are achieved, the coverage
tracker reports that there are no unapplied input symbols and the test can be
finished.

Other functionality of test system iterator is represented by methods
getState() and call(). As our experience shows, in some cases both of them
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can be generated automatically from the specification of the target component.
When we consider the coverage criteria based only on coverages of component’s
operations domains, the method call() can be generated in general case. For
most testing tasks it is enough, but sometimes, when we need to cover some
specific sequences of target operation invocations, we should write part of this
method by hand. For these reasons the possibility to do so exists in the UniTesK
technology.

Fig. 2 shows the structure of mechanism iterating applicable input symbols
used in UniTesK.

So, as we see, test sequence iterator has a complex structure, a bulk of which
is usually generated automatically — target coverage trackers and caller im-
plementing call() method. Sometimes a caller needs some manual code and
sometimes state converter component and iterators can also be generated. To
provide a comprehensible description of all the parts of test sequence iterator
UniTesK method proposes a form of test scenario, which can be written by
hand entirely or generated and then tuned up as needed. Test scenario serves
as a source for test sequence iterator generation. For more detailed description
of the structure and possible syntax of test scenarios see [7, 10]. Our experience
shows that the ratio of generated code size to manual code size in test sequence
iterator component is usually more than 4:1.

One more important point of UniTesK test suite architecture is the use of
adapter pattern (see [9] on detailed description of this pattern) to bind specifi-
cation and implementation of the target component. For historical reasons we
call adapters, which have specification interface and implement it on the base of
the implementation under test, mediators.

To be able to produce reusable and repeatable tests is crucial for industrial
test development technology. UniTesK supports reusability of tests and specifi-
cations by using more abstract specifications, which can be applicable to several
versions of the target component. To perform a test in such a situation, we should
have something to bind the immutable specification with changing implementa-
tion. One of the most simple and at the same time flexible solutions is to use
mediator component having the interface of specification and implementing it
with the help of implementation. Such an approach allows us to change the level
of abstraction of specifications and tests developed with the help of UniTesK
technology in almost arbitrary way.

Along with implementation of the specification interface, mediator is respon-
sible for synchronization of model state defined in specifications with the state
of the implementation, which can have entirely different form. This is important
to support open state testing, which assumes that on each step (between two
calls of target methods) we can determine exactly what the current state of the
components implementation is.

Fig. 3 demonstrates the complete set of the main components of UniTesK test
suite architecture. Test sequence iterator component details are not presented,
look at Figure 2 for them. Auxiliary components of test suite responsible for
tracing and run-time test support are not showed too.
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Automata based test sequence generation

Test Engine Implements an undemanding al-
gorithm of automata traversal

?
Test Sequence Iterator

Retrieves current state, iterates
input symbols in current state
and applies them

?
Oracle

Performs call of model operations
and checks its results for consis-
tency with specifications

?
Mediator

Transforms calls of model inter-
face into calls to implementation
and synchronizes the model state
with the implementation one

?
Target Component

Fig. 3. Complete architecture of UniTesK test suite

Mediator components are usually written by hand. This fact increases the
total size of manual work, but in return we have the possibility to develop really
reusable specifications and tests, sometimes comprising the complete and ready-
to-use suite for regression testing.

4 Comparison with Existing Approaches

The need of well-scalable systematic approach to industrial test development
is generally recognized. The discussion of JUnit [11] testing framework in Java
world shows that once more. It also demonstrates that the mere set of base
classes and interfaces of the test suite components and a reasonable guide on
creating tests on the base of this framework can significantly improve unit testing
procedures commonly used in the industry.

UniTesK approach makes several more steps. Like JUnit, it gives test de-
velopers a flexible architecture of test suite. But in addition it determines a
minimum data set required to generate all of the test suite components auto-
matically. After that it proposes a simple representation of these data and gives
tools for its automatic transformation into a ready-to-use test suite.

UniTesK test suite architecture also have many similarities with other model
based testing approaches emerged during last decade, like the one used in
CADP [12–14] tool or the one proposed in AGEDIS [15] project and based
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on GOTCHA-TCBeans [16, 17] tool. These approaches also propose a flexible
architecture of test suite supporting reuse of behavior models. Both of them use
FSM based mechanism of test generation. GOTCHA tool, similar to UniTesK
approach, supports coverage driven test generation. AGEDIS test architecture
also proposes the components similar to UniTesK mediators.

The main differences between UniTesK and CADP/GOTCHA approaches
are the following.

First, these approaches use some universal modeling language. CADP is on
LOTOS and some specific notation for FSM description, and GOTCHA proposes
specific GOTCHA Definition Language for description of automata models along
with test cases and coverage tasks. UniTesK supposes to use uniformly defined
extensions of well-known programming languages, like Java, C/C++, and so on.
The uniformity of these extensions is guaranteed by the coincidence of extension
constructs sets. We should add special constructs to express pre- and postcondi-
tions of operations, data type invariants, and several constructs making possible
implicit FSM description (specifying only the state data structure and possible
input symbols for each state) in the form of test scenarios.

Second, both CADP and AGEDIS methods suppose that the single automata
model expresses both the constraints on the target system behavior and is used
for test case generation. This is not convenient in general case, so we often need to
use different models of the target system depending on the level of test coverage
we want to achieve.

UniTesK proposes strict distinction between the model of behavior used to
check its correctness and the testing model used for test generation. We need
only one behavior model, which is represented in our case in the form of pre-
and postconditions of operations and data type invariants. One can also notice
that UniTesK behavior model can be implicit, while CADP or GOTCHA always
requires an executable one.

A testing model encoded in test sequence iterator component is always FSM.
We can use different testing models depending on the goals of testing. But in
UniTesK approach it is much more convenient, because a testing model should
not include information on correct or incorrect behavior, like in other FSM based
testing techniques. So, the description of such a model is more compact and easier
to use and maintain.

The only approach we know that uses two different models for behavior
correctness checking and for test design is used in Rational Test RealTime [18]
tool for functional testing. But this tool lacks any support for automated test
generation based on FSM models.

Although most elements of UniTesK test suite architecture can be found in
other approaches, none of them combines all the UniTesK features and provides
the similar level of flexibility and automation support.
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5 Conclusion

As we see from the previous sections the test suite architecture proposed pos-
sesses such features as full support for conformance testing, test coverage moni-
toring and dynamic test optimization according to the target coverage criterion,
support for user-developed test scenarios, flexibility, reusability of the most part
of the components, high level of automation combined with the possibility to
tune up the test suite in many ways, and, last but not least, rigorous theoretical
base.

This set of features along with our experience in industrial testing makes
sound our hope that UniTesK test development technology based on the archi-
tecture presented can bring many benefits in industrial software testing.

We can also notice that this architecture is developed in conjunction with
tools for an automatic generation of all the components that are marked above
as able to be generated. So, from its origin, the architecture is intended for indus-
trial use and has been already demonstrated its capabilities in several industrial
testing projects.

Just now we have tools supporting UniTesK test development for Java and
C (lite version); we also developed the similar tool for testing models developed
in VDM++ [19]. This tool is implemented as an add-in for VDM Toolbox. The
list of research and industrial project performed with the help of these tools and
more information on UniTesK technology can be found on [1].
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