

0361-7688/03/2905- $25.00 © 2003

åÄIä “Nauka

/Interperiodica”0245

Programming and Computer Software, Vol. 29, No. 5, 2003, pp. 245–258. Translated from Programmirovanie, Vol. 29, No. 5, 2003.
Original Russian Text Copyright © 2003 by Bourdonov, Kossatchev, Kuliamin.

1. INTRODUCTION

The graph traversal problem, i.e., the construction
of a covering path passing through all graph edges, is
well known. The special case of this problem is the Chi-
nese postman problem [1–3], where the covering path
must have a minimal length or minimal weight for a
graph with given edge weights. In the case of a directed
graph, the problem is more complicated, since the path
must pass each directed edge (arc) only in its direction.

In the majority of studies, the graph is assumed to be
a priori known in an explicit form [4, 5]. The case
where, before starting the traversal, nothing is known
about the graph and the information is obtained in the
course of the traversal is much more complicated [6–8].
This is the well-known problem of traversing a maze by
a man (or device) in the case where the plan of the maze
is unknown. The maze passages and junctions corre-
spond to the graph edges and vertices, respectively.
From a junction, we can see passages that form this
junction but do not know where any passage leads to
until we pass it and reach another junction. To solve our
problem, we, first, are provided with a certain internal
memory (e.g., a notepad), where we can write down
information obtained in the course of the maze tra-
versal, and, second, may mark up passages and junc-
tions passed. A directed graph corresponds to a maze in
which each passage has doors at both ends: the input
door can be opened only from the outside (from a junc-
tion), and the output door can be opened only from the
passage, which permits moving along each passage
only in one direction.

An algorithm that works on such an a priori
unknown graph is further referred to as an irredundant
algorithm. These algorithms are also referred to as on-
line algorithms. The particular kind of such an algo-
rithm, corresponding to the case of the internal memory
limited to a finite number of states, is a robot (finite
automaton) on a graph, which is a kind of Turing

machine [7, 10–16]. Instead of the tape, we have the
graph; a cell of the tape corresponds to a graph vertex;
and the tape motions to the left or to the right corre-
spond to traversing one of the arcs originating from the
current vertex. (To ensure the finiteness of the robot
automaton, the outdegree of the graph vertices is to be
bounded from above. This restriction can be removed if
each arc is made to correspond to a cell, and the cells cor-
responding to the arcs with a common beginning point
are combined in a loop.)

The problem of traversing directed graphs is cur-
rently very topical in connection with the problem of
testing finite automata (more precisely, objects consid-
ered as finite automata). The latter problem is discussed
in many publications (see, e.g., extensive surveys in the
works [17, 18]). An automaton is determined by a set of
its states and transitions. The transition is a quadruple
(

v

,

x

,

y

,

v

'), where

v

 is a pre-state,

x

 is a stimulus,

y

 is a
reaction, and

v

' is a post-state. Usually, an automaton is
given by a graph of its state transitions, with the vertices
and arcs of the graph being the states and transitions,
respectively. An automaton (state transition graph) is
fully specified if, in each state

v

, every stimulus

x

 is
admissible, i.e., there exists at least one transition of the
form (

v

,

x

,

y

,

v

'). Otherwise, the automaton is partially
specified. An automaton (state transition graph) is said
to be deterministic if a pre-state and a stimulus uniquely
determine the reaction and the post-state. In this paper,
we confine our consideration only to deterministic par-
tially specified automata. The nondeterministic case
will be considered in a future paper.

If the state transition graph is known, then whether
it satisfies certain requirements is of interest. In this
case, the problems are solved analytically, and no test-
ing is needed. The testing is required when the state
transition graph is not known. Considering the automa-
ton as a black box and feeding stimuli to its input, we
obtain information about the resulting transition, i.e.,

Irredundant Algorithms for Traversing Directed Graphs:
The Deterministic Case

I. B. Bourdonov, A. S. Kossatchev, and V. V. Kuliamin

Institute for System Programming, Russian Academy of Sciences,
Bol’shaya Kommunisticheskaya ul. 25, Moscow, 109004 Russia

e-mail: igor@ispras.ru, kos@ispras.ru, kuliamin@ispras.ru

Received May 5, 2003

Abstract

—Problems of testing program systems modeled by deterministic finite automata are considered. The
necessary (and, sometimes, sufficient) component of such testing is a traversal of the graph of the automaton state
transitions. The main attention is given to the so-called irredundant traversal algorithms (algorithms for traversing
unknown graphs, or on-line algorithms), which do not require an a priori knowledge of the total graph structure.

246

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 29

No. 5

2003

BOURDONOV

et al

.

generally, about the automaton reaction and post-state.
The goal of the testing is to check whether the automa-
ton satisfies certain a priori given specification require-
ments. This is a

conformance testing

in a general sense

.

In the general case, the specification does not mean to
check all transitions of the automaton. If, for example,
we want to know whether the number of the automaton
states is not less than a given number, then the testing is
terminated as soon as we make sure of this (the remain-
ing unchecked transitions are of no interest). However,
such a case is sort of an exception rather than a rule.
Usually, the complete automaton functionality is of
interest, and we need to test all automaton transitions.
The testing of this kind is based on the following
assumptions.

State change.

 An automaton state changes only in
response to a test action (a stimulus on the automaton
input). On the one hand, this implies that the automaton
is subject to only test actions, and nothing interferes
with testing. (To be more precise, external influences
do not change the automaton functionality. Information
about testing in the presence of disturbances can be
found in the works [19, 20] on the “gray-box” and
“semicontrollable” testing.) On the other hand, this
means that the test cannot change the automaton state
other than by inputting a stimulus to the automaton. If
the set of states were known (i.e., only transitions are
unknown) and the states could arbitrarily be changed
by means of a direct record or special (nontested) oper-
ation, the problem of searching all automaton transi-
tions would be trivial. An a priori knowledge of the set
of the implementation states is a strong requirement.
Usually, the information about it is obtained step by
step in the course of the testing; i.e., we learn about a
state only when the automaton turns into this state.

Admissibility of stimuli.

 At every moment, we can
learn what stimuli are admissible. Clearly, without this
assumption, no testing is possible. Note that, in many
studies (e.g., [17]), this assumption is replaced by the
assumption that the automaton is fully specified, i.e., all
stimuli from the automaton alphabet of stimuli are
admissible in all states. It is worth noting that, in prac-
tice, we are concerned only about the stimuli that are
used in the testing, i.e., those determined in the model.
The fact that any other stimuli are admissible does not
affect the testing. This actually means that, for a given
implementation

R

 and model

M

, a subautomaton

R

(

M

)

⊆

R

 is tested. The latter is determined by the tran-
sitions due to the model stimuli and the states reachable
from the initial state by means of the above transitions.

Observability of reactions.

 The reaction of the
automaton to a stimulus is to be observable. In fact,
when testing an automaton, we check just this reaction.
Otherwise, the automaton would perform some transi-
tions and we would not be able to learn whether they
are correct. On the other hand, we can judge whether
the transitions are correct by the post-states, under the
condition that the latter are observable.

A separate question is that of the

observability of
the automaton states.

 If, at any time, we can learn the
automaton state by reading it or by means of the special
operation

status message

 (assuming that this operation
does not change the state) [17], then such a testing is
called an open-state testing. Otherwise, we speak of a
hidden-state testing.

The special case of the conformance testing (in the
narrow sense) is the case where the specification is a
model automaton explicitly given by its state transition
graph and it is required to check whether the automaton
being tested is equivalent to the model one [17]. Two
states (of one automaton or two different automata) are
equivalent if any sequence of stimuli admissible start-
ing from one state is admissible starting from the other
state and results in the same sequence of reactions in
both cases. Two automata are equivalent if, for each
state of one automaton, there exists an equivalent state
of the other. A model automaton describes, thus, a class
of implementation automata that are equivalent to it.

If a model automaton is available, the open-state
testing reduces to traversing the model graph [17] in the
course of which each model transition is followed by
feeding the same stimulus to the input of the implemen-
tation automaton and checking whether the reaction
and post-state of the implementation automaton are the
same as in the case of the model transition. Note that, in
such a statement of the problem, the irredundancy of
the traversal algorithm is not required since the model
graph is known. If the information about implementa-
tion states is not available (a hidden-state testing), one
needs to introduce special restrictions on the imple-
mentation and model and take advantage of more com-
plicated checking sequence methods [17]. In this case,
the traversal of the model graph is not sufficient (but,
clearly, necessary) for solving the problem, and the
irredundancy of the traversal algorithm is not required.

Unfortunately, in practice, the specifications do not
explicitly describe the model automaton, so that we
arrive at the problem of finding its explicit form. More-
over, the implementation is to be equivalent to a certain
subautomaton of the model automaton, which is a pri-
ori unknown, rather than to the complete model autom-
aton.

The case of implicit specifications given in the form
of preconditions and postconditions is most often met
in practice. A precondition—a predicate over a pre-
state and stimulus—determines the admissibility of
stimuli in the states, and a postcondition—a predicate
over a pre-state, stimulus, reaction, and post-state—
determines possible transitions. The finding of an
explicit automaton form from such specifications
requires solving a system of general-form equations,
which, generally, has no satisfactory solution. How-
ever, this is not the only difficulty.

The specification is assumed to describe

possible

rather than obligatory automaton transitions. If a spec-
ification admits several transitions from a given pre-

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 29

No. 5

2003

IRREDUNDANT ALGORITHMS 247

state in response to a given stimulus, this does not nec-
essarily imply indeterminism of the implementation. It
is assumed that the implementation has at least one (not
necessarily all) such a transition; the deterministic
implementation must have exactly one transition. Actu-
ally, this implies that a model automaton is associated
with a family of classes of equivalent implementation
automata rather than with one class. An implementa-
tion automaton, or, more precisely (as noted above), its
subautomaton

R

(

M

)

⊆

R

 determined by the model stim-
uli, is equivalent to a certain subautomaton

M

(

R

) of the
specification automaton

M

. In each state of the subau-
tomaton

M

(

R

), all stimuli admissible in this state of

M

are admissible; however, not all transitions from this
state by a given stimulus available in

M

 are available in

M

(

R

). (In this case,

R

 and

M

(

R

) are said to be

quasi-
equivalent

, and

R

 is said to be a

reduction

 of

M

 [18].)
Clearly, in this case, the finding of an explicit form of
the specification automaton

M

 may be not necessary,
since we need only its subautomaton

M

(

R

), the num-
bers of states and transitions in which may be consider-
ably less than those in

M

. In addition, the subautomaton

M

(

R

) itself is a priori unknown, since it is determined
not only by

M

 but also by

R

.
It should be noted also that a nondeterministic spec-

ification automaton

M

 can be used for testing determin-
istic implementation automata

R

 [21]. In this case, the
explicit subautomaton

M

(

R

) is also deterministic. This
fact is important, because the testing of deterministic
automata is considerably simpler than that of nondeter-
ministic ones.

Thus, the need in an irredundant algorithm for tra-
versing the state graphs appears to be quite natural. The
open-state testing is, in fact, reduced to such an algo-
rithm; in the case of the hidden-state testing, such an
algorithm is necessary (but not sufficient).

The paper is organized as follows. In Section 2, for-
mal definitions related to the graphs and traversal algo-
rithms are introduced. In Section 3, the problems of
existence of a covering path through the graph and its
length are discussed. Irredundant traversal algorithms
are suggested in Section 4. The applications of these
algorithms to the testing problems are discussed in Sec-
tion 5.

2. GRAPHS AND ALGORITHMS
FOR TRAVERSING THEM

A directed graph (further, simply

graph

)

G

 is an
object described by three following sets: a set of verti-
ces

VG

, a set of stimuli

XG

, and a set of arcs

EG

⊆

VG

×

XG

×

VG

.
A stimulus

x

 is

admissible

 at a vertex

a

 if there exists
an arc (

a

,

x

,

b

) in the graph. For an arc (

a

,

x

,

b

), the ver-
tices

a

 and

b

 are referred to as the beginning and the
endpoint of the arc, respectively, and the stimulus

x

 is
called an arc

coloring

. If the arc stimulus is not impor-
tant, we write simply (

a

,

b

) instead of (

a

,

x

, b).

Remark. When testing, a graph is considered to be
a graph of automaton state transitions. However, when
studying traversal algorithms, we do not color graph
arcs by reactions, because, when passing an arc, it suf-
fice for the algorithm to be able to determine the end-
point (post-state) of the arc that begins at a given vertex
(pre-state) and is colored by the given stimulus. In the
case of the open-state testing, the post-state is deter-
mined directly. In the case of the hidden-state testing,
the post-state can sometimes be determined by the reac-
tion. In both cases, a method for determining the post-
states is considered to be external with respect to the
traversal algorithm itself. Reactions in the course of the
testing are discussed in more detail in Section 5.

A graph is said to be finite if the sets of its vertices
and arcs are finite. The numbers of vertices and arcs of
a finite graph are denoted by n and k, respectively.

A graph is said to be deterministic if the endpoint of
an arc is uniquely determined by its beginning point
and by the stimulus admissible at this point; i.e., for
arcs (a, x, b) and (a', x', b'), it follows from a = a' and
x = x' that b = b'. In this paper, we consider only deter-
ministic finite graphs.

Arcs (a, b) and (a', sb') are said to be adjacent if the
endpoint of the first arc coincides with the beginning of
the second arc, b = a'. A path P of length n in the graph
G is a sequence of n adjacent arcs; i.e., for i = 1, …,
n − 1, the arcs P[i] and P[i + 1] are adjacent. The begin-
ning point a of the first arc of a path is called the begin-
ning of the path; the endpoint of the last arc of the path
is called its end; and the path itself, an [a, b]-path. A
path consisting of an empty sequence of arcs has zero
length; the beginning and the end of such a path coin-
cide. A path is referred to as a covering path if it con-
tains all arcs of the graph.

A graph traversal algorithm is an algorithm that
constructs a path on the graph. Formally, such an algo-
rithm can be defined as a special-purpose abstract-state
machine (the Gurevich machine, ASM [22]), in which
external operations are partially specified by the graph
on which the algorithm operates and by the current ver-
tex. For our purposes, it is sufficient to know that the
algorithm has two special-purpose external operations:
status(), which returns the identifier of the current ver-
tex, and call(x), which implements the transition from
the current vertex a along the arc with the stimulus x.
For a deterministic graph, such an arc (a, x, b) is unique
(a unique vertex b). The precondition of the operation
call(x) is the admissibility of the stimulus x at the cur-
rent vertex a. The path constructed by the algorithm is
a sequence of arcs obtained by means of successive
calls of the operation call. It should be noted that any
external operation (to say nothing of an internal one)
does not change the graph. The only operation that can
change the current vertex is the operation call.

An irredundant algorithm is a graph traversal algo-
rithm that takes into account only the traversed part of
the graph and the admissibility of stimuli at the current

248

PROGRAMMING AND COMPUTER SOFTWARE Vol. 29 No. 5 2003

BOURDONOV et al.

vertex. The algorithm determines whether a stimulus is
admissible by means of a special-purpose external
operation next(), which returns a stimulus selected in
unspecified way among the stimuli that are admissible
at the current vertex and have not been selected yet
(iterating, thus, stimuli at the vertex). If all stimuli
admissible at the current vertex have already been used,
the operation next() returns the empty symbol ε.

A free algorithm is an irredundant algorithm that
learns whether a stimulus that has not been tested yet at
the current vertex a is admissible when passing an arc
colored by this stimulus rather than in advance. In other
words, the free algorithm uses the combined external
operation nextcall(): x = next(); if x ≠ ε then call(x);
return x else return ε end when traversing first time any
arc with the beginning at the current vertex that has not
been traversed yet. This operation chooses in an
unspecified way a stimulus x that has not been tested
yet at the current vertex a and makes the algorithm pass
along the arc (a, x, b). If all stimuli have already been
tested at the current vertex, the empty symbol ε is
returned. For the secondary passage along the arc (a, x,
b), the operation call(x) continues to be used at the
moment when a becomes the current vertex.

Any algorithm is designed for solving one or
another problem; the problem considered in this work
is that of the covering path construction. Of interest are
algorithms that stop after a finite number of steps.
When the algorithm stops, it can provide us with the
information about whether the traversal has been com-
pleted, i.e., whether the constructed path is the covering
path. It is possible that the path constructed is the tra-
versal, but the algorithm “does not know” about this.
The opposite situation is the case where the traversal
has not been completed and the algorithm “knows” that
there does not exist a covering path at all in this graph.
The information of this kind reported by the algorithm
when it stops is referred to as a verdict of the algorithm.
The verdict is said to be authentic if the information
contained in it is true.

The algorithm operation depends, generally, on the
external operations; for irredundant algorithms, this is
operation next, which is not uniquely determined. An
algorithm is said to perform a guaranteed traversal of a
given graph with a given initial vertex if it traverses the
graph (constructs a covering path) for any admissible
results of all external operations (for irredundant algo-
rithms, independent of the stimulus iteration at the ver-
tices (next)).

3. GRAPH TRAVERSAL

3.1. Strongly Connected Graphs

A vertex b is reachable from a vertex a if there exists
an [a, b]-path. A graph is strongly connected if any its
vertex is reachable from any vertex. A simple path is a
path that does not contain more than one occurrence of
any vertex.

Theorem 3.1. (1) For any strongly connected graph
and any pair of its vertices a and b, there always exists
a covering [a, b]-path of length O(nk).

(2) For any n and k, there exists a strongly connected
graph with n vertices and k' ≥ k arcs such that any cov-
ering path of the graph has length Ω(nk').

Proof. (1) Let us introduce an arbitrary linear order
on the graph arcs, such that the first arc begins at the
vertex a and the last arc ends at the vertex b. For two
successive arcs (v i,) and (v i + 1,) in a strongly
connected graph, there always exists a path from the end

 of the ith arc to the beginning v i + 1 of the (i + 1)th arc.
Removing all loops from this path, we obtain a simple
path Pi from to v i + 1. The desired covering path is
the concatenation of arcs and simple paths: (v 1,) ∧
P1 ∧ … ∧ (v i,) ∧ Pi ∧ … ∧ Pk – 1 ∧ (v k,), where
v 1 = a and v k = b. Since the simple path length in the
graph does not exceed n – 1, the length of the covering
path is not greater than k + (n – 1)(k – 1) = n(k – 1) + 1,
i.e., O(nk).

(2) An example of the graph in question is depicted
in Fig. 1, where p = k'/n is the outdegree of each vertex.
A covering path of this graph can be represented as a
concatenation of paths P1, …, Pt, where all paths P1, …,
Pt – 1 have the same last arc (v i, v 1) (i > 1) and all paths
P2, …, Pt – 1 begin at v 1. Each path in the sequence
P2, …, Pt – 1 is terminated by the arc (v i, v 1) and has
length i; the number of these paths is equal to p – 1.
Therefore, assuming that the path P1 is terminated by
the arc (v j, v 1) and its length is not less than 1 and not
taking into account the last path Pt, we obtain the lower
bound of the length of the covering path,

(p – 1) + 2(p – 1) + … + n(p – 1) – j + 1

= (p – 1)n(n – 1)/2 – j + 1

≥ (p – 1)n(n – 1)/2 – n + 1 = L.

v i' v i 1+'

v i'

v i'

v 1'

v i' v k'

V1

V3

Vn V2

p – 1

p – 1p – 1

p – 1

Fig. 1.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 29 No. 5 2003

IRREDUNDANT ALGORITHMS 249

It suffice to prove that L ≥ Cpn2 = Ck'n for some con-
stant C > 0 and any n > 0. It is easy to show that the
above relation holds, for example, for C = 1/3 and p ≥ 3,
and, thus, we obtain k' = max{k, 3n}.

Note that, in the graph depicted in Fig 1, the outde-
grees of all vertices are identical. This has been done in
order that not to impose lower bounds on the number of
stimuli in addition to the obligatory bound k'/n. Without
this requirement, the example can be simplified by replac-
ing all arcs leading from v i to v1 by the arcs leading from
vn to v1, which requires k' – n + 1 stimuli (Fig. 2).

3.2. Reachable Graphs

Since mutual reachability of vertices is an equiva-
lence relation, the graph G is partitioned, generally, into
strongly connected components, on the set of which the
reachability is a partial order relation. A component is
a subgraph of the graph G the set of vertices of which
is an equivalence class and the arcs are all arcs of the
graph G the beginning and end points of which belong
to this class. The component containing the vertex a is
denoted by K(a). A connecting arc is an arc the begin-
ning and endpoint of which belong to different compo-
nents of the graph G.

A factor graph of a graph G with respect to the
mutual reachability relation is a graph F(G) the vertices
of which are the strongly connected components of G
and the arc (A, x, B), where A ≠ B are components of the
graph G, exists if and only if there exists a connecting
arc (a, x, b) in G, where a ∈ VA and b ∈ VB. The verti-
ces and arcs of the factor graph are referred to as factor
vertices and factor arcs, respectively.

A reachable graph is a graph all vertices of which
are reachable from a given initial vertex. In what fol-
lows, we consider only reachable graphs, since, clearly,
only these graphs can be traversed. A graph is said to be
acyclic if it does not contain cycles. A source is a vertex
the has no incoming arcs, and a sink is a vertex without
outgoing arcs.

Theorem 3.2. A graph G with an initial vertex v 0 is
reachable if and only if its factor graph F(G) is an acy-
clic graph with one source K(v 0).

Proof. Necessity. It is evident that the factor graph
F(G) is acyclic. In the reachable graph G, there exists a
[v 0, v]-path for any vertex v. Keeping only the connect-
ing arcs in the graph and replacing them by the corre-
sponding factor arcs, we obtain a [K(v 0), K(v)]-path on
the factor graph; i.e., F(G) is also an reachable graph
and, hence, has only one source K(v 0).

Sufficiency. In the acyclic factor graph F(G) with
one source K(v 0), for each vertex, there exists a [K(v 0),
K(v)]-path, which is a sequence of the factor arcs cor-
responding to the connecting arcs (ai, bi), i = 1, …, t.
Introducing the notation b0 = v 0 and at + 1 = v, we find
that, for i = 0, …, t, the vertices bi and ai + 1 belong to
one component, and, hence, there exists a
[bi, ai + 1]-path Pi in the graph G. The [v 0, v]-path in the

graph G is constructed as the concatenation P0 ∧ (a1, b1)
∧ … ∧ Pt – 1 ∧ (at, bt) ∧ Pt.

3.3. Graphs of the First Kind

A graph of the first kind is a graph with a linear
reachability order of the components in which each (but
the last) component has only one outgoing connecting
arc that leads to the next component. By default, the ini-
tial vertex v 0 belongs to the first component. In other
words, the factor graph of such a graph consists of one
acyclic path with the beginning at the component of the
initial vertex K(v 0) (Fig. 3).

A traversed graph of a path is a subgraph consisting
of arcs belonging to the path and incidental vertices.

Theorem 3.3. (1) A traversed graph of a path is a
graph of the first kind the first and last components of
which contain the beginning and the end of the path,
respectively.

(2) A covering [a, b]-path exists only for graphs of
the first kind in which the vertices a and b belong to the
first and last components, respectively; the minimum
path length is O(nk).

(3) For any n and k, there exists a graph of the first
kind with n vertices and k' ≥ k arcs for which any cov-
ering path has length Ω(nk').

(4) A covering path from any initial vertex v 0 exists
only if the graph is strongly connected.

Proof. Assertion (1) immediately follows from the
fact that all vertices of a traversed graph are linearly
ordered by the path in the order they have been reached.
(2) It follows from assertion (1) that a covering path
exists only for graphs of the first kind. Conversely,
introducing the notation b0 = a and at = b for a graph of
the first kind with the connecting arcs (ai, bi), i = 1, …,
t – 1, we construct a covering [bi – 1, ai]-path Pi of the ith

V2

Vn V1k – n + 1

Fig. 2.

1 2 ... t – 1 t

Fig. 3.

250

PROGRAMMING AND COMPUTER SOFTWARE Vol. 29 No. 5 2003

BOURDONOV et al.

component for i = 1, …, t and a covering [a, b]-path of the
graph as the concatenation P1 ∧ (a1, b1) ∧ … ∧ Pt – 1 ∧
(at, bt) ∧ Pt. The length of this covering path does not
exceed t – 1 + Σ{O(niki) |i = 1, …, t}, where ni and ki are
the numbers of vertices and arcs of the ith component,
respectively, i.e., has the order O(nk). Assertion (3) has
been proved in Theorem 3.1 for strongly connected
graphs (t = 1). Assertion (4) immediately follows from
assertion (2).

3.4. Coverage of Reachable Graphs

A set of paths beginning at the initial vertex v 0 is
called a coverage of the graph if each vertex and each
arc of the graph belong to at least one of the paths. The
coverage length is the sum of lengths of its paths.

Theorem 3.4. A coverage exists if and only if the
graph is reachable; its minimum length is equal to
O(nk); for any n and k, there exists a reachability graph
with n vertices and k' ≥ k arcs any coverage of which
has length Ω(nk').

Proof. The assertion of the theorem on the existence
of a coverage immediately follows from the definition
of a reachable graph G with an initial vertex v 0. Indeed,
for each vertex a, there exists a [v 0, a]-path P(a), and,
for any arc (a, b), there is a path P(a) ∧ (a, b) passing
through this arc.

To estimate the coverage length, we consider the
factor graph F(G), which, by Theorem 3.2, is an acyclic
graph with one source K(v 0). Let t be the number of the
components and k0 be the number of the connecting
arcs in the graph G. Let us separate an output directed
spanning tree (maximal tree) in F(G) the root of which
is the source component K(v 0). It has t – 1 arcs, and the
remaining k0 – (t – 1) connecting arcs are chords. To
construct a coverage of F(G), it is sufficient to take (a)
all factor paths that lead from the root K(v 0) to the leaf
components that do not have outgoing chords and,
additionally, (b) all factor paths that lead from the root
to the initial components of all chords and pass then
along these chords. The number of the factor paths of
the form (a) does not exceed t, and the number of the
factor paths of the form (b) is not greater than k0 – (t – 1).
Thus, the total number of all factor paths is not greater
than k0 + 1.

Any above factor path F may be viewed as an alter-
nating sequence of the components and connecting
arcs. Let us replace each occurrence of a component K
in the factor path F by the path P(K, F) in the graph G
that begins at the endpoint of the connecting arc of the
factor path F that enters K (for the first component

K(v 0), at the vertex v 0) and ends at the beginning point
of the connecting arc of the factor path F that goes out
of K (for the last component, at any of its vertices). As
a result, we obtain a path P(F) on the graph G in the
form of an alternating concatenation of the paths
P(K, F) and the connecting arcs. For each component
K, the path P(K, F) is taken as follows. In one of the
paths of P(F) that passes through K, it is a covering path
of the component K; in all other paths, it is either a sim-
ple path (if K is not the last component in F) or a path
of zero length (if K is the last component in F). Clearly,
this set of paths P(F) is a coverage of the graph G. If
each path in P(F) contained only simple paths in the
components rather than traversals, this path itself would
be a simple path, or a simple path extended by one arc
(a chord of the factor graph); hence, its length would
not exceed n, and the sum of lengths would not exceed
(k0 + 1)n. Since, for each ith component, only one path
P(F) contains the covering path of this component, the
coverage length does not exceed (k0 + 1)n + Σ{O(niki)|i =
1, …, t}, where ni and ki are the numbers of vertices and
arcs in the ith component, respectively, i.e., has the
order O(nk).

The estimate Ω(nk') is obtained for the graphs
depicted in Figs. 1 and 2 with the initial vertex v 1.

4. TRAVERSAL ALGORITHMS

4.1. Graphs of the Second Kind and Free Algorithms

For a path in a graph, a vertex is said to be com-
pletely traversed if all outgoing arcs of this vertex are
traversed in this path.

A graph of the second kind is a graph of the first kind
in which all components (but, perhaps, the last one) con-
sist of one vertex and do not contain arcs other than one
connecting arc leading to the next component (Fig. 4).

Theorem 4.1. (1) A traversal of a graph by a free
algorithm starting from an initial vertex v 0 belonging to
the first component and ending at a vertex belonging to
the last component is guaranteed only if the graph is a
graph of the second kind.

(2) There exists a free algorithm A1 that stops on any
graph after passing a path of length O(nk) and traverses
with guarantee any graph of the second kind with the
initial vertex v 0 belonging to the first component.

Proof. (1) By Theorem 3.3, only a graph of the first
kind can be traversed. If the graph is not a graph of the
second kind, then there exists a component (not the last
one) of the graph that either consists of more than one
vertex or its only vertex has some outgoing arcs in addi-
tion to the connecting arcs. In the former case, by virtue
of the strong connectivity of the component, there is a
path from the beginning of the connecting arc to some
other vertex of the component; hence, in addition to the
connecting arc (a, x, b), there is another arc (a, x', b')
going from the beginning of the connecting arc. In the
latter case, the existence of two such arcs is explicitly
postulated. When the algorithm deals with the vertex a

... tt – 11 2

Fig. 4.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 29 No. 5 2003

IRREDUNDANT ALGORITHMS 251

for the first time, none of the stimuli at this vertex are
tested; therefore, the free algorithm must invoke the
operation nextcall. Since the algorithm must guarantee
the traversal of the graph independent of the result of
this operation, we may assume that the operation
chooses the stimulus x. Then, we pass the connecting
arc (a, x, b) and occur in the next component. Since, we
cannot return to the vertex a any more, the arc (a, x', b')
remains untraversed.

(2) In the course of the algorithm A1 operation, we
will store the description of the traversed graph by reg-
istering all traversed arcs. In addition, we will mark the
vertices at which the operation nextcall returns the
empty symbol ε; clearly, such vertices have been com-
pletely traversed. Note that there may be a situation
when a vertex has been completely traversed, but we do
not know about this yet, and the vertex is not marked.

The algorithm step consists of the following actions:
(1) Execute the operation nextcall registering the

arcs traversed (the arc stimulus is returned by the oper-
ation nextcall, and its endpoint is determined by means
of the operation status) until nextcall returns the empty
symbol ε. In the latter case, the current vertex is
marked.

(2) If all traversed vertices are marked (i.e., are com-
pletely traversed), the algorithm stops.

(3) Otherwise, a simple path in the traversed graph
from the current vertex to some unmarked vertex is
sought. If such a path exists, it is traversed by means of
the operation call, and the algorithm step terminates.

(4) If such a path does not exist, the algorithm stops.
Algorithm termination. Each above item requires

a finite time since the graph has a finite number of arcs
(item 1 requires a finite time) and a finite number of
simple paths (item 3 requires a finite time). For one step
consisting of items 1–3, the algorithm passes at least
one untraversed arc and/or marks at least one unmarked
vertex. Then, it follows that the algorithm A1 stops in a
finite time on any graph.

Path length. The traversed path can be represented
as a concatenation of the first occurrences of the arcs
(item 1) and the simple paths connecting them (item 3).
Hence, the path length has the order of O(nk).

Guaranteed traversal. In a graph of the second
kind, each (not the last) component consists of one ver-
tex that has one outgoing arc leading to the next com-
ponent. Therefore, an algorithm that starts its operation
at the vertex belonging to the first component occurs
after the execution of item 1 in the last component and,
hence, stops at a certain vertex b of this component. Let
there be an arc (c, d) that has not been traversed by the
moment when the algorithm stops. Then, its beginning
c is not marked. Clearly, it belongs to the last compo-
nent, and there exists a path from b to c. Removing all
loops from the path, we obtain a simple path from the
current vertex b to the unmarked vertex c. If this simple
path contains only traversed arcs, then the algorithm

would not stop (item 3). If this simple path contains
untraversed arcs, then we consider the initial fragment
of this simple path until the first untraversed arc (c', d').
The vertex c' is not marked, and there is a simple path
in the traversed graph from the current vertex to this
vertex. Hence, the algorithm would not stop (item 3).
Thus, we arrive at the contradiction, which implies that,
by the moment when the algorithm stops, all arcs are
traversed and the traversal of the graph has been com-
pleted.

Different algorithms based on the strategy
employed in the algorithm A1 differ by the ways they
select an unmarked vertex v ' at the current marked ver-
tex v in item 3 [8]. The algorithms based on the tra-
versal of the graph spanning tree select either the fur-
thest vertex from the root (depth-first search) or the
closest to the root vertex (breadth-first search) v ' reachable
from v. A “greedy” algorithm selects the vertex v ' that is
nearest to v in terms of the length of the [v, v ']-path.

Now, we study the question of what authentic ver-
dicts can be returned by a free traversal algorithm.

The free algorithm can learn that all arcs originating
from the current vertex have already been traversed
only having received the empty stimulus in response to
the operation nextcall. Like in the algorithm A1, such a
vertex is called marked. If there are no unmarked verti-
ces when the algorithm stops, the algorithm can return
the authentic verdict “the traversal has been completed”
(recall that we consider only reachable graphs). This
may happen only if the graph is strongly connected,
since the passage of a connecting arc makes returning
to its initial vertex v 0 impossible, and, hence, this ver-
tex remains unmarked. Therefore, if all traversed arcs
are marked, even a stronger verdict—“the guaranteed
traversal has been completed”—is authentic. The algo-
rithm A1 can return this verdict when it occurs in
item 2. If there are unmarked vertices at the stopping
moment (item 4 of the algorithm A1), one of the two
following authentic verdicts can be returned: (i) “it is
unknown whether a traversal has been completed; how-
ever, if it has, the traversal is guaranteed” if the tra-
versed graph is of the second kind or (2) “it is unknown
whether a traversal has been completed; however, if it
has, the traversal is not guaranteed” otherwise.

4.2. Irredundant Algorithms

Irredundant algorithms differ from the free ones in
that they can obtain advanced information about the
stimuli of the untraversed arcs before they are traversed
by means of the operation next. This allows them to
identify the marked vertices and completely traversed
vertices and, hence, to return stronger verdicts.

Theorem 4.2. There exists an irredundant algorithm
A2 that stops on any graph after passing a path of length
O(nk) and returns one of the three following authentic
verdicts: (1) “a guaranteed traversal has been com-
pleted” for all graphs of the second kind, or (2) “a tra-

252

PROGRAMMING AND COMPUTER SOFTWARE Vol. 29 No. 5 2003

BOURDONOV et al.

versal has been completed but is not guaranteed” for
certain results of external operations for graphs of the
first (but not second) kind, or (3) “a traversal has not
been completed” for certain results of external opera-
tions for graphs of the first (but not second) kind and for
all graphs of the first kind.

Proof. The algorithm A2 is a modification of the
algorithm A1; it constructs the same path. Instead of the
operation nextcall, the “advanced” operation next is
used. The result of this operation is stored in the current
vertex (when a vertex is visited for the first time, next is
performed twice at a run if, of course, the vertex has at
least one outgoing vertex). Then, when traversing an
unmarked arc, we apply the operation call(x), where x
is the stimulus produced at the current vertex by the
next-to-last operation next. Owing to this, the algorithm
marks the vertex immediately before it leaves it by the
last untraversed arc. Thus, the notions of the marked
vertex and completely traversed vertex become identi-
cal. When stopping in item 2 (all vertices are marked),
the algorithm analyzes the traversed graph. If it is a
graph of the second kind, the algorithm returns the ver-
dict “a guaranteed traversal has been completed”; oth-
erwise, “a traversal has been completed, but it is not
guaranteed.” In item 4, the algorithm returns the verdict
“a traversal has not been completed.”

4.3. Predicate of Connecting Arcs

The algorithm can traverse with guarantee graphs of
the first kind if it receives somehow information about
the connecting arcs. Let a predicate π(x) of stimulus,
which is further referred to as the predicate of the con-
necting arcs, be given at each vertex of the graph. The
predicate is said to be authentic if it is true on the stim-
uli of the connecting arcs and is not true on others. The
algorithm with the external operations next, call, and π
is, of course, not irredundant; however, in a sense, it is
a “minimally redundant” algorithm.

Theorem 4.3. There exists an algorithm A3 with a
predicate of the connecting arcs π that stops on any
graph after passing a path of length O(nk) and traverses
with guarantee graphs of the second kind and those of
the first kind with authentic predicates.

Proof. The algorithm A3 differs from A2 in that it
passes first only nonconnecting arcs that go out of the
traversed vertices and stores stimuli of the connecting
arcs in their beginning vertices. When there are no
untraversed nonconnecting arcs any more, the algo-
rithm looks for a simple path in the traversed graph to
the beginning of one of the stored untraversed connect-
ing arcs. If such a path is found, the algorithm passes it
and the connecting arc and starts to look for untraversed
nonconnecting arcs again. Whether an arc is connecting
is determined by the predicate π. Proofs of the asser-
tions about the algorithm termination and traversal
length are trivial.

It is easy to show that, when the algorithm A3 stops,
it can analyze the traversed graph and returns one of the
following authentic verdicts:

1. “A traversal has been completed” if the traversed
vertices do not have untraversed outgoing arcs.

(a) + “The traversal is guaranteed, and the predicate
is authentic” if the predicate in the traversed graph of
the first kind is true on, and only on, the connecting
arcs.

(b) + “The traversal is guaranteed, but the predicate
is not authentic” if the predicate in the traversed graph
of the first kind is true on some arcs of the last compo-
nent and/or false on some connecting arcs the begin-
nings of which have no other outgoing arcs.

(c) + “The traversal is not guaranteed, and the pred-
icate is not authentic” in all other cases.

2. “A traversal has not been completed” if at least
one traversed vertex has untraversed outgoing arcs.

(a) + “Either the predicate is authentic and, then, the
original graph is a graph of the first kind or the predi-
cate is not authentic and, then, it is not known whether
the original graph is a graph of the first kind” if the
predicate is true on, and only on, the connecting and
untraversed arcs.

(b) + “The predicate is not authentic, and it is not
known whether the original graph is a graph of the first
kind” in all other cases.

The predicate π is formally defined on the triples
(graph, vertex, and stimulus). A predicate is said to be
irredundant if it does not depend on the graph. More
precisely, the dependence of a predicate on the graph is
reduced to the dependence on the set of stimuli admis-
sible at the vertex; i.e., formally, the predicate is defined
on the triples (vertex, set of admissible stimuli at the
vertex, and stimulus). Considering the irredundant
predicate as an internal (rather than external) operation
of the algorithm and modifying accordingly the algo-
rithm A3, we obtain the irredundant algorithm (denote
it as A4) that traverses with guarantee all graphs of the
second kind and those of the first kind for which the
predicate is authentic.

On the other hand, an irredundant predicate, clearly,
cannot be authentic on all graphs with a given initial
vertex v 0 isomorphic up to the coloring of arcs by stim-
uli if they are not graphs of the second kind.

Theorem 4.4. There does not exist an irredundant
algorithm that traverses a graph G of the first (but not
the second) kind and all graphs that differ from G only
by the coloring of arcs by stimuli.

The proof is similar to that of assertion (1) of Theo-
rem 4.1. If G is not a graph of the second kind, it con-
tains a connecting arc (a, x, b) the beginning of which
has another outgoing arc (a, x', b'). Consider the
moment when the algorithm implements the first pas-
sage of the second arc (invokes the operation call(x') at
the vertex a). If the algorithm traverses the graph, then,
at this moment, the first arc has not been traversed yet.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 29 No. 5 2003

IRREDUNDANT ALGORITHMS 253

If the algorithm is irredundant, then the information
about the graph available at the moment is the same
both for the graph G and the graph G' that differs from
G by the permutation of the coloring stimuli for these
two arcs, (a, x', b) and (a, x, b'). Therefore, in the graph
G', the algorithm will go along the arc (a, x', b) when
the arc (a, x, b') has not been traversed yet. However, in
this graph, the connecting arc is the arc (a, x', b); i.e.,
the traversal will not be completed.

4.4. A Free Algorithm Optimal
in Terms of Time and Memory

Until now, we were interested only in the traversal
length (the number of the operations call) rather than in
the time required for the algorithm operation (the total
number of elementary, both internal and external, oper-
ations) and in the required memory.

Theorem 4.5. There exists a free algorithm A5 that
stops on any graph and traverses with guarantee all
graphs of the second kind with an initial vertex v 0
belonging to the first component. The estimates of the
algorithm operation time and the required memory are,
respectively, O(nk) and O(n(log2n + I + X)) bits, where
I and X are the sizes of the vertex identifier and stimu-
lus, respectively, in bits. The verdicts returned by the
algorithm are authentic.

Proof. The idea of the algorithm is to construct in
the traversed graph a forward path (consists of forward
arcs) and a forest of back trees (consists of back arcs).
According to Theorem 3.3, the traversed graph is a
graph of the first kind, the initial vertex of which
belongs to the first component and the terminal vertex
belongs to the last component. The traversed vertices at
which the operation nextcall invoked by the algorithm
returned the empty symbol ε are marked and, thus,
completely traversed. The algorithm operation repre-
sents a sequence of steps at the beginning of which the
following conditions are fulfilled:

• The forward path is a simple [v 0, v]-path all verti-
ces of which are unmarked.

• All other traversed vertices are marked.
• The current vertex is the endpoint of the forward

path.
• Each back tree is an input directed spanning tree of

a strongly connected component of the traversed graph
with the root belonging to the forward path. This root
will be referred to as the component root (Fig. 5).

Consider one step of the algorithm operation. If the
current vertex (the endpoint of the forward path) has
one untraversed outgoing arc e, we go along it. If we
occur in a new (not traversed earlier) vertex, the for-
ward path is extended by the arc e, and the step is com-
pleted. Otherwise, we move along the back arcs until
the first vertex belonging to the forward path (in the
extreme case, we reach the root of the back tree) and,
then, along the forward arcs until the end of the forward
path, where the step is completed. If the arc e leads to a

vertex below the root of the back tree of the last com-
ponent, the back trees are corrected. The same motion
along the back arcs and, further, along the forward arcs
is performed in the case where the endpoint of the for-
ward path has no untraversed outgoing arcs. In this
case, however, the endpoint of the forward path is
marked, and we stop at the previous vertex on the for-
ward path and shorten the forward path by removing
the last arc. If there is no such a vertex (zero-length for-
ward path), the algorithm stops.

Note that the arcs that, in the course of the algorithm
A5 operation, were considered to be forward arcs at the
beginning of each step, form a forward tree, an output
directed spanning tree of the traversed graph, when the
algorithm stops. In fact, the algorithm traverses this for-
ward tree by using the depth-first search.

To obtain estimates for the algorithm operation
time, let us describe the data structures used by the
algorithm.

• To represent the forest of the back trees, the list
Traversed of all arbitrarily ordered traversed vertices is
used. The description of a vertex in the list Traversed
contains the following data:

• vertex identifier,
• forward reference,
• description of the back arc (the arc of the back tree)

originating from this vertex, which contains
• the arc stimulus and
• the reference to the description of the arc endpoint

in the list Traversed (null reference for the root).
• To represent the forward path, the bi-directional

list Forward of unmarked traversed vertices is used.
The description of a vertex in the list Forward contains
the following data:

• reference to the Traversed-description,
• description of the forward arc (the arc of the for-

ward path) originating from this vertex, which contains
• a forward reference to the description of the arc

endpoint in the list Forward and

untraversed

part of the

graph

Fig. 5.

254

PROGRAMMING AND COMPUTER SOFTWARE Vol. 29 No. 5 2003

BOURDONOV et al.

• the arc stimulus,
• a backward reference in the list Forward,
• the index of the strongly connected component to

which the vertex belongs (for this index, the index of its
root in the list Forward is used).

• Length of the list Forward.
A reference to a vertex in the list and the component

index do not exceed n and, thus, require O(log2n) bits
of memory. Since the number of the descriptions is not
greater than the number of vertices n, the total amount
of memory required is O(n(log2n + I + X)) bits. This is
an exact estimate: when the algorithm stops on a graph
of the second kind, the list Traversed contains n
descriptions, which requires O(n(log2n + I + X)) bits.

Remark. The external operation next, generally,
requires memory for each vertex (the last stimulus (or
its number) produced or the stimulus to be produced).
The additional amount of the required memory is O(nI)
bits.

Now, we describe the algorithm step in more detail.
(1) Execute the operation nextcall.
(2) If nextcall returns a stimulus x ≠ ε, determine the

endpoint b of the arc (a, x, b) by means of the operation
status and find it in the list Traversed.

(3) If it is not found (the vertex b is new), create
descriptions of the vertex b in the lists Traversed and
Forward and extend the forward path by the forward
arc (a, x, b). Since b is the root of the last component
K(b), the index of K(b) is set equal to the length of the
list Forward, i.e., to the index of the Forward-descrip-
tion of the vertex b in this list. The step is completed.

(4) If b is an old vertex, it is required to return to the
vertex a and to correct, if needed, the back trees and the
indices of the components. If b does not belong to the
forward path, move along the back arcs by means of the
operation call until the first vertex c on the forward
path. Compare indices of the components at the vertices
a and c. If they are equal each other, move along the for-
ward arcs until the end of the forward path by means of
the operation call. If they are not equal, then a correc-
tion is needed. While moving, the index of the compo-
nent for each vertex after c, starting from the first root
(inclusively), is set equal to that in c; for the back arc,
the forward arc is taken, except for the endpoint of the
forward path where the arc (a, x, b) becomes the back
arc. Note that, in item 4, the traversed cycle in the graph
consists of the back and forward simple paths and its
length is always not greater than n. The step is com-
pleted.

(5) If nextcall returns the empty symbol ε, it is
required to go to the next-to-last vertex a–1 of the for-
ward path and shorten the path by removing the last arc.
First, it is checked whether the vertex a is the root of the
back tree. If it is, the algorithm stops. In this case, if
a = v 0 is the initial vertex of the graph, the algorithm
returns the verdict “the guaranteed traversal has been
completed.” Otherwise, the lists Traversed and

Forward are analyzed in order to check whether the tra-
versed graph is a graph of the second kind. If it is, the
verdict is “it is unknown whether the traversal has been
completed; however, if it has, the traversal is guaran-
teed”; otherwise, the verdict is “it is unknown whether
the traversal has been completed; however, if it has, the
traversal is not guaranteed.” If a is not the root of the
back tree, then the vertex a–1 is found (by taking advan-
tage of the bi-directionality of the list Forward), the
back arcs are traversed by means of the operation call
until the first vertex c lying on the forward path, and,
further, the forward arcs, until the vertex a–1. The
description of the vertex a is deleted from the list For-
ward (and, thus, a is marked), and the forward path is
shortened. The step is completed. Note that, in item 5,
the traversed path in the graph also consists of the back
and forward simple paths.

It is not difficult to see that, if the algorithm does not
stop at the given step, all necessary conditions required
to begin the next step are fulfilled by the end of the cur-
rent step.

Let ti and calli be the numbers of operations and arc
passages (call and nextcall), respectively, in item i, and let
C be a constant depending on a particular program imple-
mentation. We have t1 ≤ C, call1 ≤ 1, t2 ≤ Cn, call2 = 0,
t3 ≤ C, call3 = 0, t4 ≤ Cn, call4 ≤ n, t5 ≤ Cn, and call5 ≤ n.
At each step, but the last, either (1) items 1, 2, and 3 or
items 1, 2, and 4 are executed and exactly one earlier
untraversed arc is traversed or (2) items 1 and 5 are exe-
cuted and exactly one earlier unmarked vertex is
marked. Clearly, the number of steps of form (1) does
not exceed the number of arcs k, and that of form (2)
does not exceed the number of vertices n. Hence, the
algorithm stops after a finite number of elementary
operations, and the total number of operations does not
exceed max[k(t1 + t2 + max(t3, t4)), n(t1 + t5)] ≤ k(t1 +
t2 + t4) + n(t1 + t5) ≤ k(C + 2Cn) + n(C + Cn), i.e., taking
into account that n ≤ k – 1, is equal to O(nk). The length
of the traversed path does not exceed max[k(call1 +
call2 + max(call2, call4)), n(call1 + call5)] ≤ k(call1 +
call2 + call4) + n(call1 + call5) ≤ k(1 + n) + n(1 + n), i.e.,
taking into account that n ≤ k – 1, is equal to O(nk).

It is evident also that the algorithm traverses with
guarantee any graph of the second kind and returns an
authentic verdict on any graph.

4.5. Modification of the Optimal Algorithm

The algorithm A5 is a modification of the algorithm
suggested in 1971 [11] by one of the authors of this
paper for solving a more complicated problem of tra-
versing strongly connected directed graphs by using a
robot on the graph. Whereas an irredundant algorithm
can be viewed as an ASM on the graph, the robot is a
finite automaton on the graph. The estimate of the tra-
versal length for the robot is O(nk + n2log2n). The sec-
ond addend is explained by the fact that, in contrast to
the algorithm A5, which, using the bi-directionality of

PROGRAMMING AND COMPUTER SOFTWARE Vol. 29 No. 5 2003

IRREDUNDANT ALGORITHMS 255

the list Forward, comes to the next-to-last vertex of the
forward path (step 5) for one passage following a cyclic
path, the robot has to do many passages. Without apply-
ing special optimizing expedients, the estimate for the
robot is given by O(nk + n3). In [11], to traverse the for-
ward tree, the robot uses the breadth-first search, which
reduces the estimate to O(nk + n2log2n). In 1994, Afek
and Gafni [14] suggested a robot that uses the depth-
first search together with a special optimizing tech-
nique, which also results in the estimate O(nk +
n2log2n) for the traversal length. We believe that the
combination of the breadth-first search with this opti-
mizing technique will ensure the estimate O(nk +
n2log2log2n) for the robot. For the sake of comparison,
we note that the well-known Tarry algorithm [9] for tra-
versing undirected graphs is also a free algorithm and
can be implemented as a robot with the traversal length
2k and the operation time of the order of O(k).

The free algorithm A5 is associated with the irredun-
dant algorithm A6 that passes the same path but returns
more accurate authentic verdict. Moreover, this algo-
rithm can be optimized, so that, after passing the last
chord that begins at the end of the forward path, it
returns to the last vertex of the forward path that con-
tains the outgoing arcs that have not been traversed yet
(rather than to the next-to-last vertex of the forward
path). The algorithm A6 can be modified to work with
the predicate of the connecting arcs (a “minimally irre-
dundant” algorithm) or with the irredundant predicate
(irredundant algorithm). In all these modifications, the
upper estimates of the operation time and the traversal
length are the same. However, for certain classes of
graphs, the upper estimate O(nk) of the minimal tra-
versal length can be improved, such that the irredun-
dant algorithm works better than the free one on these
graphs. For example, for a graph depicted in Fig. 6, the
free algorithm A5 has the estimate Ω(n2), whereas the
estimate for the irredundant algorithm A6 is Ω(n).

The algorithms discussed can also be used for cov-
ering any reachable graphs by using repeated runs of
the algorithms and saving the information obtained
during the previous runs. In other words, these algo-
rithms can work with the graphs for which the authentic
operation reset [17] is defined. This operation is used
only when needed (in particular, it is not used on
strongly connected graphs).

For each arc that can be traversed repeatedly (arcs of
the back tree and forward paths), the algorithm A5
keeps a reference to the description of the arc end in the
description of the arc beginning. Therefore, it can work
on arbitrary graphs controlling the determinism in the
course of its operation. For this purpose, after each
operation call, the operation status is invoked, and the
vertex returned by this operation is compared with the
vertex stored. If some indeterminism is detected, the
algorithm stops and returns the corresponding verdict.
Of course, if no signs of indeterminism are found dur-
ing the algorithm operation, this does not necessarily

mean that the graph is deterministic and may simply
mean that we were “lucky” this time.

Another field of application of the algorithm with
the predicate (both redundant and irredundant) of the
connecting arcs is multilevel graphs. A two-level graph
can be defined as a second-level graph the vertices of
which are first-level graphs, with all these graphs being
strongly connected. In stricter terms, a two-level graph
is a graph some arcs of which are marked. Removing
marked arcs, we obtain a set of isolated strongly con-
nected graphs (first-level graphs). By factoring a two-
level graph with respect to the mutual reachability of
vertices through unmarked arcs, we obtain a strongly
connected graph of the second level.

If the predicate is meant to be the predicate of the
marked arcs, the algorithm will traverse the two-level
graph by levels: when the algorithm enters a first-level
graph first time, it, first, completely traverses this graph
by the unmarked arcs; then, goes to the next first-level
graph by the marked arc. When the algorithm enters the
first-level graph next time, it passes only the simple
path until the required marked arc that goes out of this
graph. To obtain the estimate of the traversal length, we
consider the class of two-level graphs in which all first-
level graphs have the same number of vertices n1 and
arcs k1, and the graphs of the second level have n2 ver-
tices (the number of the first-level graphs) and k2 arcs.
The numbers of vertices and arcs in the two-level graph
are given by n = n1n2 and k = k2 + n2k1, respectively. The
traversal length is equal to O(n2k2O(n1) + n2O(n1k1) =
O(n(k1 + k2))), which, as k1 grows, gives a limit gain of
n2 times. An example of a two-level graph is shown in
Fig. 7. The first-level graphs (highlighted by the gray
color) are similar to the graph with the initial vertex v n1
depicted in Fig. 2 and the second-level graph is similar
to the graph shown in Fig. 6. The ith arc of the second
level leads from the vertex v n1 – 1 of the ith first-level
graph to the beginning vertex v n1 of the (i + 1)th first-
level graph (i varies through 0, …, n2 and is shown as
the superscript of the vertices).

Let two arcs originating from the vertices v n1 – 1 of
the first-level graphs be ordered such that the arc

(,) precedes the arc (,) and thev n1 1–
i v n1

i 1+ v n1 1–
i v n1

i

V2

Vn V1

Fig. 6.

256

PROGRAMMING AND COMPUTER SOFTWARE Vol. 29 No. 5 2003

BOURDONOV et al.

arc (,) precedes the arc (,). Then,
the algorithms A5 and A6, which “do not know” about
the two-level structure of the graph, traverse first a
Hamilton circuit (a path that passes through all vertices
of the graph, with each vertex being traversed once), all
arcs of which, except for the first arc (one of the arcs

(,)), become the back arcs. Afterwards, after
passing all chords from the set of k1 – n1 + 1 arcs (high-
lighted by the gray color in the figure), except for the
first and last chords in each set, it will require to
traverse this Hamilton circuit again. The number of
such chords is Ω(n2k1), and the path length is Ω(n);
thus, the covering path length is equal to Ω(nn2k1). On
the other hand, the algorithm that uses marking of the
second-level arcs traverses the first-level graphs in
turns: after traversing the ith graph, it goes along the
marked arc to the next, (i + 1)th graph. Hence, the cov-
ering path length is Ω(n2n1k1) = Ω(nk1), which gives a
gain of n2 times. Thus, if the algorithm “knows” about
the two-level structure of the graph and this “knowl-
edge” is formalized in the form of the authentic predi-
cate of marked arcs, the traversal of the graph is closer
to the optimal one for graphs from this class.

A p-level graph is defined by induction as a two-
level graph the components of which are (p – 1)-level
graphs. The algorithm discussed can be modified for
work with any predetermined number p of graph levels.

5. TESTING BASED ON IRREDUNDANT
TRAVERSAL ALGORITHMS

The suggested irredundant algorithms for traversing
deterministic directed graphs can be used for the open-
state testing. In addition to the algorithm, the test con-
tains the following components:

• An iterator of stimuli (operation next) determined
by the specification precondition, which specifies
admissibility of stimuli x at each state v of the automa-
ton, PRE(v, x) = true.

v n1 1–
n2 v n1

1 v n1 1–
n2 v n1

n2

v n1
1 v 1

1

• A mediator (operations call and status) designed
for supplying stimuli to the tested automaton and
observing reactions and post-states.

• An oracle that checks the transition correctness
and is determined by the specification postcondition,
which specifies admissibility of the reactions y and
post-states v ' upon transition from a pre-state v by a
stimulus x, POST(v, x, y, v ') = true.

We assume that the following admissibility hypoth-
esis for the open-state testing for partially defined
automata holds: for any state reachable from the initial
state in the model, all stimuli admissible in the model
are admissible in the implementation (the converse is
not required).

The hidden-state testing is a much more compli-
cated task. First of all, we face the problem of stimulus
admissibility for partially defined automata. If we do
not know the current state of the automaton being
tested, we do not know what stimuli are admissible. If
no assumptions on the implementation are made, we
may input only those that are admissible in all states. It
is because of this reason that only completely defined
automata are usually considered [17].

The automaton specification may, generally, define
several specified transitions from a given pre-state by a
given stimulus with the same reaction. Such transitions
differ only by their post-states. In other words, the post-
condition equation POST(v, x, y, v ') = true may have
more than one solution in v '. If, for any admissible v, x,
and y, the number of such solutions is not greater than one,
the specification and the corresponding model automaton
are said to be weakly deterministic. This is the case of the
so-called observable indeterminism [23].

It should be noted that the weak determinism does
not reduce the descriptive ability of the specifications
up to the equivalence of the automata being specified.
The point is that the class of equivalent finite automata
corresponds to a regular set of sequences in the alpha-
bet of stimuli and reactions (on the Cartesian product of
their alphabets), which, by the known theorem on

Vn1–1

k1 – n1 + 1

n2 Vn1

n2

V1
n2V2

n2

Vn2

Vn1–1

k1 – n1 + 1

2 Vn1

2

V1
2V2

2

V2

Vn1–1

k1 – n1 + 1

1 Vn1

1

V1
1V2

1

V1

Fig. 7.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 29 No. 5 2003

IRREDUNDANT ALGORITHMS 257

regular sets [24–26], can be generated by a determinis-
tic finite graph. Here, the determinism is understood as
the lack of two identically colored (by a stimulus and
reaction) outgoing arcs of one vertex, which is equiva-
lent to the above-defined weak determinism. Of course,
without the condition of the weak determinacy, writing
of the specifications is simplified, whereas finding of
equivalent weakly deterministic specifications may be
a rather difficult task.

For the hidden-state testing of partially defined
automata with weakly deterministic specifications, we
assume that the following admissibility hypothesis
holds: for a given pre-state, a stimulus admissible in it,
and a given reaction, any stimulus admissible in the
post-state of the specified transition is admissible in the
post-state of the implemented transition. Let x(v)
denote the set of stimuli admissible in the state v. Then,
the above hypothesis means that the inclusion x(v ') ⊆
x(vR) holds, where vR is the post-state of the imple-
mented transition (v, x, y, vR) and v ' is a solution of the
postcondition equation POST(v, x, y, v ') = true. If this
equation has no solutions, then this implies that the
reaction y is not correct. In this case, the testing is ter-
minated.

At first glance, the admissibility hypothesis does not
seem motivated; however, it is quite natural from the
standpoint of practice. It implies that the admissibility
of stimuli at any time is uniquely determined by the his-
tory (by the sequence of stimuli and the corresponding
reactions), which is quite natural from the standpoint of
the user working with a software system modeled by an
automaton. It is assumed, of course, that the errors that
may appear in the implementation can be detected (by
the reactions observed) before they result in the viola-
tion of the admissibility hypothesis.

Let us assume that we are able to determine whether
a reaction is correct and, for a correct reaction, to calcu-
late the corresponding post-state. For example, let the
precondition have the form “ReactionChecking(v, x,
y)&v ' = Poststate(v, x, y)”, where ReactionChecking is
the predicate determining correctness of the reaction
and Poststate is an explicit function calculating the
post-state for a correct reaction. Then, the correspond-
ing test can be organized as follows.

Let the initial state v 0be known. Feeding a stimulus
x0 to it and observing a reaction y0, we check whether
the reaction is correct and, if it is correct, calculate the
post-state v 1. Then, according to the admissibility
hypothesis, the implementation occurs in the post-state
in which all stimuli admissible in v 1 are admissible. At
the next step, we select a stimulus that is admissible in
v 1, and so on. In the course of this testing, we construct
a hypothetical graph and a path in it drawing the arcs
corresponding to the hypothetical automaton transi-
tions. If a reaction is rejected, the test notes an error and
terminates.

It is important to emphasize that, if the implementa-
tion automaton is deterministic, then the hypothetical

graph constructed is also deterministic. This makes it
possible to control the assumption on the determinism
of the implementation graph. The more important con-
sequence of this fact is that, if the traversed path is a
covering path of the constructed graph, this graph may
be considered the state transition graph of the expli-
cated subautomaton M(R) of the model automaton M.
The implementation automaton R (the automaton in
which the “redundant” stimuli, which are admissible in
the implementation but not admissible in the specifica-
tion, are not taken into account) satisfies the specifica-
tion if and only if it is equivalent to the subautomaton
M(R). Then, we can check this equivalence using ordi-
nary methods of the conformance testing by means of
the checking sequences and considering the graph
M(R) as the model graph.

Thus, we see that the irredundant traversal algo-
rithms can be used as based ones at the first stage of the
hidden-state testing, which can be referred to as model
explication phase. Necessary conditions for this are the
determinism of the implementation, the weak deter-
minism of the specifications, and the possibility to
determine whether the reactions are correct and to cal-
culate the post-states for the correct reactions; in addi-
tion, the admissibility hypothesis is required. The sec-
ond testing phase is the ordinary automaton conform-
ance testing with the use of the explicit graph for the
model.

A nondeterministic (in particular, weakly determin-
istic) specification may, of course, correspond to a non-
deterministic implementation. In this case, the specifi-
cation is often factored by introducing transition equiv-
alence [27, 28]. The objective of such a factorization is
to reduce the required number of test actions through
the reduction of the number of states and transitions in
the factored model automaton. Such a testing requires
checking of only factor transitions (for this purpose,
any transition from the corresponding equivalence
class may be chosen). Clearly, if the given equivalence
“is broken into fragments,” then the testing of the factor
model with the “fragmented” equivalence will result in
a better test coverage. There exist methods for the
“equivalence splitting”; in certain cases, they result in
deterministic factor models, still, keeping them “small”
compared to the original model [7]. Thus, the suggested
irredundant algorithms for traversing deterministic
graphs can be used in factored testing of nondetermin-
istic implementations.

6. CONCLUSIONS

The irredundant graph traversal algorithms dis-
cussed in this paper and tests based on them have been
developing and testing since 1995 by the group Red-
Verst [29] in the course of the execution of several
large-scale projects on testing various software [27,
28]. The latter testing was based on functional specifi-
cations obtained on the design or reengineering stages.

258

PROGRAMMING AND COMPUTER SOFTWARE Vol. 29 No. 5 2003

BOURDONOV et al.

As a rule, in testing, not only the complexity of the
traversal algorithm in terms of the time and memory
required is critical. A more important characteristic is
the number of test actions, i.e., the constructed covering
path length. The free algorithm A5 and its irredundant
modification A6 guarantee only that the order of the
covering path length is not greater than nk in the worst
case. At the same time, for many graphs with the mini-
mal covering path length less than nk, they construct as
lengthy covering paths as in the worst case. The studies
of irredundant algorithms that tend to construct cover-
ing paths of minimal length are extensively developing
(e.g., [8]).

In the next paper, we will consider algorithms for
traversing nondeterministic graphs, which can be used
for testing nondeterministic automata. We plan to con-
sider two following cases: (1) the open-state testing and
(2) the first stage (the explication of the model automa-
ton) of the hidden-state testing for weakly deterministic
specifications.

REFERENCES

1. Edmonds, J. and Johnson, E.L., Matching, Euler Tours
and the Chinese Postman Math. Programming, 1973,
vol. 5, pp. 88–124.

2. Lenstra, J.K. and Rinnooy Kan, A.H.G., On General
Routing Problems, Networks, 1976, vol. 6, pp. 273–280.

3. Thimbleby, H., The Directed Chinese Postman Problem,
Techn. Report, School of Computing Sci., Middlesex
Univ., London, 2000.

4. Hoffman, D. and Strooper, P., ClassBench: A Frame-
work for Automated Class Testing, Software Mainte-
nance: Practice Experience, 1997, vol. 27, no. 5,
pp. 573–579.

5. Murray, L., Carrington, D., MacColl, I., McDonald, J.,
and Strooper, P., Formal Derivation of Finite State
Machines for Class Testing, Lecture Notes Comput. Sci.,
(Proc. of the 11th Int. Conf. of Z Users), Berlin: Springer,
1998, vol. 1493, pp. 42–59.

6. Deng, X. and Papadimitriou, C.H., Exploring an
Unknown Graph, J. Graph Theory, 1999, vol. 32, no. 3,
pp. 265–297.

7. Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V.,
Use of Finite Automata for Program Testing, Program-
mirovanie, 2000, no. 2, pp. 12–28.

8. Albers, S. and Henzinger, M.R., Exploring Unknown
Environments, SIAM J. Comput., 2000, vol. 29, no. 4,
pp. 1164–1188.

9. Ore, O., Theory of Graphs, Providence: AMS, 1962.
Translated under the title Teoriya grafov, Moscow:
Nauka, 1980.

10. Rabin, M.O., Maze Threading Automata. Lecture pre-
sented at MIT and UC Berkley, 1967.

11. Bourdonov, I.B., Study of the Automaton Behavior on
Graphs, MS Dissertation, Moscow: Moscow State Uni-
versity, 1971.

12. Blum, M. and Sakoda, W.J., On the Capability of Finite
Automata in 2 and 3 Dimensional Space, Proc. of the

Eighteenth Annu. Symp. on Foundations of Comput. Sci.,
1977, pp. 147–161.

13. Even, S., Graph Algorithms, Comput. Sci., 1979.
14. Afek, Y. and Gafni, E., Distributed Algorithms for Undi-

rectional Networks, SIAM J. Comput., 1994, vol. 23,
no. 6, pp. 1152–1178.

15. Even, S., Litman, A., and Winkler, P., Computing with
Snakes in Directed Networks of Automata, J. Algo-
rithms, 1997, vol. 24, pp. 158–170.

16. Bhatt, S., Even, S., Greenberg, D., and Tayar, R., Tra-
versing Directed Eulerian Mazes, Proc. of WG’2000,
Brandes, U. and Wagner, D., Eds., Lecture Notes in
Computer Science, vol. 1928, pp. 35–46, Berlin:
Springer, 2000.

17. Lee, D. and Yannakakis, M., Principles and Methods of
Testing Finite State Machines: A Survey, Proceedings of
the IEEE, vol. 84, no. 8, pp. 1090–1123, Berlin: IEEE
Computer Society, 1996.

18. von Bochmann, G. and Petrenko, A., Protocol Testing:
Review of Methods and Relevance for Software Testing,
Proc. of ISSTA, 1994, pp. 109–124.

19. Petrenko, A., Yevtushenko, N., and Dssouli, R., Grey-
Box FSM-Based Testing Strategies, Department Publi-
cation 911, Univ. de Montreal, 1994.

20. Fecko, M.A., Uyar, M.U., Sethi, A.S., and Amer, P.D.,
Conformance Testing in Systems with Semicontrollable
Interfaces, Ann. Telecommunications, 2000, vol. 55,
no. 1, pp. 70–83.

21. Petrenko, A., Yevtushenko, N., and von Bochmann, G.,
Testing Deterministic Implementations from Nondeter-
ministic FSM Specifications, Selected Proc. of the IFIP
TC6 9th Int. Workshop on Testing of Communicating
Systems, 1996.

22. Gurevich, Yu., Sequential Abstract State Machines Cap-
ture Sequential Algorithms, ACM Trans. Computational
Logic, 2000, vol. 1, no. 1, pp. 77–111.

23. Tabourier, M., Cavalli, A., and Ionescu, M., A GSM-
MAP Protocol Experiment Using Passive Testing, Proc.
of the World Congr. on Formal Methods in Development
of Computing Systems (FM’99), Toulouse, 1999.

24. Rabin, M. and Scott, D., Finite Automata and Their
Decision Problem, IBM J. Research Development, 1959,
vol. 3, pp. 114–125.

25. Ginsburg, S., The Mathematical Theory of Context-Free
Languages, New York: McGraw-Hill, 1966. Translated
under the title Matematicheskaya teoriya kontekstno-
svobodnykh yazykov, Moscow: Mir, 1970, pp. 71–78.

26. Varsanof’ev, D.V. and Dymchenko, A.G., Osnovy
kompilyatsii (Fundamentals of Compilation), 1991,
http://www.code-net.ru/progr/compil/cmp/intro.php.

27. Bourdonov, I, Kossatchev, A., Kuliamin, V., and
Petrenko, A., UniTesK Test Suite Architecture, Proc. of
FME 2002, Lecture Notes in Computer Science,
vol. 2391, pp. 77–88, Berlin: Springer, 2002.

28. Bourdonov, I., Kossatchev, A., Petrenko, A., and Gatter, D.,
KVEST: Automated Generation of Test Suites from For-
mal Specifications, Proc. of FM’99, Lecture Notes in
Computer Science, vol. 1708, pp. 608–621, Berlin:
Springer, 1999.

29. http://www.ispras.ru/RedVerst.

