

0361-7688/03/2906- $25.00 © 2003

åÄIä “Nauka

/Interperiodica”0310

Programming and Computer Software, Vol. 29, No. 6, 2003, pp. 310–322. Translated from Programmirovanie, Vol. 29, No. 6, 2003.
Original Russian Text Copyright © 2003 by Kuliamin, Petrenko, Kossatchev, Burdonov.

1. INTRODUCTION

At the present time, computer software production
is so huge and the software is so complicated that the
need for commercial testing technologies has become
evident. The development of technologies that could
ensure high-quality and methodical testing of target
software as well as automated test suite development
has become urgent. The conventional test development
by hand has become inappropriate for testing large
complex software systems.

Testing automation is usually reduced to the auto-
matic execution of a series of tests and generation a
report. It is more difficult to automate test generation
and analysis of the results; this is because these tasks
require that software specifications be available. How-
ever, the latter are often represented informally or even
exist only in the form of knowledge and expertise of
analysts, designers, and software developers.

In order to involve informal specifications in auto-
mated test suite development, they must be formalized
to make them understandable for computer. In other
words, a

formal specification

 of the target system must
be designed. Then, this specification can be trans-
formed into a program that will be able to check if the
software conforms to the specification.

Although test generation methods based on formal
specifications are actively developed in the academic
community, only a small fraction of these methods can
be used in commercial software production. The main
problem is that commercial software production needs
technologies rather than separate methods; i.e., it needs
a system of methods for performing a set of interrelated
tasks concerning testing; moreover, these methods
must be integrated into a development environment.

In this paper, we describe the UniTesK technology,
which was developed in the ISPRAS on the basis of the
experience obtained in the course of testing several
complex commercial software systems. This technol-
ogy is aimed at enabling commercial software develop-

ers to use cutting-edge methods of software testing. The
main purpose of UniTesK is the development of func-
tional tests based on models of functional requirements
for the target system. Problems of designing tests for
the verification nonfunctional requirements are beyond
the scope of this paper.

The paper is organized as follows. Section 2
describes the basic elements of the UniTesK technol-
ogy; first, basic concepts are outlined, and then some of
them are presented in detail. In Section 3, UniTesK is
compared with some other model-based approaches to
test development. The final section gives examples of
UniTesK applications and outlines directions of the fur-
ther development of this technology.

2. UNITESK TECHNOLOGY

2.1. Basic Principles of UniTesK

We believe that a test development technology for
the verification of general-purpose software can be
widely used in commercial projects only if it has the
following properties. First, all operations defined in the
system must be (if possible) supported by correspond-
ing tools. Second, it must provide a wide variety of fea-
tures so that it can be used for testing various software
in different subject areas. Finally, it is important that
this technology could be integrated with available
development processes; in particular, it must be based
on widely used and simple concepts and notation so
that it does not require long and expensive training of
personnel.

To ensure these properties, the following principles
were used in UniTesK.

• To ensure maximum flexibility, a universal test
architecture was designed, which determines a set of
test components with a distinctly separated functions
and clear interfaces, so that a great variety of test types
for various programs can be implemented in the frame-
work of this architecture.

The UniTesK Approach to Designing Test Suites

V. V. Kuliamin, A. K. Petrenko, A. S. Kossatchev, and I. B. Burdonov

 Institute for System Programming, Russian Academy of Sciences, ul. Bol’shaya Kommunisticheskaya 25,
Moscow, 109004 Russia

E-mail: igor@ispras.ru; kos@ispras.ru; kuliamin@ispras.ru

Received June 9, 2003

Abstract

—Principles of the UniTesK test development technology based on the use of formal models of target
software are presented. This technology was developed by the RedVerst group in the Institute for System Pro-
gramming, Russian Academy of Sciences (ISPRAS) [1], which obtained rich experience in testing and verifi-
cation of complex commercial software.

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 29

No. 6

2003

THE UniTesK APPROACH TO DESIGNING TEST SUITES 311

• In order to enable a significant degree of automa-
tion, the information that must be provided by the test
developer was concentrated in a small number of com-
ponents. All other components of the test are generated
automatically or are used in all tests in an invariable
form. In many cases, all variable components of the
test, except for specifications that determine the soft-
ware correctness criteria, can be generated interactively
based on answers provided by a user to a series of
clearly formulated questions.

• We used the well-known Design by Contract
approach [2–4] as a metamodel for representing formal
specifications. Program contracts consist of precondi-
tions and postconditions of interface operations and of
data type invariants. On the one hand, program con-
tracts are convenient for designers and developers since
they are closely related to the structure of the software;
on the other hand, they stimulate efforts aimed at the
creation of implementation-independent correctness
criteria of the target system. However, the main advan-
tage of program contracts is that they enable automatic
construction of oracles [5–7] (which check if the
behavior of the target system complies with the specifi-
cations) and test coverage criteria, which are close to
requirements coverage criteria.

• It is practically impossible to provide a universal
mechanism for constructing individual test actions
(e.g., calls of functions with various sets of parameters)
such that this mechanism is efficient both in terms of
testing time and coverage. However, it is relatively sim-
ple to construct an iterator that iterates through a large
set of values of a certain type. Tools supporting
UniTesk contain libraries of basic iterators through val-
ues of simple types, which can be immediately used to
generate test actions or can be assembled into more
complex generators. To save testing time, test inputs
(actions) can be filtered to eliminate the actions that do
not enhance the test coverage. Filters are generated
automatically from test coverage criteria (see the item
after the next one).

• To automatically construct sequences of test
inputs, we model the system under test as a finite state
automaton. A test sequence is generated as a sequence
of calls of target operations corresponding to a path in
the graph of transitions of the automaton; for example,
it can be a traversal of all transitions of the automaton.
Since the finite automaton model is used only to gener-
ate a test sequence rather than verify the behavior of the
entire system, which is performed by oracles, the
automaton does not need to be completely defined. It is
sufficient to specify a way for identifying its states and
a method for iterating through inputs depending on the
current state. Automata represented in such an implicit
way can be conveniently represented in the form of test
scenarios. Often, a test scenario can be generated auto-
matically on the basis of a specification of target oper-
ations, a method for iterating through their parameters,
and a testing strategy.

• The testing strategy must determine when the test-
ing can be finished. In UniTesK, we suggest using the
level of test coverage determined in accordance with a
certain coverage criterion. One can automatically con-
struct several test coverage criteria from functional
specifications developed in accordance with the
UniTesK technology. The user can control these criteria
or define other criteria.

• To facilitate the integration with available software
development processes, UniTesK can use extensions of
popular programming languages to describe specifica-
tions and test scenarios. Classical formal specification
languages can be used as well. The representation
based on extensions of popular languages is clearer to
many software developers; it makes it possible to
reduce the training to one week. Immediately after
training, a test developer can use UniTesK in practical
work. In addition, the use of popular language exten-
sions instead of a special language significantly facili-
tates the integration of the test and target systems,
which is required for testing. Currently, the ISPRAS
has developed UniTesK-compliant tools based on
extensions of Java, C, and C#.

• Specifications based on program contracts can be
used in the framework of UniTesK not only as inser-
tions in the source code of the target system. They can
be separated from the source code and used in the
invariable form for testing different implementations of
the same functionality. Thus, they can be considered as
a formalization of functional requirements for the soft-
ware. To define the relationship between the specifica-
tions and a particular implementation, special compo-
nents called

mediators

 are used. Mediators can perform
fairly complicated transformations of interfaces. The
use of mediators opens the following possibilities.

– Specifications can be much more abstract than the
implementation; thus, they can be closer to the natural
representation of functional requirements.

– Specifications remain the same for several ver-
sions of the target software. In order to revise a test
suite so that it can be used for testing a new version in
which only external interfaces have been changed (but
their functionality remained the same), only mediators
should be modified. In many cases, such a modification
can be automated.

– An extensive reuse of specifications and tests
becomes possible, which enhances the efficiency of
effort involved in their development.

When the UniTesK technology is used in a specific
domain, it often occurs that not all test construction
techniques are required and not all components
included in the universal test architecture must be con-
structed. Sometimes, the use of certain techniques is
even impossible or requires too much effort. Then, spe-
cialized variants of the technology and supporting tools
can be used.

For example, when compiler optimization blocks
are tested, the development of a complete specification

312

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 29

No. 6

2003

KULIAMIN

et al

.

for the functionality of such a block is very difficult;
indeed, such a specification should describe the fact
that the optimization of a program was performed. At
the same time, it is relatively simple to compare the per-
formance and identical functionality of special-type
test programs. It is sufficient to execute these programs
on a finite set of input data, which yields a method for
constructing oracles; this method is not as general as
that described above, but sufficient for practical pur-
poses [8].

2.2. Universal Test Suite Architecture

The flexibility of a technology or tool, the possibil-
ity of using them in various situations and contexts is
primarily determined by the architecture underlying
this technology or tool. The test architecture used in
UniTesK was designed on the basis of the experience
obtained by testing complex commercial software. This
architecture is designed for solving two basic prob-
lems.

• The construction of tests cannot be fully automated
because only an expert can formulate the testing strat-
egy and correctness criteria of the target software. Nev-
ertheless, many things can be and should be automated.

• The architecture must combine uniformity with the
capabilities of dealing with software from various sub-
ject areas.

The basic idea of the UniTesK test architecture is
that a set of components is developed that can be used
for testing various types of software following various
test strategies. These components must have clearly
defined responsibilities and interfaces through which
they interact with each other. Information that can be
provided only by the test designer is concentrated in a
small number of components with neatly described
roles. For each of these components, a simple and com-
pact representation is developed that requires minimum
effort from the user.

The UniTesK test architecture [9] is based on the
following division of the test task into subtasks.

1. Verification of the system response to an isolated
input.

2. Generation of an isolated test input.
3. Construction of a sequence of inputs aimed at

achieving a desired coverage.
4. Establishing relationship between the test system

based on an abstract model and the particular imple-
mentation of the target system.

To perform each of these subtasks, an appropriate
support is provided.

In order to verify the software response to an iso-
lated input, test oracles are used. Since the generation
of test inputs is separated from the verification of the
system response, one should know how to evaluate the
behavior of the system in response to an arbitrary input
action. The widely used method of generating oracles

based on the computation of correct results for a fixed
set of inputs is inappropriate for this purpose. We use
general-type oracles based on predicates that depend on
an input action and the system’s response to this action.

Such oracles can be easily constructed from contract
specifications (preconditions and postconditions of
interface operations, and data type invariants that state
data integrity conditions) [6, 7]. Under this approach,
every input action is modeled as a call to an interface
operation with a certain set of parameters, and the sys-
tem response is modeled as the result of this call.
Below, we will consider specific features of modeling
asynchronous responses of the system and the corre-
sponding specification techniques.

Isolated test inputs are constructed by iterating
through operations and through a wide variety of
parameter arrays for every fixed operation; the sets of
parameters are filtered using the coverage criterion that
is chosen as the aim of testing.

A set of isolated test inputs is insufficient for testing
software with complicated behavior that depends on the
preceding interaction of the system with its environ-
ment. In this case, series of test inputs are used, which
are called

test sequences.

 They are constructed so as to
verify the behavior of the system in various situations
determined by a sequence of preceding calls and sys-
tem responses.

To construct test sequences, a finite-state model of
the system is used. Such a model assumes that the
dependence of the system’s behavior on the history of
its interaction with the environment can be reduced to
the dependence on the current internal state of the sys-
tem, which changes in response to call of the system,
under the assumption that the set of attainable states is
finite. Finite-state automata are simple, familiar to
many developers, and can be used for modeling practi-
cally any program. To test concurrent or distributed
systems, the variation of finite-state automata called

input/output automata

 [10] is used. In these automata,
transitions are labeled either by an input or output sym-
bol. The resulting finite-state automaton is represented
by an

test action iterator.

 This component has an inter-
face for obtaining the identifier of the current state,
identifier of the next test input that is admissible in the
current state, and for executing an action determined by
its identifier.

A test sequence is generated dynamically in the
course of testing by constructing an “exhausting” path
trough the automaton transitions. This can be a tra-
versal of all its states, all transitions, all pairs of adja-
cent transitions, and so on. An algorithm for the con-
struction of such a path for a wide class of finite-state
automata is implemented in a separate component
called

test engine.

A convenient (for a developer) description of the
finite-state model used for testing is called

test sce-
nario.

 Test scenario provides the basis for generating
the test action iterator. Scenarios can be constructed by

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 29

No. 6

2003

THE UniTesK APPROACH TO DESIGNING TEST SUITES 313

hand, but in many cases they can be generated from
specifications of operations, test coverage criterion,
iterator through operation parameters, and a method for
obtaining the identifier of the current state. Techniques
for constructing test sequences are considered in Sec-
tion 2.5 in more detail. Test engines of several types are
provided in the form of library classes, and users do not
need to develop them.

In order to use specifications written at a higher
abstraction level than the target system, UniTesK pro-
vides the capability of using

mediators.

 A mediator
determines a relationship between a specification and
an implementation of the corresponding functionality.
Mediator also determines a transformation of model
representations of inputs (calls of model operations)
into the implementation representation and the inverse
transformation of the target system responses into their
model representation (the result returned by the model
operation).

It is convenient to develop mediators in an extension
of the target language, where only the transformations
mentioned above should be described. Additional pro-
cessing of the resulting code is required, since the
mediator performs additional tasks related to specific
features of the implementation environment and tracing
the test progress. The code for performing these tasks is
automatically added to the procedures transforming the
test inputs and responses.

Figure 1 shows the main components of the test
suite architecture used in UniTesK. In addition to these
components, the test system includes some additional
components responsible for tracing the test progress,
synchronization of states between the model and imple-
mentation objects, and so on. These additional compo-

nents are independent of the software under test and of
the test strategy.

2.3. The Technique for Functional Requirements
Description

UniTesk supports an automatic generation of test
oracles from specifications represented in the form of
contracts. With such a description of the target system
functionality, it is modeled as a set of components each
of which has several interface operations with certain
parameters. The environment of the system can invoke
interface operations and obtain the results. These
results depend on the operation called, its parameters,
and the history of the interaction of the system with its
environment. Essential information on the history is
modeled as the

internal state

 of the target system com-
ponents. Thus, the behavior of an operation generally
depends on the internal state and can change it.

Every operation is described by

preconditions

 and

postconditions.

 A precondition determines the condi-
tions under which the operation can be called. It is the
environment (clients) of the component that is respon-
sible for the precondition to be satisfied. One can say
that the precondition describes the domain of the oper-
ation in the space of all states and set of its parameters.
A postcondition imposes restrictions on the possible
combinations of the starting state, parameters, opera-
tion results, and the resulting state; these restrictions
must be satisfied if the precondition held when the
operation was invoked.

An operation can have parameters of certain types.
These types, types of fields of the model state, and the
types of model components are called

interface types.

For all interface types, the structure of data is described,

Test sequence generation

Oracle

Mediator

Target component

Test engine

Test action iterator

Implements the general automata
traversal algorithm

Retrieves the current state, iterates
through admissible input actions, and
applies them

Calls a model operation and verifies
if its results conform to the
specifications

Transforms the call of a model operation
to an action applied to the implementation,
and, conversely, transforms the response
of the implementation to the model value
of the result

Fig. 1.

 Architecture of a UniTesK test suite.

314

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 29

No. 6

2003

KULIAMIN

et al

.

which can have integrity constraints represented in the
form of

invariants.

 The data structure of the model
components determines all possible model states of the
system.

Program contracts were chosen as the basic specifi-
cation technique since they are simple enough and can
be applied to software in various subject areas. Contract
specifications can be made abstract or very detailed as
required. An ordinary software developer can be easily
taught to understand and use contract specifications.

In addition, the structure of program contracts is
close to the architecture of the target system, which
makes them clear for developers. The internal content
of the contracts is close to the requirements for the sys-
tem. Thus, the representation of the requirements in the
form of contracts is easy. On the other hand, the result
is considerably different from the description of the
algorithms used in the implementation, which prevents
similar errors in the specification and implementation
simultaneously.

Contract specifications are not the sole kind of spec-
ifications supported by UniTesK. One can also use exe-
cutable specifications, which explicitly describe how
the result of an operation is calculated and how the
internal state of the component is changed. However, in
this case, equivalence criteria between model and
implementation results must be specified, since these
results are not necessarily identical.

Often, axiomatic specifications cannot be directly
transformed into oracles, which verify if the system
behaves correctly in response to an arbitrary input
action. Therefore, axiomatic specifications are used only
as additional verification criteria for certain test
sequences; they are also used to construct test scenarios.

2.4. Specification-based Test Coverage Criteria

The structure of contracts is used in UniTesK to
determine test coverage criteria, which are necessary to
evaluate the quality of testing from the viewpoint of the
requirements for the target software. To enable the sys-
tem to automatically generate such criteria, additional
constraints are imposed on the structure of postcondi-
tions. More precisely, additional operators for deter-
mining

functionality branches

 are introduced. These
statements are placed by the user in a postcondition. A
functionality branch corresponds to a subdomain in the
domain of the operation such that the operation’s
behavior is “the same” in this subdomain. For definite-
ness, we may assume that the behavior is “the same” if
the constraints imposed on the operation’s results and
on the change of state are described by the same expres-
sion in the postcondition for all points of the subdo-
main.

The graph of a postcondition’s calculation control
flow must have exactly one statement at every path
from the entry to any exit, which determines the func-
tionality branch. The part of the path to such a state-

ment must not contain branch points that depend on the
results of the operation. Then, every admissible call of
the operation can be unambiguously associated with a
functionality branch; therefore, the quality of testing
the operation can be measured as the percentage of
functionality branches covered by the test. Moreover,
the functionality branch can be determined from the
current state of the components and the set of opera-
tion’s parameters without actually performing the oper-
ation; this makes it possible to construct a filter that
eliminates sets of parameters that do not enhance the
coverage.

Knowing branches of functionality in a postcondi-
tion, one can automatically extract more detailed cov-
erage criteria based on the structure of branch points in
preconditions and postconditions. The most detailed
criterion of this type is disjunct coverage criterion,
which is determined by all possible combinations of
values of prime logical formulas used in these branch
points. It is an analog of the MC/DC criterion [11] for
the code coverage.

If testing is aimed at achieving high coverage in
terms of disjuncts, some disjuncts can be unattainable
due to implicit semantic relationships between logical
formulas used (these problems are similar to those
occurring when the MC/DC criterion is used). Such
problems are resolved by using an explicit description
of relationships in the form of tautologies, i.e., logical
expressions constructed from prime formulas that are
identically true due to dependences between the values
of formulas.

In addition to the possibility of controlling coverage
criteria that are automatically extracted from the struc-
ture of specifications, the user can describe additional
specification coverage criteria by hand as a set of pred-
icates that depend on the parameters of operations and
the state.

2.5. Generation of Test Sequences

UniTesK uses finite-state automaton models of the
target software in the form of test scenarios to dynami-
cally generate sequences of test inputs. A scenario
determines what is considered as the automaton state
and which operations (with their parameters) must be
invoked in each state. In the course of a test execution,
the test engine constructs an “exhaustive” path through
the automaton’s transitions thus generating a test
sequence.

This method of test generation guarantees that the
state of the system changes only due to invoking target
operations and that only the states that are attainable in
this way can appear in the course of testing. Thus, the
iteration through states is performed automatically, and
the test developer should only determine how to iterate
through the parameters of operations invoked.

When the scenario is developed, a specification cov-
erage criterion can be used as a target one, and a set of

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 29

No. 6

2003

THE UniTesK APPROACH TO DESIGNING TEST SUITES 315

states and transitions can be determined in such a way
that the traversal of all transitions in the resulting
automaton guarantees that the desired coverage is
achieved. For this purpose, it is sufficient to consider a
set of predicates that determines elements of the cover-
age for a certain operation under test as a set of domains
in the space of states and parameters of this operation
and project these domains on the space of states.

Having constructed all possible intersections of
these projections for all operations under test, we
obtain a collection of sets of states such that any opera-
tion invoked for two states from the same set covers the
same elements with respect of the coverage criteria
used. Therefore, all such states of the system are equiv-
alent from the viewpoint of this coverage criterion, and
one can consider those sets of states of the system as the
states of the resulting automaton. Stimuli in such an
automaton are equivalence classes (with respect to the
coverage criterion) of operation calls; i.e., they are the
equivalence classes that cover the same element of the
coverage. An additional transformation of the automa-
ton may be needed to make it deterministic (for details,
see [12]).

In the course of testing, one can use automatically
generated filters that eliminate the sets of arguments
that do not enhance the coverage. The availability of
such filters makes it possible to save user’s efforts
required to calculate the parameters needed to achieve
the desired coverage; instead, one can specify a large
set of parameters that surely contains all necessary
parameters. Thus, UniTesK enables one to perform effi-
cient testing aimed at high coverage level.

A test scenario is actually a finite automaton repre-
sented in an implicit form; i.e., states and transitions are
not listed explicitly and final states of the transitions are
not specified. Instead, one specifies a method for calcu-
lating the current state, a method for comparing states,
a method for iterating through admissible inputs (oper-
ations under test and their parameters), which depends
on the state, and a procedure used to apply the input
action. Although such a representation of automaton
models is uncommon, it makes it possible to describe
complex models in a compact form and easily modify
them.

A scenario can define the states of the automaton
model not only on the basis of the model state described
in the specification, but also take into account certain
implementation aspects that are not described in the
specifications. On the other hand, one can abstract one-
self from certain details in the specifications, thus
decreasing the number of states in the resulting model
(see [12]). Thus, the test generation can vary indepen-
dently of specifications and, therefore, independently
of the mechanism used to verify the behavior under an
individual input action.

Test scenarios can be developed by hand, but they
can be also generated automatically with the help of an
interactive tool called the

scenario generation tem-

plate

, which requests the user to provide only the nec-
essary information and uses reasonable default assump-
tions. The scenario generation template helps construct
both scenarios that do not use filtration of test inputs
and scenarios aimed at high coverage level in terms of
one of the criteria extracted from the specifications.

Test scenarios written in terms of specifications
determine abstract tests that can be used for testing any
system described by those specifications. Besides, sce-
narios can be reused with the help of the inheritance
mechanism. An inherited scenario can override the
state calculation procedure and override or enhance the
set of test input actions that can be applied to the system
at every state.

In order to test concurrent and distributed systems,
UniTesK uses special-type test engines generating
pairs, triples, and wider sets of concurrent input actions
at every state, and slightly enhanced specifications. In
addition to specifications of operations, which model
input actions applied to the target system and its syn-
chronous response to them, one can specify

asynchro-
nous responses

 of the system; each of them is repre-
sented in the form of an operation without parameters
having preconditions and postconditions (see [71]).

Systems that satisfy the plain concurency axiom can
be tested without asynchronous response specifica-
tions. This axiom states that the result of execution of
any set of operations coincides with the execution of
the same set of operations in a certain order. For sys-
tems that do not satisfy this axiom, additional “firings”
corresponding to asynchronous responses or internal
(i.e., not observable from the outside) changes of sys-
tem’s states can be introduced, so that the resulting
model is plain.

Automaton models used for testing such systems are
a generalization of input/output automata [10]. When a
plain system is tested, the following method is used to
verify its behavior. If the input actions processed by the
system and its asynchronous responses can be fully
ordered in such a way that, in the resulting sequence,
the corresponding precondition is satisfied before every
call of an operation or response and the corresponding
postcondition is satisfied after the operation or
response, then the behavior of the system is correct.
Actually, this means that the observed behavior of the
system does not contradict the specifications. If no such
ordering can be constructed, then we conclude that a
discrepancy between the system’s behavior and the
specifications is discovered.

In addition to the capabilities mentioned above,
UniTesK test scenarios make it possible to perform
testing based on conventional scenarios. The latter
assumes that sequences of inputs are generated by user-
defined rules, and the user specifies a method for veri-
fying the system behavior. In particular, one can use
scenarios that refine the target system use cases.

Another method of constructing test scenarios is
based on axiomatic specifications, which describe the

316

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 29

No. 6

2003

KULIAMIN

et al

.

correct system behavior in the form of constraints
imposed on the results of invoking certain sequences of
target operations. Every such sequence with the verifi-
cation of the corresponding constraints can be repre-
sented in the test scenario as an action that will be
applied to all states where it is admissible. Algebraic
axioms, which require that the results be equivalent for
two or more calling sequences, can be verified by rep-
resenting each sequence as a separate action and com-
paring the results with the results of executing other
sequences for the same state of the system. Test scenar-
ios provide a convenient mechanism for storing inter-
mediate data (in this case, the results of executing pre-
ceding sequences) associated with the state identifier.

2.6. Definition of Relationships
between the Specifications and Implementation

Specifications used in UniTesK for test develop-
ment can be related to the implementation through
mediators rather than directly. This makes it possible to
develop more abstract specifications, which can be
extracted from requirements and used for testing sev-
eral versions of the target software. This makes test
suites more abstract and reusable. In addition to the
advantages mentioned above, there are additional
advantages of using mediators:

• The correspondence between the requirements
(represented by specifications) and test suites can be
controlled automatically.

• The simultaneous development of the software and
tests for it is supported, which reduces the development
time while ensuring a certain quality level.

• A more efficient infrastructure for distributing
commercial software components can be supported.
One can develop open specifications for the functional
capabilities of such components supplemented with a
test suite, which demonstrates that the component actu-
ally implements the desired functions. The component
developer can attach mediators to the implementation
that relate it to the open specifications. Thus, every user
or independent tester can verify the correctness of the
implementation. In addition, users of such components
can use extended test suites to verify the components as
required.

Mediators can be developed by hand and thus deter-
mine nontrivial transformations between the model’s
interface and the implementation’s interface. In simple
cases, the

mediator generation template

 can be used for
automatic generation of mediators. In this case, the
specification and implementation components that
must be connected should be specified and a correspon-
dence between their operations must be established. In
this case, one must specify a method for transforming
the model parameters of each operation into the imple-
mentation ones and a method for transforming the
implementation results into the model ones if they are
not identical.

UniTesK makes it possible to use externally visible
information about the implementation state to construct
the model state. The testing method assuming that the
model state is constructed on the basis of available reli-
able information about the implementation state inde-
pendently of target operations invoked is called the

open state testing.

 When this kind of testing is used, the
procedure for constructing the model state is imple-
mented as a special operation in the mediator, which is
automatically called by the test system upon every call
of the target operation (if there are no concurrent calls
of the target system and asynchronous responses).

If information for the construction of the model
state is insufficient (or when concurrent calls are tested
or when the system can give asynchronous responses),
the

hidden state testing

 is used. In this case, the model
state obtained after the application of an operation is
constructed on the basis of the model state preceding
the operation call, parameters, and the results of the
call. This method yields a hypothetical next model state
under the condition that the observed results of the call
do not contradict the specifications. The method is cor-
rect if the constraints specified in the postcondition of
any operation can be uniquely resolved with respect to
the model state after the application of this operation.
Mediators for this kind of testing must know how to
construct, for each model operation, the model state
obtained after the application of this operation.

Figure 2 presents the general test development
scheme following the UniTesK technology. Upon the
specifications, scenarios, and mediators have been
developed, they are compiled into oracles, test action
iterators, and mediators, respectively, in the language
of the target system; then, they are integrated into the
final test program.

2.7. A Uniform Extension of Programming Languages

As a rule, formal specifications are written in spe-
cialized languages that have a large set of expressive
means and rigorously defined semantics. UniTesK
enables one to use such languages if, for any pair (spec-
ification language, implementation language), clear
rules for transforming interfaces are formulated and
development tools for such transformations are avail-
able.

However, formal specification languages are diffi-
cult to be used for testing in spite of their advantages.
This is because of difficulties arising in the definition of
those transformations. The difficulties arise due to dif-
ferent paradigms underlying the specification and
implementation languages, the absence in specification
languages analogs of certain concepts that are widely
used in implementation languages (e.g., pointers), dif-
ferences in the semantics of simple data types, and so
on. Therefore, the work requires large efforts of highly
qualified experts who know both languages very well.
The required training is very costly and takes a long time.

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 29

No. 6

2003

THE UniTesK APPROACH TO DESIGNING TEST SUITES 317

In order to make the technology available to ordi-
nary developers, UniTesK supports development of
specifications and scenarios in extensions of popular
programming languages. To this end, a unified system
of basic concepts has been developed that are used for
writing specifications and scenarios; these are the con-
cepts of precondition, postcondition, invariant, branch
of functionality, and the scenario method (which deter-
mines a uniform family of test inputs in the scenario).
For each of these concepts, rules for the extension of
the language by a corresponding construct are formu-
lated. For languages that already have means for repre-
senting the corresponding concepts, only the lacking
constructs are added.

An important advantage of using an extension of the
target system language for writing specifications is that
such specifications can be easier related to the imple-
mentation. An ordinary developer can easily teach him-
self to write specifications in the extension of the target
language. The problem of insufficient expressive power
of the majority of modern object-oriented languages is
solved by using libraries of abstract types.

The problem of possible dependence of the specifi-
cation meaning on the platform can be solved in several
ways. First, one can prohibit using in specifications
constructs that have insufficiently clear meaning and
can be interpreted differently on different platforms.
Second, libraries that operate identically on all sup-
ported platforms can be developed and recommended
for use. Third, in specific cases, remote testing can be
performed under which the test system is executed on
the same platform where the specifications were devel-
oped.

2.8. Underlying Hypotheses and Formal Conclusions
Based on Testing Results

When testing is performed according the UniTesK
technology, the structure of the graph of automaton
states is revealed (this automaton is implicitly
described in the test scenario). The further actions are
determined by the kind of testing, its aim, and the type
of models employed on the basis of theoretical results
on testing finite automata [13–15]. The basic result
related with the simple case of checking if two finite
deterministic automata (one of which represents the
model and the other the implementation) coincide is as
follows.

Testing is performed if the following assumptions
are fulfilled.

1. The sets of stimuli and responses of the model
and implementation automata coincide.

2. The sets of their states are subsets of the same set

S

.
3. The initial states are identical.
4. At every state that belongs to both automata, the

sets of admissible stimuli are identical.
In the course of testing, it is verified that, for each

model state attained, the implementation’s response is
admissible in the model for every stimulus that is
admissible in the model. Moreover, if the model autom-
aton is strongly connected and identity of states in both
automata after each step is tested (open state testing),
the model and implementation automata are identical if
no errors were detected. More precisely, their subau-
tomata that are attainable from the initial states are
identical.

Note the difference between the open and hidden
state testing. In the case of open state testing, we actu-
ally know the current implementation state and can
check if it conforms to the model state. In this case, in
order to conclude that all necessary transitions of the

Scenario

template
construction

Scenario

Testing
strategy

Specification

Mediator
construction

template

Mediator

Target interface

Test inputs iterator

Oracle

Mediator in the
target language

Compilation

Fig. 2.

 The process of UniTesK test suite development.

318

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 29

No. 6

2003

KULIAMIN

et al

.

implementation automaton have been checked, it is suf-
ficient to traverse all transitions of the model automa-
ton.

In the case of hidden state testing, we have no reli-
able information about the implementation state after
every transition. To check all transitions in the imple-
mentation, it is not sufficient to traverse the model
automaton. Therefore, more complicated testing meth-
ods must be used, for example, the method described in
[13], which is based on characteristic sets of sequences,
or the probabilistic method (see [13]).

If both the model and the implementation automa-
tons are nondeterministic, an additional assumption is
required that allows one to check whether nondetermin-
istic transitions are correct. Two types of such assump-
tions can be used. For the first type, it is assumed that if
the implementation automaton is affected many times
by a stimulus, we obtain and, therefore, verify all pos-
sible transitions that can be fired by this stimulus (see,
e.g. [16]). For the second type, it is assumed that the
nondeterminism of the system is “homogeneous” with
respect to errors; i.e., if a transition from a certain state
in the model does not conform with the transition in the
implementation for a certain stimulus, then there is a
mismatch for all transitions from this state that can be
fired by the same stimulus [17].

In addition, if the model and the implementation are
nondeterministic, the requirement of strong connectiv-
ity of the model automaton must be replaced by the
requirement of strong

∆

-connectivity, which makes it
possible to traverse the nondeterministic automaton
(see [17] for details).

The above assumption that the states of the model
and implementation automata belong to the same set or
the equivalent assumption that there exists a one-to-one
mapping between them can be rarely used in practice
due to differences in the abstraction levels of the model
and implementation. Generally, one can conclude that
there is a correspondence between sequences of stimuli
and responses in the model and implementation autom-
ata even if this correspondence cannot be naturally
reduced to the correspondence between their states;
however, the necessary theory has not yet been com-
pleted.

In a widespread particular case, the correspondence
between the model and implementation can be repre-
sented in the form of factorization [12]. Then, there is a
mapping

ϕ

 :

S

I

S

M

 of the set of states of the imple-
mentation into the set of model states under which the
preimage of a single model state can contain several
elements. To enable testing, we need the assumption of
“homogeneity” of the sets of admissible stimuli with
respect to factorization; more precisely, the stimuli that
are admissible in the model state

s

∈

S

M

 must be admis-
sible in all corresponding implementation states

t

∈
φ

−

1

s

. To conclude that the implementation conforms to
the model, we need the assumption of “error homoge-
neity” with respect to factorization. More precisely, if,

for a certain model state

s

 and a model stimulus

x

 that
determines the transition to the model state

s

' with the
response

y

, there exists a state

t

∈

φ

–1

s

 such that the
transition to the state

t

 fired by the stimulus

x

 does not
conform to the model (i.e., the response is not

y

 or leads
to the state

t

' such that

φ

(

t

')

≠

s

'), then, for all

u

∈

φ–1s,
the transitions fired by the stimulus x from u do not con-
form to the model.

2.9. Execution of Tests and Analysis of Results

UniTesK tools support the automatic execution of
tests developed with the help of UniTesK and the auto-
matic collection of tracing information. After a test has
been completed, a set of additional test reports can be
generated based on this information. These reports
show the structure of the automaton revealed in the
course of testing, the level of test coverage for all test
criteria defined for a certain specification operation,
and information about detected violations due to errors
in the target system or in specifications, scenarios, and
mediators.

The test trace can be used to obtain additional infor-
mation. For example, one can find out the kind of vio-
lation, the values of parameters of the operation that
caused the violation, the particular constraint in the
postcondition that was violated, and so on. The infor-
mation contained in the trace and other reports is suffi-
cient for debugging test system, for evaluation of the
quality of testing, and often helps to localize errors.

3. COMPARISON WITH OTHER APPROACHES
TO THE DEVELOPMENT OF MODEL-BASED

TESTS
Although almost every feature of UniTesK can be

found in other technologies and test development sys-
tems (sometimes, in a more advanced form), none of
the approaches available in the academic community
and software industry has all the capabilities of
UniTesK.

In the short survey presented in this section, we
focus on methods for test development supported by
corresponding tools and aimed at the use in software
industry. Thus, many interesting techniques are beyond
the scope of this survey.

The available approaches to test development
mainly rely on the conventional test architecture that
set up several decades ago. In this architecture, a test
suite is a set of test cases each of which is used to verify
a certain property of the target system in a particular sit-
uation. In UniTesK, test suites are constructed in the
form of scenarios, and every scenario actually plays the
role of a set of test cases that verify the behavior of the
target system when it calls a certain group of interfaces
in various situations. As a result, the UniTesK test suite
has more hierarchical levels, which is convenient when
large and complex systems are tested. On the other
hand, test cases make it possible to reconstruct certain

PROGRAMMING AND COMPUTER SOFTWARE Vol. 29 No. 6 2003

THE UniTesK APPROACH TO DESIGNING TEST SUITES 319

situations more efficiently when testing is repeated (for
example, to check whether an error has been elimi-
nated). Both schemes are equally suited for regression
testing, since this usually requires the execution of the
entire set of tests.

Automatic generation of test oracles differentiates
UniTesK from such tools as JUnit [18], which automate
only the execution of tests. However, automatic gener-
ation of test oracles is supported by many available
tools, for example, the following ones.

• iContract [19, 20], JMSAssert [21], JML [22, 23],
jContractor [24, 25], Jass [26, 27], Handshake [28], and
JISL [29] use contract specifications written in the tar-
get system code in the form of comments in an exten-
sion of Java (reviews of such systems can be found in
[30, 31]).

• SLIC [32] makes it possible to write contract spec-
ifications in an extension of C with the use of time logic
predicates.

• Test RealTime [33] by Rational/IBM uses con-
tracts and a description of the finite automaton model of
the target component in the form of special scripts.

• JTest/JContract [34] by Parasoft and Korat [35]
make it possible to write preconditions, postconditions,
and invariants in the form of special comments in Java
programs.

• ATG-Rover [36] uses specifications in the form of
contracts written as comments in C, Java, or Verilog,
which can include predicates of temporal logics LTL
and MTL.

• The family of tools ADL [7] is based on extensions
of C, C++, Java, and IDL, which are used for the devel-
opment of contract specifications that are not strictly
connected with a specific code.

• T-VEC [37] uses preconditions and postconditions
in the form of tables in the SCR notation [38].

UniTesK differs from the three first tools above by
substantial support of test development; in particular, it
includes extraction of coverage criteria from specifica-
tion and a mechanism for test sequence generation from
scenarios. In JTest, the capability of automatic test
sequence generation is declared, but the resulting
sequences cannot contain more than three operation
calls and are constructed randomly, so that the test
sequence construction cannot be targeted to maximize
test coverage.

Korat is one of the tools developed in the framework
of the MulSaw project [39] in the laboratory of infor-
mation science in MIT. This tool uses contracts written
in JML for the generation of a set of input data for a sin-
gle method in a Java class, including the object in
which this method is called. The generated set guaran-
tees the coverage of all logical branches in the specifi-
cations. Thus, instead of constructing a test sequence,
one can immediately obtains the object in the desired
state. On the other hand, specifications must be rigidly
associated with an implementation. In particular, they

should not allow states of the target component such
that cannot occur in the course of its operation; other-
wise, many generated test will correspond to unattain-
able states of the component.

ADL tools support test development only in the
form of a library of input data generators, which is sim-
ilar to the library of iterators in UniTesK. ATG-Rover
can automatically generate templates of test sequences
for specification coverage. It is not clear from the avail-
able documentation if these templates must be further
processed by hand to become actual test sequences, but
the possibility of such a processing is declared.

T-VEC uses specifications of a special form to auto-
matically extract information on boundary values of the
regions in which a function described by those specifi-
cations behaves “identically” (cf. the definitions of
functionality branches in UniTesK). Test inputs are
generated in such a way as to cover the boundary points
of functionality branches for the function. A complete
test suite is a list of pairs in which the first element is a
set of parameters of the operation under test and the
second element is the correct result of this operation on
this set of parameters calculated from the specifica-
tions. Generation of test sequences is not supported.

To our knowledge, there are no other tools besides
T-VEC that (as UniTesK) support generation of test
suites aimed at high coverage in terms of criteria
extracted from the internal structure of contract specifi-
cations. The majority of available tools can determine
the coverage of specifications only as the percentage of
operations that were called.

Generation of test sequences is supported by many
tools that use models of the target system in the form of
various automata such as extended finite automata,
communicating finite automata, input/output automata,
labeled transition systems, Petri nets, and so on. Such
instruments suit well for the verification of telecommu-
nication software, since formal specification languages
based on the representations of software listed above
(such as SDL [40–42], LOTOS [43], Estelle [44],
ESTEREL [45, 46], or Lustre [47]) are often used in the
development of such kind of software. The majority of
these tools use a description of the system behavior in
one of such languages as a specification, which is then
transformed to an automaton model of the correspond-
ing type.

In addition to the specifications of system behavior,
some of these tools use a testing scenario usually called
test purpose, which is formulated by the user in the
form of a sequence of messages that are exchanged by
software components (MSC) or in the form of a small
automaton (see, e.g., [48–51]). Other tools use explic-
itly described automaton models for the generation of
test sequences aimed at achieving a certain level of cov-
erage with respect to a certain criterion [52–54]. As has
been mentioned above, UniTesK supports generation
of test sequences from user-defined scenarios and an

320

PROGRAMMING AND COMPUTER SOFTWARE Vol. 29 No. 6 2003

KULIAMIN et al.

automaton model of the system; thus, UniTesK com-
bines both approaches.

In terms of capabilities, GOTCHA-TCBeans [55,
56] (one of the test generation instruments joined in the
AGEDIS project [57, 58]) and AsmL Test Tool [59, 60]
are most close to UniTesK. Both these tools use autom-
aton models of the target software. For GOTCHA-
TCBeans, this model must be described in an extension
of Murphi [61], while AsmL Test Tool uses a descrip-
tion of the target system in the form of an abstract state
machine (ASM) as the specification [62, 63].

All three approaches use models of different types
for constructing tests, which makes it possible to gener-
ate more efficient, flexible, and scalable tests; more-
over, many components may be reused. In UniTesK,
these are the model of system behavior represented by
specifications and the testing model represented by the
test scenario. In GOTCHA-TCBeans and other tools of
the AGEDIS project, these are the automaton model of
the system and a set of test directives that control the
process of test generation. In recent versions of AsmL
Test Tool, these are the ASM model of the system and
a set of observable variables; the sets of values of these
variables determine states of the automaton used to
construct test sequence.

In those tools, certain techniques for decreasing the
dimensionality of the model are used, which are similar
to factorization in UniTesK. GOTCHA-TCBeans uses
a particular case of factorization that ignores values of
certain fields in the initial model state [64]. AsmL Test
Tool can construct test sequences on the basis of a finite
automaton whose states are obtained by reduction of
the complete state of the initial automaton to the set of
values of elementary logical formulas used in the
description of this model’s transitions [65].

The basic distinctions of UniTesK from GOTCHA-
TCBeans and AsmL Test Tool are the support of pro-
gramming language extensions used for writing speci-
fications, the use of contract specifications, automatic
control of specification coverage, and the use of filters
aimed at producing test inputs that enhance coverage.

4. CONCLUSIONS

The UniTesK technology was developed on the
basis of the experience gained when testing complex
commercial software and the experience obtained in the
integration of KVEST [6, 66], which is the predecessor
of UniTesK, into the process of software development
in Nortel Networks. This experience, and generally the
experience of integration of technologies developed in
academic institutions into software industry, shows
that, for such a project to be successful, a technology
must have a wide range of features and use concepts
and notations that are familiar to ordinary software
developers. Both these factors were taken into account
in UniTesK.

The further development of UniTesK is supposed to
follow several directions.

• Development of specialized tools for automated
generation of mediators for popular types of compo-
nent software.

• The scenario construction template will be
extended so as to enable it to generate tests completely
automatically only on the basis of the description of the
interface to be tested.

• Automation of test suite development for software
components that can call the environment and then use
its answers (the so-called inverse interface).

• Integration into UniTesK testing methods for real-
time systems and sophisticated approaches to testing
concurrent and distributed systems.

Currently, in the Institute for System Programming,
Russian Academy of Sciences (ISPRAS), in coopera-
tion with Arithnet Technical Services [67], tools for
constructing test suites in the framework of the
UniTesK technology have been developed for software
written in Java [68] and C#. For testing components
written in C++, specifications and tests written in the
extension of Java can be used; they can be binded with
C++ code through mediators that are automatically
generated from C++ header files containing the
description of the interface under test. In addition, a
similar tool CTesK has been developed for testing C
programs [69].

These tools have been successfully used for testing
software developed in ISPRAS, including the UniTesK
support tools. CTesK was successfully used for testing
several implementations of the IPv6 protocol [70]. On
the basis of UniTesK principles, a specialized technol-
ogy for testing compiler optimization blocks has been
developed and tried out on commercial compilers pro-
duced by Intel [8]. A complete list of projects that are
implemented with the use of the UniTesK technology
can be found on the site of the RedVerst group of
ISPRAS [1].

ACKNOWLEDGMENTS

This work was accomplished in the framework of the
state contract no. 10002-251/p-21/019-027/101043-573
and supported by the Russian Foundation for Basic
Research, project no. 02-01-00959.

REFERENCES
1. http://www.ispras.ru/groups/rv/rv.html.
2. Meyer, B., Applying “Design by Contract,” IEEE Com-

puter, 1992, vol. 25, no. 10, pp. 40–51.
3. Meyer, B., Object-Oriented Software Construction,

Prentice Hall, 1997, Second edition.
4. Meyer, B., Eiffel: The Language, Prentice Hall, 1992.
5. Peters, D. and Parnas, D. Using Test Oracles Generated

from Program Documentation, IEEE Transactions on
Software Engineering, 1998, vol. 24, no. 3, pp. 161–173.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 29 No. 6 2003

THE UniTesK APPROACH TO DESIGNING TEST SUITES 321

6. Bourdonov, I., Kossatchev, A., Petrenko, A., and Gaiter, D.,
KVEST: Automated Generation of Test Suites from For-
mal Specifications, Proc. of FM’99, Lect. Notes Com-
put. Sci., Springer-Verlag, 1999, vol. 1708, pp. 608–621.

7. Obayashi, M., Kubota, H., McCarron, S.P., and Mallet, L.,
The Assertion Based Testing Tool for OOP: ADL2,
http://adl.opengroup.org/.

8. Kossatchev, A., Petrenko, A., Zelenov, S., and Zelenova, S.,
Using Model-Based Approach for Automated Testing of
Optimizing Compilers, Proc. Int. Workshop on Program
Understanding, Gorno-Altaisk, 2003.

9. Bourdonov, L., Kossatchev, A., Kuliamin, V., and
Petrenko, A., UniTesK Test Suite Architecture, Proc. of
FME 2002, Lect. Notes Comput. Sci., Springer-Verlag,
2002, vol. 2391, pp. 77–88.

10. Zafiropulo, P., West, C.H., Rudin, H., Cowan, D.D., and
Brand, D., Towards Analysing and Synthesizing Proto-
cols, IEEE Trans. Commun., 1980, vol. 28, no. 4,
pp. 651–660.

11. Chilenski, J.J. and Miller, S.P., Applicability of modified
condition/decision coverage to software testing, Soft-
ware Eng. J., 1994, September, pp. 193–200.

12. Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V.,
Application of Finite Automata to Program Testing, Pro-
grammirovanie, 2000, no. 2, pp. 61–73.

13. Lee, D. and Yannakakis, M., Principles and Methods of
Testing Finite-State Machines: A Survey, Proc. IEEE,
1996, vol. 84, no. 8, pp. 1090–1123.

14. von Bochmann, G. and Petrenko, A., Protocol Testing:
Review of Methods and Relevance for Software Testing,
Proc. ACM Int. Symp. on Software Testing and Analysis,
Seattle, 1994, pp. 109–123.

15. Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V.,
Irredundant Algorithms for Traversing Directed Graphs:
The Deterministic Case, Programmirovanie, 2003,
no. 5, pp. 11–30.

16. Fujiwara, S. and von Bochmann, G., Testing Nondeter-
ministic Finite State Machine with Fault Coverage,
Kroon, J., Heijink, R.J., and Brinksma, E., Eds., Proc.
IFIP TC6 Fourth Int. Workshop on Protocol Test Sys-
tems, 1991, North-Holland, 1992, pp. 267–280.

17. Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V.,
Irredundant Algorithms for Traversing Directed Graphs:
The Deterministic Case, Programmirovanie (in press).

18. http://www.junit.org/index.htm.
19. Kramer, R., iContract – The Java Design by Contract

Tool, Proc. of TOOLS26: Technology of Object-Oriented
Languages and Systems, IEEE Computer Society, 1998,
pp. 295–307.

20. http://www.reliable-systems.com/.
21. http://www.mmsindia.com/JMSAssert.html.
22. Bhorkar, A., A Run-time Assertion Checker for Java

using JML, Techn. Report 00-08, Department of Com-
puter Science, Iowa State University, 2000.

23. http://www.cs.iastate.edu/ leavens/JML.html.
24. Karaorman, M., Holzle, U., and Bruno, J., jContractor: A

Reflective Java Library to Support Design by Contract,
Techn. Report TRCCS98-31, University of California,
Santa Barbara, Computer Science, January 19, 1999.

25. http://jcontractor.sourceforge.net/.

26. Bartetzko, D., Fisher, C., Moller, M., and Wehrheim, H.,
Jass—Java with Assertions, Proc. of the First Workshop on
Runtime Verification RV’O1, Havelund, K. and Rosu, G.,
Eds., Electronic Notes in Theoretical Computer Science,
Elsevier Science, 2001, vol. 55.

27. http://semantik.informatik.uni-oldenburg.de/~jass.
28. Duncan, A. and Hlzle, U., Adding Contracts to Java with

Handshake, Techn. Report TRCS98-32, University of
California, Santa Barbara, 1998.

29. Muller, P., Meyer, J., and Poetzsch-Heffter, A., Making
Executable Interface Specifications More Expressive,
JIT’99 Java-Informations-Tage 1999, Cap, C.H., Ed.,
Informatik Aktuell, Springer-Verlag, 1999.

30. Barneit, M. and Schulte, W., Contracts, Components,
and Their Runtime Verification on the NET Platform,
Techn. Report TR-2001-56, Microsoft Research.

31. Baresi, L. and Young, M., Test Oracles, Techn. Report
CISTR-01-02, http://www.cs.uoregon.edu/~michal/pubs/
oracles.html.

32. Ball, T. and Rajamani, S., SLIC: A Specification Lan-
guage for Interface Checking (of C), Techn. Report
MSR-TR-2001-21, Microsoft Research, 2002.

33. http://www.rational.com.
34. http://www.parasoft.com.
35. Boyapati, C., Khurshid, S., and Marinov, D., Korat:

Automated Testing Based on Java Predicates, Proc. of
ISSTA 2002, Rome, 2002.

36. http://www.time-rover.com.
37. http://www.t-vec.com.
38. Heitmeyer, C., Software Cost Reduction, Encyclopedia

of Software Engineering, Marciniak, J.J., Ed., 2 vols.,
2002.

39. http://mulsaw.lcs.mit.edu/.
40. Ellsberger, J., Hogrefe, D., and Sarma, A., SDL—Formal

Object-Oriented Language for Communicating Systems,
Prentice Hall, 1997.

41. ITU-T Recommendation Z.100: Specification and
Description Language (SDL), Geneva: ITU-T, 1996.

42. ITU-T Recommendation Z.100 Annex Fl: SDL formal
definition—General, Geneva: ITU-T, 2000.

43. Information Processing Systems: Open Systems Inter-
connection—LOTOS—A Formal Description Technique
Based on the Temporal Ordering of Observational
Behaviour, ISO/IEC 8807:1989, Geneva, 1989.

44. ISO/TC97/SC21. Information Processing Systems: Open
Systems Interconnection—Estelle—A Formal Descrip-
tion Technique Based on an Extended State Transition
Model, ISO 9074:1997, Geneva, 1997.

45. Berry, G., The Foundations of Esterel, Proof, Language
and Interaction: Essays in Honour of Robin Milner,
Plotkin, G., Stirling, C., and Tofte, M., Eds., MIT Press,
1998.

46. Boussinot, F. and de Simone, R., The Esterel Language,
Proc. IEEE, 1991, vol. 79, pp. 1293–1304.

47. Halbwachs, N., Caspi, P., Raymond, P., and Pilaud, D.,
The Synchronous Data Flow Programming Language
LUSTRE, Proc. IEEE, 1991, vol. 79, pp. 1305–1320.

48. Grabowski, J., Hogrefe, D., and Nahm, R., Test case gen-
eration with test purpose specification by MSCs, 6th SDL
Forum, Faergemand, O. and Sarma, A., Eds., Darmstadt,
Germany: North-Holland, 1993, pp. 253–266.

322

PROGRAMMING AND COMPUTER SOFTWARE Vol. 29 No. 6 2003

KULIAMIN et al.

49. Wang, C.J. and Liu, M.T., Automatic Test Case Genera-
tion for Estelle, Int. Conf. on Network Protocols, San
Francisco, 1993, pp. 225–232.

50. Caravel, H., Lang, F., and Mateescu, R., An overview of
CADP 2001, INRIA Techn. Report TR-254, 2001.

51. Fernandez, J.-C., Jard, C., Jeron, T., and Viho, C., An
Experiment in Automatic Generation of Test Suites for
Protocols with Verification Technology, Special Issue on
Industrially Relevant Applications of Formal Analysis
Techniques, Groote, J.F. and Rem, M., Eds., Elsevier
Science, 1996.

52. Tretmans, J. and Belinfante, A., Automatic Testing with
Formal Methods, EuroSTAR’99: 7th European Int. Conf.
on Software Testing: Analysis and Review, Barcelona,
1999, EuroStar Conferences, Galway, Ireland, Techn.
Report TRCTIT-17, Centre for Telematics and Informa-
tion Technology, University of Twente.

53. Bourhfir, C., Aboulhamid, E., Dssouli, R., and Rico, N.,
A Test Case Generation Approach for Conformance
Testing of SDL Systems, Computer Commun., 2001,
vol. 24, nos. 3–4, pp. 319–333.

54. Chun, W. and Amer, P.D., Test Case Generation for Pro-
tocols Specified in Estelle, Formal Description Tech-
niques III, Que-mada, J., Manas, J., and Vazquez, E.,
Eds., Madrid: North-Holland, 1990, pp. 191–206.

55. Farchi, E., Hartman, A., and Pinter, S.S., Using a Model-
based Test Generator to Test for Standard Conformance,
IBM Syst. J., 2002, vol. 41, no. 1, pp. 89–110.

56. http://www.haifa.il.ibm.com/projects/verification/gtcb/
documentation.html.

57. Gronau, L., Hartmair, A., Klrshin, A., Nagin, K., and
Olvovsky, S., A Methodology and Architecture for Auto-
mated Software Testing, http://www.haifa.il.ibm.com/
projects/verification/gtcb/papers/gtcbmanda.pdf.

58. http://www.agedis.de/.

59. Grieskamp, W., Gurevich, Y., Schulte, W., and Veanes, M.,
Testing with Abstract State Machines, Moreno-Diaz, R.
and Quesada-Arencibia, A., Eds., Formal Methods and
Tools for Computer Science (Proc. of Eurocast 2001),
Universidad de Las Palmas de Gran Canaria, Canary
Islands, Spain, 2001, pp. 257–261.

60. http://research.microsoft.com/fse/asml/.
61. http://verify.stanford.edu/dill/murphi.html.
62. Gurevich, Y., Evolving Algebras: An Attempt to Dis-

cover Semantics, Current Trends in Theoretical Com-
puter Science, Rozenberg, G. and Salomaa, A., Eds.,
World Scientific, 1993, pp. 266–292.

63. Borger, E. and Stark, R., Abstract State Machines:
A Method for High-Level System Design and Analysis,
Springer-Verlag, 2003.

64. Friedman, G., Hartman, A., Nagin, K., and Shiran, T.,
Projected State Machine Coverage for Software Testing,
Proc. of ISSTA 2002, Rome, 2002.

65. Grieskamp, W., Gurevich, Y., Schulte, W., and Veanes, M.,
Generating Finite State Machines from Abstract State
Machines, Proc. of ISSTA’2002, Techn. Report,
MSRTR-2001-97, Microsoft Research,

66. http://www.frneurope.org/databases/fmadb088.html.
67. http://www.atssoft.com.
68. Bourdonov, I.B., Demakov, A.V., Jarov, A.A., Kos-

satchev, A.S., Kuliamin, V.V., Petrenko, A.K., and Zele-
nov, S.V., Java Specification Extension for Automated
Test Development, Proc. of PSI’O1, Lect. Notes Com-
put. Sci., Springer-Verlag, 2001, vol. 2244, pp. 301–307.

69. http://unitesk.ispras.ru.
70. http://www.ispras.ru/~RedVerst/RedVerst/White Papers/

MSRIPv6 Verification Project/Main.html.
71. Kuliamin, V., Petrenko, A., Pakoulin, N., Kossatchev, A.,

and Bourdonov, I., Integration of Functional and Timed
Testing of Real-time and Concurrent Systems, Proc. of
PSI’03, Novosibirsk, 2003.

