

0361-7688/04/3006- © 2004

åÄIä “Nauka

/Interperiodica”0305

Programming and Computer Software, Vol. 30, No. 6, 2004, pp. 305–322. Translated from Programmirovanie, Vol. 30, No. 6, 2004.
Original Russian Text Copyright © 2004 by Bourdonov.

1. INTRODUCTION

This paper is devoted to the same problem as that
discussed in the previous paper [1] of the author, i.e., to
the problem of traversing an unknown graph by a finite
robot. This problem was first formulated by Rabin [2]
in 1967. A covering path is a path beginning at a given
starting vertex and passing through all edges of the
graph. In the case of a directed graph, each directed
edge (arc) can be traversed only in the direction of its
orientation. The graph is assumed to be a priori
unknown, and its topology is learnt only in the course
of traversing the graph. A directed graph can be tra-
versed starting from any initial vertex only if it is
strongly connected, i.e., any vertex of the graph can be
reached from any other vertex by a certain path. The
finite robot is an analogue of the Turing machine, where
the tape is replaced by a graph: the cell storing a symbol
of the external robot alphabet corresponds to a vertex or
arc of the graph, and the robot moves along an arc in the

direction of its orientation. The robot solves the tra-
versal problem if it stops in a finite number of steps on
any strongly connected graph with any initial vertex,
and the path traversed by the robot is a covering path.

The robot must indicate somehow which arc origi-
nating from the current vertex has been selected. If the
arcs originating from a vertex

v

 are numbered from 1
through

d

out

(

v

), where

d

out

(

v

) is the outdegree of the
vertex

v

, then the robot may simply indicate the arc
number. However, to ensure the finiteness of the robot
in this case, the outdegree

d

out

 is to be bounded from
above. This restriction can easily be removed if we add
a memory cell for each arc originating from the vertex

v

 and combine these cells into a loop, which is further
referred to as the

v

-loop (Fig. 1). The graph with spec-
ified

v

-loops of the outgoing arcs for all vertices

v

 is
called an

ordered

 graph. The robot is supplemented by
the

inner

 transition (denoted by the letter

i

) to the cell
of the next arc in the

v

-loop. In the case of the

outer

Backtracking Problem in the Traversal
of an Unknown Directed Graph by a Finite Robot

I. B. Bourdonov

Institute for System Programming, Russian Academy of Sciences,
Bol’shaya Kommunisticheskaya ul. 25, Moscow, 109004 Russia

e-mail: igor@ispras.ru

Received January 20, 2004

Abstract

—A covering path in a directed graph is a path passing through all vertices and arcs of the graph, with
each arc being traversed only in the direction of its orientation. A covering path exists for any initial vertex only
if the graph is strongly connected. The traversal of an unknown graph implies that the topology of the graph is
not a priori known, and we learn it only in the course of traversing the graph. This is similar to the problem of
traversing a maze by a robot in the case where the plan of the maze is not available. If the robot is a “general-
purpose computer” without any limitations on the number of its states, then traversal algorithms with the esti-
mate

O

(

nm

) are known, where

n

 is the number of vertices and

m

 is the number of arcs. If the number of states
is finite, then this robot is a finite automaton. Such a robot is an analogue of the Turing machine, where the tape
is replaced by a graph and the cells are assigned to the graph vertices and arcs. The selection of the arc that has
not been traversed yet among those originating from the current vertex is determined by the order of the outgo-
ing arcs, which is a priori specified for each vertex. The best known traversal algorithms for a finite robot are
based on constructing the output directed spanning tree of the graph with the root at the initial vertex and tra-
versing it with the aim to find all untraversed arcs. In doing so, we face the

backtracking

 problem, which con-
sists in searching for all vertices of the tree in the order inverse to their natural partial ordering, i.e., from the
leaves to the root. Therefore, the upper estimate of the algorithms is different from the optimal estimate

O

(

nm

)
by the number of steps required for the backtracking along the outgoing tree. The best known estimate

O

(

nm

 +

n

2

loglog

n

) has been suggested by the author in the previous paper [1]. In this paper, a finite robot is
suggested that performs a backtracking with the estimate

O

(

n

2

log*(

n

)). The function log* is defined as an inte-

ger solution of the inequality 1

≤

 < 2, where log

t

 = log

�

 log

�

 ...

�

 log (the superposition

�

 is applied

t

 – 1 times) is the

t

th compositional degree of the logarithm. The estimate

O

(

nm

 +

n

2

log*(

n

)) for the covering
path length is valid for any strongly connected graph for a certain (unfortunately, not arbitrary) order of the out-
going arcs. Interestingly, such an order of the arcs can be marked by symbols of the finite robot traversing the
graph. Hence, there exists a robot that traverses the graph twice: first traversal with the estimate

O

(

nm

 +

n

2

loglog

n

) and the second traversal with the estimate

O

(

nm

 +

n

2

log*(

n

)).

log2
log* n()

306

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 30

No. 6

2004

BOURDONOV

transition (denoted by the letter

o

) along the arc (

v

,

v

'),
the robot occurs in the cell of the first arc in the

v

'-loop.
Thus, the robot indicates what—outer (

o

) or inner (

i

)—
transition it implements and does not need to identify
the outgoing arc (

v

,

v

') along which it wants to move,
since this is always the current arc in the cell of which
the robot occurs.

We assume that two cells are simultaneously acces-
sible to robot for reading and writing: the cell of the
current vertex and the cell of the current arc originating
from this vertex. Note that this is not a restriction: if the
cell of a vertex

v

 is not available, then the cell of the
first arc of the

v

-loop can always be used instead. When
the robot occurs at a vertex, it marks up the cell of the
first arc of the

v

-loop, reads the information about the
vertex from this cell, and stores it in its state. To update
the information about the vertex, the robot moves along
the

v

-loop to the marked cell of the first arc and writes
to it.

The length of the minimal covering path for a
strongly connected graph has the estimate

Θ

(

nm

),
where

n

 is the number of vertices and

m

 is the number
of arcs of the graph. The best known algorithms for tra-
versing graphs by a finite robot are based on construct-
ing two spanning trees for the graph: the output and
input spanning trees with the root located at the initial
vertex of the graph. The output tree is used by the robot
for moving from the initial vertex to any other vertex
and, thus, to the beginning of any graph arc that has not
been traversed yet. The input tree is used for returning
to the initial vertex after traversing a chord of the output
tree.

After all arcs originating from a leaf vertex of the
output tree have been traversed, this vertex and the tree
arc leading to it are removed (marked by special termi-
nal labels). Thus, the output tree always terminates only
in the leaf vertices with untraversed outgoing arcs. The
vertices are terminated in the order reverse to their nat-
ural partial order in the output tree: from the leaves to
the root. This process is referred to as a

backtracking

along the tree. The robot stops when the tree root (the
initial vertex of the graph) is terminated.

Depending on the way the output tree is traversed,
we distinguish between the depth-first search (DFS)
and breadth-first search (BFS) algorithms. In both vari-
ants, the upper estimate differs from the optimal esti-
mate

O

(

nm

) by the quantity equal to the number of
steps required for the complete backtracking along the
outgoing tree. In 1971, the author of this paper sug-
gested a BFS algorithm with the backtracking that
requires

O

(

n

2

log

n

) passages [3]. In 1993, Afek and
Gafni [4] suggested a DFS algorithm with the same
estimate of the backtracking length. In the previous
paper [1], the author of this paper has obtained the
improved estimate

O

(

n

2

loglog

n

).

This paper is devoted to the problem of backtracking
along a tree. For returning to the tree root (initial ver-
tex), a chord leading to the root is added to each leaf
vertex. We suggest a finite robot that performs a DFS
backtracking with the estimate

O

(

n

2

log*(

n

)). The func-
tion log* defined as the number of the logarithm oper-
ations is an integer solution of the inequality 1

≤

 < 2, where log

t

 = log

�

 log

�

 ...

� log (the
superposition is applied t – 1 times) is the tth composi-
tional degree of the logarithm.

Unfortunately, this result does not mean that it is
possible to construct a robot for traversing any strongly
connected graph with the estimate O(nm + n2log*(n)).
The point is that, before the traversal is completed, the
robot may occur in a vertex for which there does not
exist a path leading from this vertex to the initial vertex
and consisting of only the traversed arcs. In this case, in
the traversed part of the graph, instead of the input tree,
a forest of input trees is constructed, and the robot
returns not to the root of the input tree (initial vertex)
but to the root of the last of such input trees. The back-
tracking problem in such a situation becomes more
complicated, and the estimate for its solution may
exceed O(n2log*(n)). What output tree and what forest
of input trees are separated by the robot in a given graph
depends on the order in the graph, i.e., on the order of
arcs in the v-loops for all vertices v. This order is intro-
duced ab extra and, essentially, determines the selec-
tion of a current untraversed arc by the robot from the
set of the untraversed arcs originating from the current
vertex. In conclusion, it is shown that, for any strongly
connected (unordered) graph, there exists an ordering
in the loops of the outgoing arcs such that the forest of
input trees in the course of the robot operation always
consists of only one tree with the root at the initial ver-
tex. Such an ordering of the arcs may be marked by
symbols of the finite robot traversing the graph. Hence,
it is possible to construct a robot that traverses the graph
twice, first time, with the estimate O(nm + n2loglogn)
and, second time, with the estimate O(nm + n2log*(n)).

log2
log* n()

3

v dout1

2
0

i

Fig. 1. Vertex v and v-loop of the outgoing arcs.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 6 2004

BACKTRACKING PROBLEM 307

2. DEFINITION OF ROBOT ON A GRAPH

We define the graph and the robot on the graph in a
formal way. We will use the algebraic notation for func-
tions, i.e., write xf instead of f(x).

A directed graph (in which the robot works) can be
defined as G = (V, E, α, β, γ, δ, X, χ), where

• V is a set of vertices;
• E is a set of arcs (for convenience, we assume that

E ∩ V = ∅);
• α: E V is a function determining the initial

vertex (beginning) of an arc;
• β: E V is a function determining the terminal

vertex (endpoint) of an arc;
• γ: V E is a function determining the first arc in

the loop of the outgoing arcs with the condition

• δ: E E is a function determining the next arc
in the loop of the outgoing arcs with the condition

where δk = δ � δ � … � δ and the superposition is applied
k – 1 times;

• X is a set of symbols that can be stored in the cells
of vertices and arcs; and

• χ: V ∪ E X is a function determining symbols
stored in the cells of the vertices and arcs.

A graph is said to be finite if the sets V and E are
finite. A vertex v and an arc e are incidental if v = eα
or v = eβ. Two arcs e and e' are said to be adjacent if
eβ = αe'. A path is a sequence of adjacent arcs. The
beginning point of the first arc of a path is called the
beginning of the path, and the endpoint of the last arc of
the path is called its end. An [a, b]-path is a finite path
beginning at the vertex a and ending at b. In this case,
the vertex b is said to be reachable from the vertex a.
An [a, b]-path is closed if a = b. A simple path is an
open path in which each vertex is incidental to not more
than two arcs of the path. If the path in this definition is
closed (the beginning and the endpoint of the path coin-
cide), it is called a simple cycle. A graph is said to be
connected if, for any pair of vertices, at least one of the
vertices is reachable from another and strongly con-
nected if any vertex is reachable from any other vertex.
In what follows, we consider only finite strongly con-
nected graphs.

A robot on a graph G is defined as R = (Q, X, T),
where

• Q is a set of states,
• X is a set of input symbols (coincides with the set

of symbols of the graph), and
• T ⊆ Q × X × X × Q × X × X × {i, o} is a set of tran-

sitions.
At any time, the robot is located at a current vertex

v ∈ V on a current arc e ∈ E originating from v; i.e.,
eα = v. The robot is in a state q ∈ Q and reads the sym-

v∀ V vγα∈ v ;=

e∀ E k∃∈ 0 … dout eα() 1 eαγ δk–, , e,= =

bol of the vertex vx and the symbol of the arc ex. The
transition (q, vx, ex, q', , , i/o) ∈ T means that the
robot transfers to the state q' and writes symbols to the
cell of the vertex vx = and to the cell of the arc ex =

. In the case of an inner transition (i), the robot
remains in the same vertex v but transfers to the next
arc in the v-loop eδ. In the case of an outer transition
(o), the robot passes along the arc e to its terminal ver-
tex vβ on the first arc vβγ originating from it.

The robot is said to be finite if the sets Q and X are finite.
The robot is deterministic if, for any triple (q, vx, ex) ∈
Q × X × X, there does not exist more than one transition
(q, vx, ex, q', , , i/o) ∈ T. If, a robot occurs in a
state q at the current vertex v on the current arc e and,
for the triple (q, vx, ex), no transition exists, the robot
is said to stop. One symbol from X is assumed to be ini-
tial and contained in all cells of the graph vertices and
arcs at the beginning of the robot operation. The vertex
at which the robot starts its operation is called initial
and denoted by v1; the initial arc is the first outgoing arc
v1γ. The sequence of all outer transitions of the robot R
in a graph G determines a path in G beginning at the ini-
tial vertex, which is referred to as a traversed path. If the
robot stops, this path is finite. In this paper, we consider
finite deterministic robots.

We will use the C language to write an algorithm of
the robot. Return from the main function of the robot is
interpreted as its stop. Cells of the vertices and arcs are
represented by structures consisting of several fields.
Thus, the set of symbols X is the set of values of such
structures. As a rule, we use one-bit fields, the unit val-
ues of which are called labels. An initial symbol is con-
sidered to be a structure with zero values in all fields.
The current vertex is denoted by v, and the current out-
going arc, by e; thus, to access the field field of the cell
of the vertex or arc, the constructs v.field or e.field,
respectively, are used. For the inner and outer transi-
tions, external functions Next and Traverse modifying
v and e are used (Fig. 2). We will construct a series of
robots such that each next robot is more complicated
than the previous one and uses completely or partially
less complicated robots from this series. To this end, the
C programs are decomposed into functions with regard
to their usage in the programs of the subsequent robots.

xv' xe'

xv'

xe'

xv' xe'

/* Inner transition: e = eδ */

void Next();
/* Outer transition: v = eβ, e = eβγ */
void Traverse();

Fig. 2. Robot’s external procedures.

308

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 6 2004

BOURDONOV

3. LINEAR BACKTRACKING PROBLEM

If G is a simple cycle, it is called a linear graph (Fig. 3).
Let v1, …, vn be a sequence of vertices of a cycle such
that dout(vi) = 1 for i = 1, …, n and, for i = 1, …, n – 1,
viγβ = vi + 1 and vnγβ = v1. Denote by G[i] the ith arc of
the graph. For i = 1, …, n, G[i]α = vi, and, for i = 1, …,
n – 1, G[i]β = vi + 1 and G[n]β = v1.

Since the outdegree of any vertex of a linear graph
is equal to 1, the function Next is not used for a robot on
a linear graph. We assume that, in the set of robot’s
symbols, a subset of terminal symbols is separated. In
a C code of an algorithm, a terminal symbol is a symbol
containing the label terminal. The vertex marked by the
label terminal is called a terminal vertex, and the mark-
ing of a vertex by the label terminal is referred to as the
termination of the vertex.

A robot is said to perform a linear backtracking if it
stops on any linear graph and, before the stop, terminates
some vertices of the graph in the order reverse to their nat-
ural ordering: vi[m], …, vi[1], where i[m] > i[m – 1] > … >
i[2] > i[1]. Such a robot is called a linear robot. A pas-
sage of a robot along a linear graph is its displacement
from the initial vertex until it comes again to the initial
vertex or stops. The complexity of a linear robot is mea-
sured in terms of the number of its passages. Since, in
the course of each passage (except for, perhaps, the last
one), the robot passes n arcs, the length of the traversed
path is bounded from above by the number of the pas-
sages multiplied by n.

Eventually, we are interested in the complete linear
backtracking problem. In the course of such a back-
tracking, the robot terminates all vertices of the graph
starting from the last vertex vn and ending with the first
vertex v1. The robot that solves this problem is called a
complete linear robot.

3.1. Search for the Last Vertex for Θ(logn) Passages

The problem of searching for the last vertex consists
in the following: starting from the first vertex of a linear
graph, the robot has to find the last vertex and stop. This
problem is the simplest case of the linear backtracking,
where only the last vertex is terminated. Afek and Gafni
showed that the problem of searching for the last vertex
(the so-called “last in the ring” problem) is solved by a
finite robot for Θ(logn) passages. In this paper, we give
a different variant of the proof.

Theorem 1. The problem of searching for the last
vertex is solved by a finite robot for Θ(logn) passages.

Proof. Upper estimate. The formal description of
robot R1 that solves the problem of searching for the
last vertex for O(logn) passages is presented in Fig. 5,
and its operation is illustrated in Fig. 4. First, all verti-
ces are candidates for the last place and, in the course
of the first passage, are marked by the label candidate.
In the next passage, the robot excludes the half of all
candidates removing each alternate label. As a result,
there remain candidates the parity of which in the
sequence of the candidates coincides with the parity of
the number of the candidates and, hence, with the parity
of the last vertex (Fig. 5). To do this, in the course of
each passage, the robot remembers the parity of the
number of candidates and checks whether the number
of the candidates remained is greater than one. If only
one candidate—the last vertex—remained, the robot
performs the passage to the only candidate and stops.
Thus, the number of the passages is O(logn).

Lower estimate. Suppose that there exists a robot
that solves the problem of the last vertex. First, we con-
sider the behavior of the robot on an infinite simple path
consisting of vertices v1, v2, …. We assume that, in
each passage, the robot is placed into an initial vertex in
a certain arbitrarily selected initial state, and, then, it
moves along the path placing new symbols to the verti-
ces. Let us show that, before the ith passage, the
sequence Si of symbols in the vertices is periodic and

can be represented as Si = Ai ∧ , where the sum of
lengths of the pre-period and period satisfies the ine-
quality |Ai| + |Bi| ≤ |Q|i – 1. Indeed, before the first passage,
all vertices had the initial symbol, and |A1| = 0, |B1| = 1,
|Q |1 – 1 = 1. Applying the induction, we assume that,
before the ith passage, the assertion is true. Consider
the first |Q | + 1 periods Bi. At least in two of them, the
robot reads the first symbol of the period Bi[1] in one
and the same state. Suppose that the numbers of the first
and second of these two periods are j and k, respec-
tively, 1 ≤ j < k ≤ |Q | + 1. Then, |Ai + 1| = |Ai | + (j – 1)|Bi |
and |Bi + 1| = (k – j)|Bi |. Adding these equalities together,
we find that, before the (i + 1)th passage, |Ai + 1| + |Bi + 1| =
|Ai | + (k – 1)|Bi | ≤ |Ai | + |Q ||Bi | ≤ |Q |(|Ai | + |Bi |) ≤ |Q |i.

Let us select the sequence of the initial states of the
robot on an infinite path that coincides with that on a
finite linear graph. Then, in the beginning of the ith pas-

Bi
ω

v1 v2 vn–1 vn

Fig. 3. A linear graph.

1 0 1 0 1 0 1 0 1 0 1 0
0
1
0

10
0

101
1
1

1

v1 v2 v3 v4 v5 v6 v7 v8 v11v9 v10 v12

Candidate vertex Terminated vertex

Fig. 4. Illustration of the search for the last vertex for
O(logn) passages.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 6 2004

BACKTRACKING PROBLEM 309

sage, the sequence of symbols in the vertices of the
linear graph is an initial segment of the sequence Si on
the infinite path. If, in the course of the kth passage, the
robot stops its operation at the last vertex, then the sum
of the pre-period and period for the sequence Sk + 1 is not
less than n. Hence, we obtain n ≤ |Ak + 1| + |Bk + 1| ≤ |Q |k;
i.e., k = Ω(logn). �

3.2. Filtering Robot

Let U ⊆ V be a subset of vertices of a linear graph G
containing the initial vertex. Then, for an arbitrary
robot R on this graph, one can construct a filtering robot
R〈U〉 that behaves like robot R on the U-vertices and
ignores the V\U-vertices. To do this, it is sufficient to
replace the function Traverse in the program of robot R

Si* by the function Traverse〈U〉, which filters the vertices
checking their membership in the set U:

void Traverse<U>()

{ Traverse(); while (v ∉ U) Traverse(); }
Clearly, the behavior of robot R〈U〉 on the graph G

is equivalent to that of robot R on the graph G〈U〉,
which is obtained from G by removing all vertices
belonging to V\U and merging two arcs incidental to
each vertex being removed. If robot R stops on any lin-
ear graph and accomplishes T(|V |) passages, then the
filtering robot R〈U〉 also stops and accomplishes T(|U |)
passages. If R finds the last vertex in the graph G〈U〉,
robot R〈U〉 finds the last vertex in the set U by using the
same number of passages. If R executes the complete
linear backtracking, then robot R〈U〉 executes a partial
(incomplete) linear backtracking terminating all verti-
ces of the set U, which is equivalent to the complete lin-
ear backtracking of robot R in the graph G〈U〉.

struct vertex { /* structure of the vertex symbol */
unsugned start: 1 = 0; /* initial vertex */
unsigned candidate: 1 = 0;

};
struct vertex v; /* current vertex */

void R1() {
unsigned counter = 0; /* = 0, 1 or 2 */
unsigned parity = 0;

/* first passage */

v.start = 1;
do {
v.candidate = 1; parity ˆ= 1; (counter < 2) counter++;
Traverse();
} while (!v.start);

/* intermediate passages */

while (counter > 1) {
unsigned candidate_parity = 0;
unsigned new_parity = 0;
counter = 0;
do {

if (v.candidate){
candidate_parity ˆ= 1;
if (candidate_parity != parity) v.candidate = 0;
else {new_parity ˆ= 1; if (counter < 2) counter++; }

}
Traverse();

} while (!v.start);
parity = new_parity;

}

/* last passage */

}

while (!v.candidate) Traverse();
v.candidate = 0;

Fig. 5. Robot R1. Search for the last vertex for O(logn) passages.

310

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 6 2004

BOURDONOV

We will use the following two methods for specify-
ing the set U.

The first method. In the structure of a vertex symbol,
we define the label filter. The set U is the set of the filter
vertices. The filtering is implemented as follows:

void Traverse_filter()

{ Traverse(); while (!v.filter) Trave-
rse(); }

The second method. In the structure of a vertex sym-
bol, we define the label range of the beginning of a
range. The set U is the set of all vertices belonging to
the interval between the beginning of the range (inclu-
sive) and the first terminated or initial vertex (not inclu-
sive). The filtering is implemented as follows:

void Traverse_range()

{ Traverse(); if (v.terminal || v.start)

while (!v.range) Traverse(); }

A filtering robot with a filtering function
Traverse_… is denoted as R〈Traverse_…〉.

3.3. Complete Linear Backtracking
for O(nlogn) Passages

Now, using robot R1, we construct the first complete
linear robot R2.

Theorem 2. There exists a finite robot R2 that solves
the complete linear backtracking problem for O(nlogn)
passages.

Proof. The formal description of robot R2 is pre-
sented in Fig. 6. To terminate the last nonterminated
vertex, the filtering robot R1〈Traverse_range〉 is
invoked, and the label start is used for the label range.
Robot R2 stops when the initial vertex is terminated.
Let us denote by k(i) the number of passages of robot
R1 in a linear graph containing i vertices. Then, k(i) ≤
Clog2(i) for i > N, where C and N are constants. If n >
N, the number of passages of robot R2 does not exceed

k(i)|i = 1, …, N} + Clog2(i)|i = N + 1, …, n} ≤

k(i)|i = 1, …, N} + Cnlog2n = O(nlogn). �

{∑ {∑
{∑

v1 v2 v3 v4 v5 v6 v7 v8 v11v9 v10 v12

1
2
3
4
5
6
7
8
9
10
11
12

1

2
3
4
5
6
7
8
9

11
10

1
2
3
4
5
6
7
8
9
10

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7

1
2
3
4
5
6

1
2
3
4
5

1
2
3
4

1
1

1
2
3 2

v1 v2 v3 v4 v5 v6 v7 v8 v11v9 v10 v12

1
2

3
4
5
6
7

8
9
10
11

1

2
3
4
5
6

7
8
9
10

1
2
3
4
5

6
7
8
9

1
2
3
4

5
6
7
8

1
2
3

4
5
6
7

1
2

3
4
5
6

1

2
3
4
5

1
2
3
4

1
2
3

1
12

Terminated vertex

Unity subtraction stageUnity addition stage

Fig. 7. Illustration of the complete linear backtracking for O(n) passages in the case of an infinite number of symbols.

struct vertex { /* structure of the vertex symbol */
unsugned terminal: 1 = 0; /* label of terminal symbol */
unsugned start: 1 = 0; /* initial vertex */
unsigned candidate: 1 = 0;

};
struct vertex v; /* current vertex */

void Traverse_range() /* filtering function Traverse for robot R1 */
{ Traverse(); if (v.terminal) while (!v.start) Traverse(); }

void R2() {
do {

R1<Traverse_range>(); v.terminal = 1;
while (!v.start) Traverse(); /* return to initial vertex */

} while (!v.terminal);
}

Fig. 6. Robot R2 on the basis of robot R1. Complete linear backtracking for O(logn) passages.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 6 2004

BACKTRACKING PROBLEM 311

3.4. Complete Linear Backtracking for O(n) Passages
in the Case of an Infinite Number of Robot Symbols

Theorem 3. There exists a robot R3 with an infinite
number of symbols and a finite number of states that
solves the complete linear backtracking problem for
O(n) passages.

Proof. The operation of robot R3 consists of the fol-
lowing two stages (the formal description of robot R3

and an illustration of its operation are presented in
Figs. 8 and 7, respectively).

Unity addition stage. In the first passage, the first
vertex gets number one. Each next passage increases
numbers of the vertices by one, puts number one to the
first unnumbered vertex, and checks whether there
remained unnumbered vertices. This stage is over when
all vertices got numbers n, n – 1, …, 2, 1.

v1 v2 v3 v4 v5 v6 v7 v8 v11v9 v10 v12

1
0

0
1

1

0
0

0

1

1

1

0

1

1
1

1

0
0

0

0

0

0

1

1

1

1
1

1

1

1

1

1

1
0

0

0
1

1

0

0

0

1

1
1

1

0

0

0

0

1

1
0

0

1

1

1

1

1

0

1

1

0

1

1

1

1

0

1

0

0

1

1

1

0

1

1 1

1

v1 v2 v3 v4 v5 v6 v7 v8 v11v9 v10 v12

1
0

1
0

1

0

0
1

0
1

1
0

1

10
0

1
1

0

0

1
1

0
0

0

0

0
1

1
0

0

0

1
0

0
0

0

0

1
1

0
0

0

0

0
0

0
0

0

0

0
0

0
0

0

0

Unity addition stage Unity subtraction stage

Terminated vertex

Leasr-significant digit

Shift-vertex

Fig. 9. Illustration of the logarithmic linear backtracking for O(n) passages.

struct vertex { /* structure of the vertex symbol */
unsigned terminal: 1 = 0; /* label of terminal symbol */
unsigned logstart: 1 = 0; /* initial vertex */
unsigned number = 0; /* infinite set of possible values */

};
struct vertex v; /* current vertex */

#define GO_TO_LOGSTART while (!v.logstart) Traverse();

void Plus_pass() { /* unity addition stage */
while (v.number){ v.number++; Traverse(); }
v.number = 1; Traverse();

}

void Minus_pass() { /* unity subtraction stage */
while (v.number > 1) { v.number––; Traverse(); }
v.number = 0;

}

void R3() {
unsigned counter = 1;
v.logstart = 1;
do { /* unity addition stage */

Plus_pass(); if (v.logstart) counter = 0; GO_TO_LOGSTART
} while(counter);
do { /* unity subtraction stage */

Minus)pass(); v.terminal = 1; GO_TO_LOGSTART
} while (!v.terminal);

}

Fig. 8. Robot R3. Complete linear backtracking for O(n) passages in the case of an infinite number of symbols.

Passages that do not modify symbols
in the vertices are not shown.

312

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 6 2004

BOURDONOV
struct vertex {/* structure of the vertex symbol */

unsigned terminal: 1 = 0; /* label of terminal symbol */
unsigned logstart: 1 = 0; /* initial vertex */
unsigned number: 1 = 0; /* indicator of number digit */
unsigned low: 1 = 0; /* indicator of least-significant digit of number */
unsigned bit: 1 = 0; /* content of number digit */
unsigned shift: 1 = 0; /* from this point,

};
struct vertex v; /* current vertex */

#define END_OF_NUMBER v.low || !v.number || v.logstart || v.terminal
#define END_OF_LAST_NUMBER !v.number || v.logstart || v.terminal

unsigned vertex_counter = 0; /* = 1, 2, 3 number of vertices */

void Number_calculation() { /* calculation of number and the number of vertices */
unsigned bit_position = 0; /* = 0,1,2 */
unsigned number = 0; /* = 0,1,2,3,4 */
do {

switch (bit_position) { /* calculation of number */
case 0: bit_position++; number = v.bit; break;
case 1: bit_position++; number += 2*v.bit; break;
default: if (v.bit) number = 4;

}
if (vertex_coumter < 3) vertex_coumter++;
Traverse();

} while (!END_OF_NUMBER);
return number;

}

unity addition stage continues after shift */

void Shift_pass(low) unsigned low; { /* shift of numbers by one vertex */
struct vertex prev = {0,0,1,0,1,0}; /* position containing 1 */
struct vertex curr;
prev.low = low;
while (v.number)

{ curr = v; v = prev; prev = curr; Traverse(); }
v = prev; Traverse();

}

char * Plus_pass() { /* 1–2 passages of unity addition */
unsigned carry = 1;
unsigned last;
unsigned shift = 0; /* =1 in the carry from the most significant digit on
a nonlast number */
unsigned end; /* = 1 if all vertices are numbered */

if (!v.number) {/* there are no numbered vertices */
Shift_pass(1); /* new number 1 */

else { /* numbered vertices are available */
do { /* calculation of the last number */

last = Number_calculation();
} while (!END_OF_LAST_NUMBER);
if (last == 2) { /* the last number 2 */

Shift_pass(1); /* new number 1 */
}
else { /* the last number 1 */

GO_TO_LOGSTART
while (!v.shift) Traverse(); /* search for shift vertices */
v.shift = 0;
while (1){ /* loop of unity addition */

do { /* addition of unity to one number */
v.bit ˆ= carry; carry &= !v.bit; Traverse();

} while (!END_OF_NUMBER);
if (carry) { /* carry from the most significant number */

if (!END_OF_LAST_NUMBER) { shift = 1; v.shift = 1; }

}
}

}
}
while (!v.logstart) /* GO_TO_LOGSTART with searching for unnumbered ver-
tices */
{ if (!v.number) end = 0; Traverse(); }
if (!shift) v.shift = 1; /* no carry from the most significant digit of a
nonlast number */
if (end) return ''all vertices are numbered'';
else return ''there remained unnumbered vertices'';

}

Shift_pass(0); break;

Fig. 10. Robot R4 on the basis of robot R3. Logarithmic linear backtracking for O(n) passages (end).

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 6 2004

BACKTRACKING PROBLEM 313

Unity subtraction stage. In the course of each pas-
sage, the robot decreases numbers of the vertices by
one. As soon as the number of a vertex becomes equal
to zero, this vertex is terminated. This stage is over
when the initial vertex is terminated.

In each stage, the robot performs not more than n
passages; therefore, the total number of the passages is
not greater than 2n. �

3.5. Logarithmic Linear Backtracking
for O(n) Passages

A linear backtracking is said to be logarithmic if, in
a sequence of vertices vi[m], …, vi[1] being terminated,
the distance between two adjacent terminated vertices,

as well as the distance between the extreme terminated
vertices and extreme vertices of the graph, is bounded
from above by the logarithm of the number of the graph
vertices, i.e., n – i[m] < [log2n] + 1, i[j] – i[j – 1] <
[log2n] + 1, for m ≥ j > 1, i[1] – 1 < [log2n] + 1. If a robot
solves this problem, it is referred to as a logarithmic
robot.

Theorem 4. There exists a finite robot R4 that solves
the logarithmic linear backtracking problem for O(n)
passages.

Proof. This robot emulates the operation of robot
R3. The idea is as follows. In order to write a number i,
its representation Bi in the form of a binary positional
code, which is written bitwise in a sequence of vertices,
is used. This code is a sequence of binary digits 0 and 1

char * Minus_pass() { /* from one through four passages of unity subtrac-
tion */

unsigned num_counter = 0; /* = 1, 2 the number of numbers */
unsigned last = 0; /* = 1, 2, 3, 4 the last number */
unsigned next_to_last; /* = 1, 2, 3, 4 the next-to-last number */
unsigned steal = 1;
do { /* Passage for computing the number of vertices,

next_to_last = last; /* the next-to-last number */
last = Number_calculation();
if (num_counter < 2) num_counter++; /* the number of numbers */

} while (!END_OF_LAST_NUMBER);
GO_TO_LOGSTART
if (vertex_counter == 1) return ''one vertex'';
if (vertex_counter == 2) /* two vertices, number 2 */
{ Traverse(); return ''more than one vertex''; }
if (num_counter == 1) /* least-significant digit of the only number */

return ''more than one vertex'';
next_to_last –= last;
while (last > 0) { /* From one to two passages of unity subtraction */

do {
do { /* subtraction of unity from one number */

v.bit ˆ= steal; steal &= v.bit; Traverse();
} while (!END_OF_NUMBER);

} while (!END_OF_LAST_NUMBER);
GO_TO_LOGSTART
last––;

}
/* One passage of searching for next-to-last number */
while (Number_calculation() != next_to_last);
return ''more than one vertex''; /* least-significant digit of the last
number */

}

void Log_Terminal() { v.terminal = 1; }

void R4() {
v.logstart = 1;
/* unity addition stage */
while (Plus_pass() == ''there remained unnumbered vertices'');
do { /* unity subtraction stage */

Minus_pass(); Log_Terminal(); GO_TO_LOGSTART
while (!v.terminal);

}

the number of numbers, and the last two numbers */

Fig. 10. (Contd.)

314

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 6 2004

BOURDONOV

of length [log2i] + 1. Note that the least-significant bit
corresponds to the beginning of the sequence and the
most significant bit contains 1 and corresponds to the
end of the sequence. For example, the binary represen-
tations for numbers i = 7 and 8 are B7 = 111 and
B8 = 0001. The vertex containing the least-significant
bit is marked by the label low. For the logarithmic back-
tracking, only the first vertex (containing the least-sig-
nificant bit), rather than all vertices Bi, is terminated
(the exception is a code consisting of two digits; in this
case both vertices are terminated). The formal descrip-
tion of this robot and an illustration of its operation are
presented in Figs. 10 and 9, respectively.

The number i and unity are added together bitwise
by means of the standard algorithm for the binary addi-
tion: 0 + 1 = 1, 1 + 1 = 0 and the carry of 1 to the next
position. The carry is stored in the state of the robot.

This procedure starts when the robot is in the vertex of
the least-significant digit of the number. If there is no
carry from the most significant digit of the number, the
length of the binary code is not changed, and the robot
adds one to the next number. Otherwise, for the number
of the form i = 2s – 1, the addition of one causes the
carry from the most significant digit of the number and
increases the length of the binary code by one. The
robot marks the next vertex by the label shift and carries
over all bits of the subsequent numbers without any
changes by one vertex in the forward direction. In the
next passage, the addition of unity starts from the label
shift. If the carry from the most significant digit of the
last number occurs, the label shift marks the initial ver-
tex. On the whole, the sequence of numbers has the
form k, k – 1, …, r + 1, [r,] r – 1, …, 2, 1, where one
number r, k > r ≥ 1, may be lacking (clearly, the lacking

Fig. 11. Robot R5 (R). Combination of logarithmic (R4) and complete (R) linear robots.

truct vertex { /* structure of the vertex symbol */
unsigned terminal: 1 = 0; /* common field of robots R4 and R */
unsigned logstart: 1 = 0; /* field of robot R4 */
unsigned number: 1 = 0; /* field of robot R4 */
unsigned low: 1 = 0; /* field of robot R4 */
unsigned bit: 1 = 0; /* field of robot R4 */
unsigned shift: 1 = 0; /* field of robot R4 */
unsigned range: 1 = 0; /* label of range beginning */
... /* field of robot R, except field terminal */

};
struct vertex v; /* current vertex */

void Traverse_range() { /* filtering function Traverse for robot R */
Traverse(); if (v.terminal || v.logstart) while (!v.range) Traverse();

}

void Log_Terminal(){ /* backtracking inside number */
v.range = 1;
R<Traverse_range>(); /* call of robot R in the range */
v.range = 0;

Digits of number 0 of the corresponding range

Filter vertices

1st range

2nd range

3d range

4th range

5th range

6th range

7th range
(one vertex)

Fig. 12. Illustration of the complete linear backtracking for O(nlog*(n)) passages.

}

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 6 2004

BACKTRACKING PROBLEM 315

number has the form r = 2s – 1). The last number is
always 1 (r > 1) or 2 (r = 1). In the function Plus_pass,
the robot performs one or two passages. If none of the
vertices is numbered yet, the initial vertex becomes the

least-significant and only digit of the only number 1.
Otherwise, the last number is determined first. If it is
equal to 1, unity is added to all numbers until the first
carry from the most significant digit. If the last number

Fig. 13. Robot R7 on the basis of logarithmic robot (R4) and robot searching for the last vertex (R1). Complete linear backtracking
for O(nlog*(n)) passages.

struct vertex { /* structure of the vertex symbol */
unsigned filter: 1 = 0; /* filtering field for the function Traverse_filter */
/* fields of robot R4 */
unsigned terminal: 1 = 0; /* label of terminal symbol */
unsigned logstart: 1 = 0; /* label of the range beginning */
unsigned number: 1 = 0; /* indicator of number digit */
unsigned low: 1 = 0; /* indicator of least-significant digit of number */
unsigned bit: 1 = 0; /* content of number digit */
unsigned shift: 1 = 0; /* from this point, unity addition stage continues
after shift */
/* fields of robot R1 */
unsigned start: 1 = 0; /* initial vertex */
unsigned candidate: 1 = 0;

};
struct vertex v; /* current vertex */
void Traverse_filter() { /* filtering field for the function Traverse for
robot R1 */
{ Traverse(); while (!v.filter) Traverse(); }

void Traverse_range() /* filtering field for the function Traverse for
robot R4 */
{ Traverse(); if (v.terminal || v.start) GO_TO_LOGSTART }

char * Minus_pass7() { /* unity subtraction */
unsigned new_range_start;
if (Minus_pass<Traverse_range>() == ''more than one vertex'') {

/* opening new nested range */
if (!v.logstart) /* new beginning of nested range */
{ new_range_start = 1; v.logstart = 1; v.filter = 1; }
else new_range_start = 0; /* old beginning of nested range */
do { /* placement of initial symbol in the range */

v.number = 0; v.low = 0; v.bit = 0; v.shift = 0;
Traverse();

} while (!v.terminal && !v.start);
GO_TO_LOGSTART
if (new_range_start) /* transition to the new beginning of nested range */

{ v.logstart = 0; GO_TO_LOGSTART }
return ''more than one vertex'';

}
else return ''one vertex''

}

void R7() {
v. start = 1; v.logstart = 1;
while (1) {

/* unity addition stage in the range*/
while (Plus_pass<Traverse_range>()
== ''there remained unnumbered vertices'');
while (Minus_pass7() == ''one vertex'') { /* unity subtraction */

v.terminal = 1; /* vertex termination */
v.logstart = 0; v.filter = 0; /* removal of range from one vertex */
if (v.start) return; /* initial vertex is terminated */
R1<Traverse_filter>(); /* searching for beginning
of the enclosing range */
v.logstart = 1; /* transition to the enclosing range */

} /* more than one vertex in the range */
}

}

316

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 6 2004

BOURDONOV

is 2, the robot finds it and places number 1 behind it.
Each call of the function Plus_pass adds one, and only
one, vertex to the list of numbered vertices.

The subtraction of unity from the number is also
implemented bitwise by means of the standard algo-
rithm for the binary subtraction: 1 – 1 = 0, 0 – 1 = 1 and
the borrow of 1 from the next position. The borrow is
stored in the state of the robot. Note that, at this stage,
the binary code of number i can contain more than
[log2i] + 1 digits; i.e., the higher digits may be zero. At
this stage, the robot terminates vertices of the lower
digits of the number (except for the case of two verti-
ces, when the last vertex is terminated). In the function
Minus_pass, in the course of one passage, the robot,
first, computes the number of vertices (1, 2, or greater)
counting only nonterminated vertices, the number of
numbers (1 or greater), and the last and next-to-last num-
bers. If there are one or two vertices, the last vertex is ter-
minated. If there are more than two vertices and only one
number, then the initial vertex is terminated. In all other
cases, the robot performs one or two passages subtract-
ing 1 until the last number vanishes. Then, in the course
of one passage, the robot finds the next-to-last number
and terminates the next vertex corresponding to the least-
significant digit of the last number. The stage is over,
when the initial vertex is terminated.

In the course of each call of the function Plus_pass
(one or two passages), one vertex is numbered; therefore,
the unity addition stage requires not more than 2n pas-
sages. At the second stage, one vertex is terminated for
not more than four passages. Since the number of num-
bers is obviously not greater than n, this stage requires
not more than 4n passages. Totally, we have O(n) pas-
sages. It is evident that the length of the binary code for
each number k, …, 1 does not exceed the length of the
binary code of number k ≤ n, and the length of the binary
code of number n is equal to [log2n] + 1. Thus, the robot
accomplishes the logarithmic linear backtracking. �

3.6. Combination of the Logarithmic
and Complete Linear Robots

Lemma 1. Let S(k) = L(i)|i = 1, …, k} – L(r),
where [log2k] + 1 ≥ L(k) ≥ 1 for i < k, L(i) = [log2i] + 1,
and k > r ≥ 1. If S(k) = n, then, for sufficiently large n >
N2, L(i) ≤ log2n for i = 1, …, k.

Proof. Indeed, since L(k) ≥ 1, L(i) = [log2i] + 1 ≥
log2i, and log2(k – 1) + 2 ≥ [log2(k – 1)] + 1 ≥ L(k – 1) ≥
L(r), we have n = S(k) ≥ 1 + log2i |i = 1, …, k – 1} –
log2(k – 1) – 2 = log2(k – 1)! – log2(k – 1) – 1 =
log2((k −2)!/2). Since logarithm of the factorial grows
faster than a linear function, we have log2((k – 2)!/2) ≥
4k for sufficiently large k (k ≥ 49). Hence, log2n ≥ log2k + 2.
For i = 1, …, k, we have L(i) ≤ [log2k] + 1 ≤ log2k + 2.
Thus, for sufficiently large k, log2n ≥ log2k + 2 ≥ L(i) for
i = 1, …, k.

On the other hand, since L(k) ≤ [log2k] + 1, L(i) =
[log2i] + 1 ≤ log2i + 1, and L(r) ≥ L(1) = 1, we have n =

S(k) ≤ log2k + 1 + log2i + 1|i = 1, …, k – 1} – 1 =
k – 1 + log2k!. Since the function k – 1 + log2k! grows
monotonically, for sufficiently large n > N2 (N2 = 256),
k is also large (k > 49), and, hence, log2n ≥ L(i) for i =
1, …, k. �

Lemma 2. Let T(n) be a monotone nondecreasing
function, and let, starting from some n > N, L(i) ≤ log2n,

L(i)} ≤ n. Then, L(i)T(L(i))} ≤ nT(log2n) for
n > N.

Proof. Indeed, since T is a monotone nondecreasing
function, we have L(i)T(L(i))} ≤ L(i)}T(log2n) =

L(i)T(log2n)} ≤ nT(log2n). �

Theorem 5. Let a finite robot R solve the complete
linear backtracking problem for O(nT(n)) passages,

{∑

{∑

{∑

{∑ {∑

{∑ {∑
{∑

Terminated part of the tree

crotch
u

crotch
u

crotch
u

Outer range

Untraversed part of the tree

Nested ranges

Fig. 14. Illustration of the backtracking along a tree for O(nlog*(n)) passages.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 6 2004

BACKTRACKING PROBLEM 317

where T(n) is a monotone nondecreasing positive func-
tion. Then, there exists a finite robot R5(R) that solves
the complete linear backtracking problem for
O(nT(log2n)) passages.

Proof. Robot R5 (R) is constructed on the basis of
robot R4, which performs the logarithmic linear back-
tracking for O(n) passages. The latter robot is modified
by modifying the function Log_Terminal. Each time
when robot R4 terminates the vertex corresponding to
the least-significant digit of number i, robot R5 places
the label of the range beginning range and calls the fil-
tering robot R〈Traverse_range〉, which performs the
complete linear backtracking in the range correspond-
ing to all digits of number i. After this, the label range
is deleted.

The code of this robot in Fig. 11 presents only the
vertex symbol structure; the function Log_Terminal,
which makes the modified robot R4 different from the
original one; and the filtering function Traverse_range,
which is used by the filtering robot as described above
(see Section 3.2). Note that, in the course of construct-
ing R5(R), the fields of robots R4 and R are placed into
the symbol structure. Possible collisions of names are
resolved by renaming the fields.

The number of passages when robot R5(R) works
like robot R4 is obviously the same as that for robot R4;
i.e., PR4(n) = O(n).

At the end of the unity addition stage performed by
robot R4, the sequence of numbers has the form k, k –
1, …, r + 1, [r,] r – 1, …, 2, 1, where one number r, k >
r ≥ 1, may be lacking. The range length is L(i) = [log2i] + 1.

The sum of lengths of the range is S(k) = L(i)|i = 1,
…, k} – L(r) = n. Thus, the assumptions of Lemma 1 are
fulfilled, and, hence, for n > N2, the lengths of all ranges
satisfy the inequality L(i) ≤ log2n. The filtering robot
R(Traverse_range) works in all ranges corresponding
to the digits of number i. The number of passages of the
robot in the ith range satisfies the inequality PR(i) ≤
CL(i)T(L(i)) for i > N, where C and N are some con-
stants. Since T is a monotonically nondecreasing func-
tion, the assumptions of Lemma 2 for the case of i > N
are also fulfilled. Therefore, the total number of pas-
sages of the filtering robot satisfies the inequality

(i) ≤ PR(i)|i = 1, …, N} + CL(i)T(L(i))|i =

N, …, k} ≤ PR(i)|i = 1, …, N} + CnT(log2n) for
n > N2. Since T is a monotone nondecreasing and posi-

tive function, we obtain the estimate (i) =
O(nT(log2n)).

Thus, the total number of passages of robot R5(R) is
PR5(n) = PR4(n) + (i) = O(n) + O(nT(log2n)).
Since T is a monotone nondecreasing and positive func-
tion, we have the estimate PR5(n) = O(nT(log2n)). �

{∑

PR∑ {∑ {∑
{∑

PR∑

PR∑

3.7. Compositional Degree of Logarithmic Robot

and Complete Linear Backtracking for O(n n)
Passages for Any Fixed t ≥ 1

A compositional degree of logarithm is the function

 = log2 � log2 � … � log2, where the superposition
sign is applied t – 1 times.

Theorem 6. For any integer t ≥ 1, there exists a finite
robot R6(t) that solves the complete linear backtracking

problem for O(n n) passages.

The theorem is proved by the induction on t. In
accordance with Theorem 2, for t = 1, we have robot
R6(1) = R2 with the number of passages O(nlog2n).
Suppose that the assertion of the theorem is true for t;
i.e., there exists a robot R6(t) with the number of pas-

sages O(n n). Let us prove the assertion for t + 1.

Denoting T(n) = n, we apply Theorem 5 using
robot R6(t) for robot R in robot R5(R). Then, we obtain
robot R6(t + 1) with the number of passages

O(nT(log2n)) = O(n log2n) = O(n n), which
was required to prove. �

3.8. Complete Linear Backtracking
for O(nlog*(n)) Passages

The number of passages of robot R6(t) is bounded

from above by O(n n). For a sufficiently large t, we

have n = O(1); i.e., we can apply the composition
of the logarithmic robots until the length of the intervals
obtained becomes less than a certain constant. In the
small intervals obtained, we can now apply the back-
tracking algorithm with the number of passages
bounded from above by some constant. As a result, we
obtain a robot with the number of passages of the order
of nlog*(n), where the function log* yields the required
number of logarithm operations and is defined as an

integer solution of the inequality 1 ≤ (n) < 2 (the
logarithm base for log* is equal to 2).

However, there remains a difficulty associated with
the number of states and symbols of the robot. Each
robot composition increases the number of states and
symbols, which become functions of log*(n) and, thus,
n. This can be avoided if we get rid of the recursion in
the robot composition replacing it by iteration. Note
that this can be done without increasing the order of the
number of passages.

Theorem 7. There exists a finite robot R7 that solves
the complete linear backtracking problem for
O(nlog*(n)) passages.

Proof. The formal description of robot R7 is pre-
sented in Fig. 13, and an illustration of its operation is
shown in Fig. 12. Like robot R6(t), robot R7 is con-
structed as a system of logarithmic robots R4 filtering

log2
t

log2
t

log2
t

log2
t

log2
t

log2
t log2

t 1+

log2
t

log2
t

log2
log*

318

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 6 2004

BOURDONOV

Fig. 15. Robot R8. Backtracking along a tree for O(nlog*(n)) passages.

struct vertex { /* structure of the vertex symbol */
unsigned filter: 1 = 0; /* filtering field for the function Traverse_filter */
/* fields of robot R4 */
unsigned terminal: 1 = 0; /* label of terminal symbol */
unsigned logstart: 1 = 0; /* label of the range beginning */
unsigned lastlogstart: 1 = 0; /* label of the beginning of the last range */
unsigned number: 1 = 0; /* indicator of number digit */
unsigned low: 1 = 0; /* indicator of least-significant digit of number */
unsigned bit: 1 = 0; /* content of number digit */
unsigned shift: 1 = 0; /* from this point, unity addition stage continues
after shift */
/* fields of robot R1 */
unsigned start: 1 = 0; /* initial vertex */
unsigned candidate: 1 = 0;

};
struct vertex v; /* current vertex */

struct arc { /* structure of the arc symbol */
unsigned first: 1 = 0; /* indicator of arc vβ, the first arc in the v-loop
of arcs */
unsigned active: 1 = 0; /* active arc indicator */

};
struct arc e; /* current arc */

if (!e.first) { e.first = 1; e.active = 1; }
while (!e.active) Next(); Traverse();

}

void Traverse_filter() /* filtering field for the function Traverse for
robot R1 */
{ Traverse_active(); while (!v.filter) Traverse_active(); }

#define GO_TO_LOGSTART while (!v.logstart) Traverse_active();

void Traverse_range() { /* filtering field for the function Traverse for
robot R4 */

Traverse_active(); if (v.terminal || v.start) GO_TO_LOGSTART
}

#define END_OF_NUMBER v.low || !v.number || v.filter || v.terminal
#define END_OF_LAST_NUMBER !v.numver || v.filter || v.terminal

char * Minus_pass8() { /* unity subtraction */
unsigned new_range_start;
if (Minus_pass<Traverse_range>() == ''more than one vertex'') {

/* opening new nested range */
if (!v.logstart) /* new beginning of nested range */
{ new_range_start = 1; v.logstart = 1; v.filter = 1; }
else new_range_start = 0; /* old beginning of nested range */
do { /* placement of initial symbol in the range */

v.number = 0; v.low = 0; v.bit = 0; v.shift = 0;
Traverse_active();

} while (!v.terminal && c.start);
GO_TO_LOGSTART
if (new_range_start) /* transition to the new beginning of nested range */

{ v.logstart = 0; GO_TO_LOGSTART }
return ''more than one vertex'';

}
else return ''one vertex''

}

void Traverse_active() { /* function Traverse for traversing active cycle */

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 6 2004

BACKTRACKING PROBLEM 319

by the nested ranges. The outermost range (the range of
level 1) is the entire path from the first to the last vertex.
After opening the range of level i, the unity addition
stage is executed. Then, the function Minus_pass is
invoked (from one through four passages). This func-
tion gives us information on the number of vertices in
the range (one or greater). If the range has more than
one vertex, the next nested range of level i + 1 is
opened, which contains vertices of all digits of the last
number of level i. (In the range of length 2, the nested
unit range containing the last vertex is opened.) The
range begins with the label logstart, and the label
logstart of the enclosing range is deleted (excluding the
case where both ranges begin with one vertex). In addi-
tion, the beginnings of all acting ranges are marked by
the label filter. When opening a nested range, an initial
symbol is placed to its vertices (except for the labels
logstart and filter). If the innermost range contains only
one vertex (the information provided by the function
Minus_pass), it is deleted, the vertex is terminated, and
the labels logstart and filter are removed. Then, the
robot returns to the enclosing range. To this end, by
means of the filtering robot R1〈Traverse_filter〉, the last
filter vertex (i.e., the beginning of the enclosing range)
is sought and marked by the label logstart.

Let us estimate the number of passages of the robot.
First, we consider the passages executed by robots R4
(viewed as an aggregate of the functions Plus_pass and
Minus_pass). By Theorem 4, the number of passages of
this robot in a range of length m satisfies the inequality
PR4(m) ≤ Cm for m > N, where C and N are some con-
stants. Let C be sufficiently large such that the inequal-
ity PR4(m) ≤ Cm holds for any positive integer m. The
outermost robot R41 performs not more than Cn pas-
sages and places numbers k, k – 1, …, r + 1, [r,] r – 1,
…, 2, 1, where one number r, k > r ≥ 1, may be lacking,
to the vertices. If n > 1, for any number kj > 1 from this
sequence, a range containing L(kj) = [log2kj] + 1 verti-
ces is created, in which the nested robot R42 works per-
forming not more than CL(i) passages. In view of the
additivity of the linear function, robot R42 also per-
forms totally not more than Cn passages. The same is
valid for all nested robots R4j. Thus, for all nested
robots R4, the total number of passages satisfies the ine-

quality (n) ≤ Cnt(n), where t(n) is the number of the
nesting levels. According to Lemma 1, each nesting
level reduces the size of range m > N2 to log2m. Hence,

PR4
Σ

void R8() {
v.start = 1; v.logstart = 1;
while (1) {

/* unity addition stage in the range*/
while (Plus_pass<Traverse_range>()
== ''there remained unnumbered vertices'') ;
while (Minus_pass8() == ''one vertex'') {

/* changing active arc */
while (!e.active) Next(); e.active = 0; Next(); e.active = 1;
if (!e.filter) { /* new active arc */

while (!e.filter) Next();
/* transition to the first range*/
v.logstart = 0; v.lastlogstart = 1;
while (!v.start) Traverse_active();
v.logstart = 1;
/* unity addition stage in the first range */
while (Plus_pass<Traverse_range>()
== ''there remained unnumbered vertices'') ;
/* transition to the last range */
v.logstart = 0;
while (!lastlogstart) Traverse_active();
v.logstart = 1; v.lastlogstart = 0;

}
else { /* all outgoing arcs have already been activated */

v.terminal = 1; /* vertex termination */
v.logstart = 0; v.filter = 0; /* removal of unit range */
if (v.start) return; /* initial vertex is terminated */
R1<Traverse_filter>(); /* searching for beginning

v.logstart = 1; /* transition to the enclosing range */
} /* more than one vertex in the range,

}
}

of the enclosing range */

transition to unity addition stage */

Fig. 15. (Contd.)

320

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 6 2004

BOURDONOV

t(n) ≤ N2 + log*(n) = O(log*(n)) and (n) =
O(nlog*(n)).

When opening each range (except for the outermost
one), one passage for marking the range by the initial
symbol is executed. After the unity addition stage, in
the end of each range containing m vertices, we have
number 1 or 2. In the range consisting of two vertices,
we open a nested unit range that contains the last ver-
tex. The unit ranges are deadlocks (do not contain
nested ranges). Thus, a vertex may be the end of not
more than three ranges (containing m, 2, or 1 vertices).
Therefore, the total number of ranges of all levels is
equal to O(n); hence, for the marking of all ranges by
the initial symbol, the total number of Pmark = O(n) pas-
sages is required.

Now, it remains to estimate the total number of pas-

sages (n) of the filtering robot R1〈Traverse_filter〉.
The search for the last filter vertex requires PR1(t) =
O(log2t) passages, where t is the number of the filter
vertices. Each search of this kind is executed after
deleting the unit range. Hence, the number of these
searches does not exceed the total number of ranges

O(n). Since t = O(log*(n)), we have (n) =
O(n)O(log2log*(n)) = O(nlog2log*(n)) = O(n(log*(n) –
1)) = O(nlog*(n)).

Totally, robot R7 performs P7(n) = (n) + Pmark(n) +

(n) = O(n log*(n)) + O(n) + O(nlog*(n)) =
O(nlog*(n)) passages. �

4. BACKTRACKING ALONG A CYCLIC TREE

A forest is a graph not containing closed paths. A
tree is a connected forest; any forest is a union of trees.
A rooted tree is a tree with a distinguished vertex called
a root. An output tree is a rooted tree in which any ver-
tex is reachable from the root. Correspondingly, an
input tree is a rooted tree in which the root is reachable
from any vertex. A spanning subgraph is a subgraph of
the graph with the same set of vertices. If a spanning
subgraph is a tree, it is referred to as a spanning tree. A
chord is a graph arc that does not belong to a spanning
tree separated in the graph.

A cyclic tree is a graph T* obtained from an input
tree T by adding chords that lead from the leaves to the
root r. We assume that the initial vertex is the tree root.
The number of vertices of the cyclic tree is denoted as
n. A vertex of a tree with the outdegree greater than one

PR4
Σ

PR1
Σ

PR1
Σ

PR4
Σ

PR1
Σ

is called a crotch. Clearly, leaves of a tree cannot be
crotches.

A robot on a cyclic tree uses not only the external
function Traverse but also the function Next. The robot
is said to perform a backtracking along the tree if, for
any input tree T, it stops on the cyclic tree T* and,
before it stops, terminates all vertices of the tree in the
order inverse to their natural partial ordering, i.e., from
the leaves to the root. A passage of a robot along the
tree is its displacement from the root to the leaves and,
further, along a chord back to the root or a displacement
from the root to a stop. The complexity of the back-
tracking is measured in terms of the number of the pas-
sages. In the course of each passage (except for, per-
haps, the last one), the robot passes a simple cycle con-
sisting of a simple path from the root to a leaf and the
chord leading to the root. The length of such a cycle
does not exceed n; therefore, the length of the traversed
path is bounded from above by the number of the pas-
sages multiplied by n.

Theorem 8. There exists a finite robot R8 that solves
the problem of a backtracking along the tree for
O(nlog*(n)) passages.

Proof. The formal description of robot R8 is pre-
sented in Fig. 15, and an illustration of its operation is
shown in Fig. 14. Robot R8 is a modification of robot
R7, which is obtained as follows. First of all, the robot
selects one cycle (a linear subgraph) in the tree, which
is referred to as an active cycle. Its arcs are marked by
the label active and are called active arcs. In addition,
for each traversed vertex v, the first outgoing arc of the
v-cycle is marked by the label first. The first active
cycle P1 will consist of such first arcs.

On an active cycle Pi, the robot works similarly to
robot R7. To this end, instead of the external function
Traverse, the function Traverse_active of the traversing
of an active cycle is used. The backtracking is per-
formed to the crotch u that is closest to the leaf rather
than to the initial vertex (tree root). The robot does not
terminate the vertex u at once but checks whether the
active arc originating from it is the last one in the u-
loop. If it is the last one, the vertex is terminated, and
the backtracking continues. Otherwise, the next arc e
becomes active. The active cycle after the vertex u is
prolonged along the arc e and, further, along the first
outgoing arcs eβγ, eβγβγ, eβγβγβγ, … to a new leaf ver-
tex and is terminated by a chord. The cycle Pi is
replaced by the cycle Pi + 1; these cycles has a common

simple [r, u]-path . Thus, the robot searches
through the active cycles P1, P2, … (all simple paths
from the root to the leaf vertices), implementing thus
the depth-first search of the tree, and stops when the
tree root is terminated.

The change of the active cycle in the crotch u inter-
rupts the unity subtraction stage in the last nested range,
for which u is the endpoint, and continues the unity
addition stage in the first (outermost) range. All ranges,

Pi 1+
1

1 2 t – 1 t

Fig. 16. A graph of the first kind.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 6 2004

BACKTRACKING PROBLEM 321

but the first one, are located in a finite range of num-
bered vertices of the active path, in the vertices of the
zeroth number of the external range. The addition of
unity shifts this finite interval until no unnumbered ver-
tices remain in the new active path. Then, the unity sub-
traction stage starts again in the last range.

Now, let us estimate the number of passages of the
robot. To this end, we note that robot R8 differs from
robot R7 in that the addition and subtraction of unity in
the first range are performed alternately rather than suc-
cessively (when the subtraction is performed after the
addition). The addition of unity is repeated until no
unnumbered vertices remain in the current active path.
Then, the subtraction of unity is performed until the
active path is changed. Next, unity is added again, and
so on. Note that the addition of unity does not affect the
terminal interval of numbered vertices (corresponding
to the bits of number 0 of the first level) but simply
shifts it along the active path. When the active path is
changed, the work in the nested ranges is interrupted,
but it continues after completing the unity addition
stage in the first range. Clearly, these modifications do
not affect the estimate of the number of passages in
each level, which remains equal to O(n). Since the
ranges of all current levels form a strictly nested struc-
ture, the number of levels, as before, is limited by the
number O(log*(n)). This yields the same estimate
O(nlog*(n)) both for the number of passages on all lev-
els and for the number of passages required for chang-
ing the levels, firs of all, for searching for the enclosing
range when closing the unit range (function
R1〈Traverse_filter〉). Thus, we have the same estimate
O(nlog*(n)) for the total number of passages. �

5. TRAVERSAL OF STRONGLY
CONNECTED GRAPHS

A strongly connected component (further referred to
as simply component) is the largest strongly connected
subgraph that is not a subgraph of any other strongly
connected subgraph. The notation K(v) denotes the
component to which the vertex v belongs. A graph of
the first kind is a graph with a linear order of the com-
ponents in which each (but the last) component has
exactly one outgoing arc leading to the next component
(Fig. 16). The latter arcs are said to be connecting.

In a graph of the first kind with an arbitrary initial ver-
tex belonging to the first component, there always exist
an output spanning tree Tout with the root coinciding with
the initial vertex, which contains all connecting arcs, and
a spanning forest of input trees Fin (a forest of input trees
that is a spanning subgraph) consisting of the input span-
ning trees of the components the roots of which are end-
points of the connecting arcs (the root of the first compo-
nent is the initial vertex). The arcs of the output tree are
called out-arcs, and the arcs of the input trees, in-arcs.
The root of the input tree of the forest Fin is also referred
to as the root of the component K for which this tree is a
spanning tree and is denoted as r(K).

A traversed graph of a path is a subgraph consisting
of the arcs belonging to the path and the incidental ver-
tices. Clearly, a traversed graph is a graph of the first
kind.

The known DFS and BFS robots use the following
two algorithms for traversing a strongly connected
graph: (1) the algorithm of constructing the output
spanning tree Tout and the spanning forest of input trees
Fin and (2) the algorithm of backtracking along the out-
put spanning tree Tout. The tree Tout is traversed by
means of DFS or BFS methods. When using the DFS
algorithm [4], in the tree Tout, one active [v1, vA]-out-
path from the root (initial vertex) v1 to a nonterminated
vertex vA is selected. The robot searches for an untra-
versed arc as follows: starting from the root of the last
component r(K(vA)), it moves along an active path to its
terminal vertex vA and traverses the untraversed arc e
originating from the vertex vA (αe = vA). If the arc e is
a chord, the robot returns along the chord, namely,
using the [βe, r(K(vA))]-in-path in the forest Fin that
leads to the root of the last component and the
[r(K(vA)), vA]-segment of the active path, it returns to
the beginning of the chord, to the vertex vA. Otherwise,
the arc e becomes a new out-arc; i.e., it is added to the
tree Tout, and its end βe becomes the only root of the last
component of the traversed graph. When all arcs origi-
nating from the terminal vertex vA are traversed, the
backtracking algorithm starts working; the goal of this
algorithm is to terminate the vertex vA, reducing thus
the active path by one arc, and to return to the root
r(K(vA)) of the last component.

The BFS algorithm [1, 3] differs from the DFS algo-
rithm in that, in searching for an untraversed arc, the
robot modifies the active path itself. To this end, for
each vertex v of the tree Tout, one active arc originating
from it is marked: the robot makes active the next arc in
the v-loop and moves along it. The active [v1, vA]-out-
path is the path consisting of the active arcs that starts
at the initial vertex.

The backtracking problem differs from that consid-
ered in the previous section in the following three
respects:

(1) The tree Tout is not a priori given but is con-
structed in the course of the operation of the first algo-
rithm.

(2) To make the tree cyclic, instead of the chords that
are used for the direct return from the leaves to the root,
the in-paths of the tree Fin are used.

(3) These in-paths are used for returning to the root
of the last component rather than to the initial vertex.

If the last (third) distinction is lacking, i.e., the tra-
versed graph at the moment when the backtracking begins
consists of only one component (a strongly connected
graph), then the backtracking in the DFS algorithm can be
implemented by means of a modification of robot R8 that
takes into account only the first two distinctions.

(1) The backtracking is performed only for one ter-
minated vertex vA; then, the algorithm of the tree con-

322

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 6 2004

BOURDONOV

struction works again until all arcs originating from the
new terminal vertex of the active path become tra-
versed.

(2) To return to the root of the last component from
the terminal vertex vA of the active path, instead of the
chord leading to the initial vertex v1, the [vA, v1]-in-
path is used.

The presence of several components K1, K2, …, Kt in
the traversed graph (the third distinction) makes the
backtracking problem more complicated. If the modifi-
cation of robot R8 is used, then, in each component Ki,
its own system of nested ranges may be formed. Later
on, when traversing the chord leading from the end of
the active path (from the component Kt) to a component
Ki, several components Ki, Ki + 1, …, Kt will merge. The
robot will occur in the root of the component Ki and
will have either to merge the ranges of the components
Ki, Ki + 1, …, Kt into one range or to seek the beginning
of the last range, the root of the last component Kt. Both
these variants may considerably increase the estimate
O(n2log*(n)) for the backtracking.

The number of the components in the traversed
graph and the configuration itself of the output tree and
the forest of the input trees depend not only on the given
(unordered) graph but also on its ordering, i.e., on the
order of arcs in the v-loops for all vertices v. This order
is defined ab extra. It determines the selection of a cur-
rent untraversed arc by the robot from the set of the
untraversed arcs originating from the current vertex: the
robot selects the first untraversed arc in the v-loop. We
will show that, for any strongly connected graph, there
exists an arc ordering for which the traversed graph
always contains only one component. In stricter terms,
each component of the traversed graph (except, per-
haps, the first one) consists of one vertex incidental to
only the connecting arcs. This implies that, after the
chord is traversed, all components are glued into one.
Moreover, we have only one component at the begin-
ning of the backtracking. We will show also that such
an arc ordering can be constructed by a finite robot.

To prove this assertion, we consider an arbitrary
input spanning tree Tin of the graph. If the arcs in the v-
loops of all, but root, vertices are arranged such that the
arcs of the spanning tree Tin are the first arcs and the
other outgoing arcs are numbered arbitrarily, then we
get the desired order of the arcs. Indeed, let us assume
the contrary. Suppose that, at some moment, there is a
(not first) component K consisting of more than one
vertex. Then, K contains an arc e1, and, since this is not
the first component and the vertex αe is not initial, this
vertex has an outgoing arc belonging to the spanning

tree Tin, which is the first arc in the αe-loop. The arc

 either coincides with the arc e1 or has been traversed
earlier; hence, it cannot be a connecting arc and, thus,
also belongs to the component K. Since the component
is strongly connected, it contains an arc e2 originating

from β . Continuing this reasoning, we obtain an infi-

nite sequence of the first arcs , , … belonging to the
component K. Since the number of different arcs in the
graph is finite, we have a closed path consisting of the first
arcs, which is impossible since they are arcs of a tree.

Such an order of arcs can easily be specified by
marking arcs of the spanning tree Tin. This can be done
by the robots that traverse the graph in the framework
of the DFS [4] or BFS [1, 3] algorithms. These robots
construct a forest of input trees Fin marking its arcs as
in-arcs, and, in the end of the traversal, this forest con-
sists just of one spanning tree Tin.

Thus, there exists a robot that traverses the graph
twice, such that the first traversal has the estimate
O(nm + n2loglogn), and the second traversal, the esti-
mate O(nm + n2log*(n)).

6. CONCLUSIONS

The general problem of the traversal of an unknown
strongly connected directed graph by a finite robot is still
not solved. The best known results are the algorithm of
the single traversal with the estimate O(nm + n2loglogn)
suggested by the author of this paper in [1] and the algo-
rithm of a repeated traversal with the estimate O(nm +
n2log*(n)) suggested in this paper. An exact estimate for
this problem (minimum of the upper bounds of the algo-
rithms over all possible traversal algorithms) remains
unknown. Moreover, although it seems unlikely that a
finite robot could traverse a graph with the estimate
Ω(nm), this fact has not been proved yet.

REFERENCES
1. Bourdonov, I.B., Traversal of an Unknown Directed

Graph by a Finite Robot, Programining and Computer
Software, 2004, vol. 30, no. 4, pp. 188–203.

2. Rabin, M.O., Maze Threading Automata. Lecture pre-
sented at MIT and UC Berkley, 1967.

3. Bourdonov, I.B., Study of the Automaton Behavior on
Graphs, MS Dissertation, Moscow: Moscow State Uni-
versity, 1971.

4. Afek, Y. and Gafni, E., Distributed Algorithms for Uni-
directional Networks, SIAM J. Comput., 1994, vol. 23,
no. 6, pp. 1152–1178.

e1
1

e1
1

e1
1

e1
1 e2

1

