

0361-7688/04/3001- © 2004

åÄIä “Nauka

/Interperiodica”0002

Programming and Computer Software, Vol. 30, No. 1, 2004, pp. 2–17. Translated from Programmirovanie, Vol. 30, No. 1, 2004.
Original Russian Text Copyright © 2004 by Bourdonov, Kossatchev, Kuliamin.

1. INTRODUCTION

This work is a sequel to the paper [1], which was
devoted to the traversal of deterministic graphs as the
first step of the specification-based testing of finite
automata (more precisely, objects considered as finite
automata).

An automaton is determined by a set of its states and
transitions. The transition is a quadruple (

v

,

x

,

y

,

v

'),
where

v

 is a pre-state,

x

 is a stimulus,

y

 is a reaction,
and

v

' is a post-state. Usually, an automaton is given by
a directed graph, called the state transition graph, with
the vertices and arcs of the graph being the states and
transitions, respectively. An automaton (state transition
graph) is fully specified if, in each state

v

, every stimu-
lus

x

 is admissible, i.e., there exists at least one transi-
tion of the form (

v

,

x

,

y

,

v

'). Otherwise, the automaton
is partially specified. An automaton (state transition
graph) is said to be deterministic if a pre-state and a
stimulus uniquely determine the reaction and the post-
state. In the paper [1], we considered deterministic par-
tially specified automata. This study is devoted to the
nondeterministic case.

If the state transition graph is known, then whether
it satisfies certain requirements is of interest. In this
case, the problems are solved analytically, and no test-
ing is needed. The testing is required when the state
transition graph is not known. Considering the automa-
ton as a black box and feeding stimuli to its input, we
obtain information about the resulting transition, i.e.,
generally, about the automaton reaction and post-state.
The goal of the testing is to check whether the automa-
ton satisfies certain a priori given specification require-
ments. This is the so-called

conformance testing

 in the
broad sense. In the general case, the specification does
not mean to check all transitions of the automaton. If,
for example, we want to know whether the number of
the automaton states is not less than a given number,
then the testing is terminated as soon as we make sure
of this (the remaining unchecked transitions are of no
interest). However, such a case is sort of an exception
rather than a rule. Usually, the complete automaton
functionality is of interest, and we need to test all

automaton transitions if possible. The testing of this
kind is based on the following assumptions.

State change.

 An automaton state changes only in
response to a test action (a stimulus on the automaton
input). On the one hand, this implies that the automaton
is subject to only test actions, and nothing interferes
with testing (to be more precise, external influences do
not change the automaton functionality). On the other
hand, this means that the test cannot change the autom-
aton state other than by inputting a stimulus to the
automaton.

Admissibility of stimuli.

 At every moment, we can
learn what stimuli are admissible. Not all admissible
stimuli are necessarily used in the testing. This actually
means that, for a given implementation

R

 and model

M

,
a subautomaton

R

(

M

)

⊆

R

 is tested. The latter is deter-
mined by the transitions due to the model stimuli and
by the states reachable from the initial state by means
of the above transitions.

Observability of reactions.

 The reaction of the
automaton to a stimulus is to be observable. In fact,
when testing an automaton, we check just this reaction.
Otherwise, the automaton would perform some transi-
tions and we would not be able to learn whether they
are correct. On the other hand, we can judge whether
the transitions are correct by the post-states, under the
condition that the latter are observable.

A separate question is that of the

observability of the
automaton states.

 If, at any time, we can learn the
automaton state by reading it or by means of the special
operation

status message

 (assuming that this operation
does not change the state) [2], then such a testing is
called an open-state testing. Otherwise, we speak of a
hidden-state testing.

The special case of the conformance testing (in the
narrow sense) is the case where the specification is a
model automaton explicitly given by its state transition
graph and it is required to check whether the automaton
being tested is equivalent to the model one [2]. Two
states (of one automaton or two different automata) are
equivalent if any sequence of stimuli admissible start-
ing from one state is admissible starting from the other
state and results in the same sequence of reactions in

Irredundant Algorithms for Traversing Directed Graphs:
The Nondeterministic Case

I. B. Bourdonov, A. S. Kossatchev, and V. V. Kuliamin

Institute for System Programming, Russian Academy of Sciences, Bol’shaya Kommunisticheskaya ul. 25,
Moscow, 109004 Russia

E-mail: igor@ispras.ru; kos@ispras.ru; kuliamin@ispras.ru

Received May 5, 2003

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 30

No. 1

2004

IRREDUNDANT ALGORITHMS 3

both cases. Two automata are equivalent if, for each
state of one automaton, there exists an equivalent state
of the other. A model automaton describes, thus, a class
of implementation automata that are equivalent to it.

Three basic problems here are as follows:

1.

Nondeterminism problem.

 In the general case,
we can never be sure whether all transitions of the
implementation automaton have been checked. To
solve this problem, some special assumptions are
sometimes introduced [2]. For example, it is assumed
that, if the number of passages of a given vertex

v

 with
a given stimulus

x

 is sufficiently large, all transitions of
the form (

v

,

x

,

y

,

v

') will be used. It is also possible to
introduce probabilities of the transitions and carry out a
sufficient number of tests to ensure the probabilistic
completeness of the test. Another approach is based on
the assumption of

test equivalence

 of the transitions. In
this approach, it is sufficient to check only one transi-
tion belonging to an equivalence class. If the latter
includes all transitions from a given state by a given
stimulus, then it suffices to check each stimulus in each
state. This is an analogue of the graph traversal, which
is referred to as a

stimulus-based traversal.

2.

Testing completeness problem.

 How to check
the equivalence of model and implementation automata
by means of testing? In the deterministic case, there
exist well-developed methods for solving this problem.
For an open-state testing, the problem reduces to the
traversal of the model graph [2], i.e., to the construction
of a path passing through all model transitions. Moving
along the path, for each model transition (

v

,

x

,

y

,

v

'), we
feed one and the same stimulus

x

 to the implementation
automaton and check whether the reaction and the post-
state of the implementation automaton coincide with
the model ones (

y

,

v

'). If the information about imple-
mentation states is not available (hidden-state testing),
one needs to introduce special restrictions on the imple-
mentation and model and take advantage of more com-
plicated checking sequence methods [2]. In the nonde-
terministic case, the problem is much more compli-
cated in view of the nondeterminism. However, at least,
the stimulus-based traversal is to be always executed,
although it is not sufficient even in the case of an open-
state testing (if we do not confine ourselves to checking
of only one transition at each state by every stimulus).

3.

Specification implicitness problem.

 Unfortu-
nately, in practice, the specifications do not explicitly
describe the model automaton, so that we face with the
problem of finding its explicit form. Moreover, the
implementation is to be equivalent to a certain subau-
tomaton of the model automaton, which is a priori
unknown, rather than to the complete model automa-
ton. The case of implicit specifications given in the
form of preconditions and postconditions is most often
met in practice. A precondition—a predicate over a pre-
state and stimulus—determines the admissibility of
stimuli in the states, and a postcondition—a predicate
over a pre-state, stimulus, reaction, and post-state—

determines possible transitions. The finding of an
explicit automaton form from such specifications
reduces to solving a system of general-form equations,
which, generally, has no satisfactory solution. How-
ever, this is not the only difficulty.

The specification is assumed to describe

possible,
rather than obligatory

, automaton transitions. In
stricter terms, if a specification admits several transi-
tions from a given pre-state in response to a given stim-
ulus, then it is assumed that the implementation has at
least one (not necessarily all) such a transition. Actu-
ally, this implies that a model automaton is associated
with a family of classes of equivalent implementation
automata rather than with one class. An implementa-
tion automaton, or, more precisely (as noted above), its
subautomaton

R

(

M

)

⊆

R

 determined by the model stim-
uli, is equivalent to a certain subautomaton

M

(

R

) of the
specification automaton

M

. In each state of the subau-
tomaton

M

(

R

), all stimuli admissible in this state of

M

are admissible; however, not all transitions from this
state by a given stimulus available in

M

 are to be avail-
able in

M

(

R

). (In this case,

R

 and

M

(

R

) are said to be

quasi-equivalent

, and

R

 is said to be a

reduction of M

[3].) Clearly, in this case, the finding of an explicit form
of the specification automaton

M

 may be not necessary,
since we need only its subautomaton

M

(

R

), the num-
bers of states and transitions in which may be consider-
ably less than those in

M

. In addition, the subautomaton

M

(

R

) itself is a priori unknown, since it is determined
not only by

M

 but also by

R

.

The problems of construction of paths in the state
transition graph of a finite automaton are known for a
long time. They were formulated for paths of certain
specific classes at the very beginning of the theory of
finite automata. Problems of this kind occasionally
attracted attention of the researchers in connection with
the testing based on a finite automaton model [4–6].
Various testing methods based on nondeterministic
models are being intensively studied (see Petrenko,

et al.

 [7] or the ASM group of Microsoft Research [8]).
Certain restrictions on the behavior of the implementa-
tion are usually imposed. For example, the implemen-
tation is assumed to be deterministic, as in [9], or cer-
tain complicated test hypotheses that all possible tran-
sitions could be obtained after several attempts are
assumed [10, 11].

The paper is organized as follows. In Section 2, an
approach to solving these problems is suggested. The
first stage of testing by implicit specifications is sepa-
rated. The goal of this stage is to find an explicit model
subautomaton (to be more specific, a subgraph of the
state transition graph that contains all reachable states
and, at least, one transition for each stimulus at each
state), which could be used at the following stages. This
problem is reduced to the stimulus-based traversal of an
unknown nondeterministic graph. The corresponding
algorithms that obtain information about the graph in

4

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 30

No. 1

2004

BOURDONOV

et al

.

the course of its stimulus-based traversal are called

irredundant

.
In Section 3, the graph terminology is introduced,

and the notions of the stimulus-based traversal and tra-
versal algorithms are defined. Problems of existence of
a covering path through the graph and finding its length
are discussed in Section 4. Particular irredundant tra-
versal algorithms are suggested in Section 5.

2. TESTING OF NONDETERMINISTIC
AUTOMATA

We assume that the model

M

 is described by its
implicit specification in terms of preconditions and
postconditions. The precondition determines admissi-
bility of each stimulus

x

 at each state

v

 of the model:

PRE

(

v

,

x

) =

true

. The postcondition determines admis-
sibility of the obtained reaction

y and post-state v ' upon
transition from the pre-state v by the stimulus x:
POST(v, x, y, v ') = true.

We suggest to consider testing based on implicit
specifications as a two-stage testing. The goal of the
first stage is to find an explicit subautomaton M(R) ⊆ M
for the implementation R, and the goal of the second
stage is to test the implementation subautomaton
R(M) ⊆ R by the model automaton M(R).

Let us consider first how to determine the automata
R(M) and M(R) in the course of the open-state testing.
The initial state v 0 of the model M is assumed to be the
same as the initial state of the implementation R (which
can be checked by means of the status message), and
we place it into R(M) and M(R). Then, we feed the stim-
ulus x0 that is admissible in M at the state v 0. For such
a stimulus, we can take any solution of the specification
precondition equation PRE(v 0, x0) = true. The imple-
mentation automaton performs a transition (v 0, x0, y0,
v 1), which is added to R(M). Having obtained the reac-
tion y0 and post-state v 1, we check whether there exists
the transition (v 0, x0, y0, v 1) in M, i.e., verify the speci-
fication post-condition POST(v 0, x0, y0, v 1) = true. If
the postcondition does not hold, we report about an
error in the implementation. Otherwise, we add the
transition (v 0, x0, y0, v 1) to M(R). Next, we feed the
stimulus x1 admissible in M at the post-state v 1, and so
on. In practice, the test will construct only a subautom-
aton M(R).

Such testing suggests that, for any state v reachable
in M from an initial state v 0, all stimuli admissible in M
are admissible in R (the opposite is not required) if, of
course, no implementation errors are found “on the
way” from v 0 to v. This is the so-called admissibility
hypothesis for the open-state testing.

The automaton specification may, generally, define
several specified transitions from a given pre-state by a
given stimulus with the same reaction. Such transitions
differ only by their post-states. In the case of the open-
state testing, the only current post-state is known. If the
states are hidden, we require that there exist only one

such a post-state in the model; i.e., the postcondition
equation POST(v, x, y, v ') = true must not have more
than one solution in v '. In this case, the specification
and the corresponding model automaton are said to be
weakly deterministic. This is the case of the so-called
observable nondeterminism [12].

Let us assume that the postcondition equation has
only one solution and that this solution can be found.
For example, let the postcondition have the form
“ReactionChecking(v, x, y)&v ' = Poststate(v, x, y)”,
where ReactionChecking is the predicate determining
correctness of the reaction and Poststate is an explicit
function calculating the post-state for a correct reac-
tion. Then, when determining the transition in the
automaton M(R) that corresponds to the transition (v i ,
xi , yi , v i + 1) in R(M), we calculate the model post-state

 instead of the unknown implemented post-state

v i + 1 and add the transition (, xi , yi ,) to M(R);

where is a model state calculated at the previous

step and = v 0.

Note that, in constructing M(R), the uniqueness and
computability of the post-states are required not for the
entire model M but only for that part of the model that
is used in such a construction. The model is not
required to be weakly deterministic in those parts that
can be reached only by the reactions that are lacking in
the implementation and, hence, in M(R). In what fol-
lows, speaking of weak determinacy, we mean the weak
determinacy of M(R).

In the case of the hidden-state testing, we also use
the admissibility hypothesis. However, in this case, we
speak not about identical states but about correspond-
ing states of the implementation and the model, v and
v*, respectively, and require that any stimulus admissi-
ble in the model M at v* be admissible in the imple-
mentation R at v. The correspondence here is meant in
the following sense: the states v and v* are reachable
in R and M, respectively, from the initial state v 0 by
means of one and the same sequence of stimuli and
reactions.

At first glance, the admissibility hypothesis does not
seem motivated; however, it is quite natural from the
standpoint of practice. It implies that the admissibility
of stimuli at any time is uniquely determined by the his-
tory (by the sequence of stimuli and the corresponding
reactions), which is quite natural from the standpoint of
the user working with a software system modeled by an
automaton. It is assumed, of course, that the errors that
may appear in the implementation can be detected (by
the reactions observed) before they result in the viola-
tion of the admissibility hypothesis.

We have described the construction of the subau-
tomaton M(R) in the course of testing. Here, we arrive
at the question of how to determine whether such a con-
struction is complete? One condition is quite evident: at
each model state v* in M(R), all stimuli admissible in

v i 1+*

v i* v i 1+*

v i*

v 0*

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 1 2004

IRREDUNDANT ALGORITHMS 5

this state are to be tested; i.e., for each stimulus x
admissible at v* in M, the automaton M(R) contains, at
least, one transition of the form (v*, x, y, v*'). In this
case, the graph M(R) is said to be traversed by stimuli.
In the deterministic case, this implies that M(R) has
been constructed and traversed. In the nondeterministic
case, this condition is necessary but not sufficient,
because there may be several such transitions and,
without additional assumptions, there is no guarantee
that all these transitions are contained in M(R). There-
fore, we assume in this case that a certain approxima-
tion M'(R) ⊆ M(R) has been constructed.

Under some natural assumptions on guaranteed
reachability of one state from another, M'(R) contains
all states of M(R) and may be viewed as its covering
subgraph. The graph M'(R) does not contain only some
transitions of the form (v*, x, y, v*'), but it contains the
states v* and v*', as well as, at least, one transition
from v* by the stimulus x. It is possible that some of
these transitions will be passed during the second test-
ing stage and, thus, will be added to M'(R).

The test system at the first stage contains the follow-
ing components:

• An algorithm of stimulus-based traversal.
• An iterator of stimuli determined by the specifica-

tion precondition, which specifies admissibility of
stimuli x at each state v of the automaton,

PRE(v, x) = true.

• A mediator designed for supplying stimuli to the
tested automaton and observing the reactions.

• An oracle that checks the transition correctness and
is determined by the specification postcondition, which
specifies admissibility of the reaction y and post-state v '
upon transition from a pre-state v by a stimulus x,

POST(v, x, y, v ') = true.

• Post-state computation procedure:
(a) for an open state, operation status message,
(b) for a hidden state, explicit function Poststate.
In conclusion, we briefly mention two problems that

are usually encountered when testing automata in prac-
tice: nonidentity of the mediator correspondence and
testing based on automaton factorization.

So far, we assumed that the alphabets of stimuli,
reactions, and states are the same in the model and in
the implementation, and the mediator and the function
Poststate implement, in fact, identical transformations.
However, such a situation is seldom met in practice. On
the one hand, this is explained by technical reasons: for
example, by the fact that the specifications are written
in a specification language that is different from the lan-
guage used for programming the implementation and
has another type structure. The fact that the specifica-
tion is always an abstraction, which serves as a model
for several (sometimes, very different) implementa-
tions, is even more important. In the general case, the
mediator implements down-transformations of model

stimuli into implementation ones and up-transforma-
tions of implementation reactions into model ones,
which are not identical transformations. In the case of
the open-state testing, the function Poststate transforms
the implementation states into model ones (up-transfor-
mations), and, in the hidden-state testing, such a corre-
spondence of states exists implicitly. In any case, the
up-transformations may be not injective and result in
certain “roughening” of tests, which correspond to the
model abstraction level. Nevertheless, in the case of the
open-state testing, transformations of stimuli and reac-
tions may depend on the implementation state and, gen-
erally, even on prehistory of interactions with the
implementation automaton.

The test roughening is often made purposefully as a
factorization of the automaton, when the number of
states and stimuli (even in the subautomata R(M) and
M(R)) is too great [13]. The factorization is performed
by a given equivalence of states and/or stimuli and, in
the general case, transitions. Thus, it is required to
check only factor transitions, which means that we can
take any transition from the corresponding equivalence
class. Note that, if we consider transitions from a given
state by a given stimulus as equivalent, then the subau-
tomaton M'(R) obtained at the end of the first stage of
testing may be viewed as a factor automaton (if we do
not introduce additional equivalence of states). Gener-
ally, in addition to two levels—levels of the implemen-
tation R and the specification model M—we get the
third level, the level of the factor model F(M). Thus, the
test works not on the level M, but rather on the level
F(M), which may be referred to as the test model level.
Accordingly, after the first stage, we obtain a subau-
tomaton F(M)(R) of the test model (rather than a subau-
tomaton M(R) of the specification model), which coin-
cides with the factorization of M(R), i.e., with F(M(R)).

The factorization may be viewed as a particular case
of the general mediator correspondence between the
levels of the model and factor model. Thus, one can
consider multilevel systems of automaton descriptions,
where each level is connected with the neighboring lev-
els by mediator correspondences, the lower level is the
implementation, and the upper level is the test model,
i.e., the model that is directly used for testing the imple-
mentation.

Problems of the second stage of testing, nonidentity
mediator correspondences, and testing for multilevel
systems are not considered in this work. In the remain-
ing part of this paper, we will discuss only the central
component of the first testing stage, namely, irredun-
dant algorithms of stimulus-based traversal of nonde-
terministic graphs. Recall that irredundant algorithms
are those that obtain information about the graph only
in the course of its traversal.

6

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 1 2004

BOURDONOV et al.

3. GRAPHS AND TRAVERSAL ALGORITHMS
A directed graph (further, simply graph) G is a col-

lection of three following objects: a set of vertices VG,
a set of stimuli XG, and a set of arcs EG ⊆ VG × XG ×
VG.

A stimulus x is admissible at a vertex a if there exists
an arc (a, x, b) in the graph. The vertices a and b are
referred to as the beginning and the endpoint of the arc,
respectively, and the stimulus x is called an arc color-
ing. If the arc stimulus is not important, we write sim-
ply (a, b) instead of (a, x, b). A ∆-arc (a, x) is a set of
the graph arcs that begin at the vertex a (the beginning
of the ∆-arc) and are marked by the stimulus x admissi-
ble in a (coloring of the ∆-arc), (a, x) = {(a, x, b) ∈ EG}.

Remark. When testing, the graph is considered to
be the state transition graph of an automaton. However,
in the traversal algorithms, the graph arcs are not col-
ored by reactions, because, when passing an arc, it suf-
fice for the algorithm to be able to determine the end-
point (post-state) of the arc. This problem is considered
to be external from the standpoint of the traversal algo-
rithm, and it is solved by the post-state computation
procedure. In connection with this, we do not distin-
guish between the arcs that differ only by the reactions.

A graph is said to be finite if the sets of its vertices
and arcs are finite. The numbers of vertices, arcs, and ∆-
arcs of a finite graph are denoted by n, k, and m, respec-
tively.

A graph is said to be deterministic if the endpoint of
an arc is uniquely determined by its beginning point
and by the stimulus admissible at this point; i.e., for
arcs (a, x, b) and (a', x', b'), it follows from a = a' and
x = x' that b = b'. All ∆-arcs of such a graph are single-
tons; i.e., they consist of one arc. In a nondeterministic
graph, a ∆-arc may contain several arcs, which differ by
their endpoints.

Arcs (a, x, b) and (a', x', b') are said to be adjacent if
the endpoint of the first arc coincides with the begin-
ning of the second arc, b = a'. A path P of length n in
the graph G is a sequence of n adjacent arcs; i.e., for
i = 1, …, n – 1, the arcs P[i] and P[i + 1] are adjacent.
The beginning point a of the first arc of a path is called
the beginning of the path; the endpoint of the last arc of
the path is called its end; and the path itself, an [a, b]-
path. A path consisting of an empty sequence of arcs
has zero length; the beginning and the end of such a
path coincide. A path is referred to as a covering path if
it contains all arcs of the graph and a stimulus-based
covering path if it contains, at least, one arc from every
∆-arc of the graph.

A ∆-path is a set D of paths that begin at one vertex
and “fork” at each ∆-arc being passed. In stricter terms,
for each path P ∈ D and any i less than the length of P,
the set of the (i + 1)th arcs of the paths from D that have
the same first i arc as P forms a ∆-arc to which the (i + 1)th
arc of P belongs: for P[i + 1] = (a, x, b){Q[i + 1]|Q ∈
D&Q[1…i] = P[1…i]} = (a, x). The beginning a of the
paths belonging to the ∆-path D is called the beginning

of the ∆-path. A vertex b is called the end of a ∆-path D
if all paths of this ∆-path are terminated at this vertex;
and the ∆-path itself is called an [a, b]-∆-path. The
length of a ∆-path D is the maximum length of its paths.
A covering ∆-path is a ∆-path all paths of which are
stimulus-based covering paths.

The above-introduced notion of a ∆-path is close to
the notions of an adaptive test sequence or a test tree,
which are used for describing the selection of stimuli
depending on the previous transitions [2]. For a deter-
ministic graph, the notions of a path and a ∆-path coin-
cide; to be more specific, any ∆-path is a singleton.
Accordingly, the notions of a covering path, stimulus-
based covering path, and covering ∆-path are identical.

A graph traversal algorithm is an algorithm that
constructs a path on the graph. Formally, such an algo-
rithm can be defined as a special-purpose abstract state
machine (the Gurevich machine, ASM [14]), in which
external operations are partially specified by the graph
on which the algorithm operates and by the current ver-
tex. For our purposes, it is sufficient to know that the
algorithm has two special-purpose external operations:
status(), which returns the identifier of the current ver-
tex, and call(x), which implements the transition from
the current vertex a along an arc (a, x, b) selected in
unspecified way among the arcs belonging to the ∆-arc
(a, x). For a deterministic graph, such an arc (a, x, b) is
unique (a unique vertex b). The precondition of the
operation call(x) is the admissibility of the stimulus x at
the current vertex a. The path constructed by the algo-
rithm is a sequence of arcs obtained by means of suc-
cessive calls of the operation call. It should be noted
that any external operation (not to mention internal
ones) does not change the graph. The only operation
that can change the current vertex is the operation call.

An irredundant algorithm is a graph traversal algo-
rithm that takes into account only the traversed part of
the graph and the admissibility of stimuli at the current
vertex. The algorithm determines whether a stimulus is
admissible by means of a special-purpose external
operation next(), which returns a stimulus selected in
unspecified way among the stimuli that are admissible
at the current vertex and have not been selected yet
(iterating, thus, stimuli at the vertex). If all stimuli
admissible at the current vertex have already been used,
the operation next() returns the empty symbol ε.

A free algorithm is an irredundant algorithm that
learns whether a stimulus that has not been tested yet at
the current vertex a is admissible when passing an arc
colored by this stimulus rather than in advance. In other
words, the free algorithm uses the combined external
operation nextcall(): x = next(); if x ≠ ε then call(x);
return x else return ε end when traversing first time any
untraversed ∆-arc with the beginning at the current ver-
tex. This operation chooses in an unspecified way a
stimulus x that has not been tested yet at the current ver-
tex a and makes the algorithm pass along an arc (a, x, b)
selected in unspecified way from the ∆-arc (a, x). If all

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 1 2004

IRREDUNDANT ALGORITHMS 7

stimuli have already been tested at the current vertex,
the empty symbol ε is returned. For the second passage
along the ∆-arc (a, x), the operation call(x) continues to
be used at the moment when a becomes the current ver-
tex.

Any algorithm is designed for solving one or
another problem; the problem considered in this work
is that of the construction of a stimulus-based covering
path. The algorithm functioning depends, generally, on
the external operations call and next. In a nondetermin-
istic graph, a ∆-arc contains, generally, several arcs that
differ by their endpoints, such that the result of the
operation call(x) is not uniquely determined by the cur-
rent vertex and stimulus x. Therefore, the stimulus-
based traversal performed by the algorithm depends on
the results of the operation call and, strictly speaking, is
not a graph traversal. We may say only about a call-
independent set of such paths, i.e., about a set of all
paths that could be passed by the algorithm upon fixing
all, but call, external operations and for all possible
results of the operation call. This set is obviously a
∆-path in the graph, and each path from this ∆-path cor-
responds to a certain set of results of the operation call.
If this ∆-path is a covering ∆-path, the algorithm is said
to perform a ∆-traversal of the graph with a given initial
vertex. An algorithm is said to perform a guaranteed
∆-traversal of a given graph with a given initial vertex
if it traverses the graph by stimuli for any admissible
results of all (not only call) external operations (for
irredundant algorithms, independently of the stimulus
iteration at the vertices performed by next).

Of interest are algorithms that stop after a finite
number of steps. When the algorithm stops, it can pro-
vide us with the information about whether the stimu-
lus-based traversal has been completed, i.e., whether
the path constructed is a covering path. It is possible
that the path constructed is a stimulus-based covering
path, but the algorithm “does not know” about this. The
opposite situation is the case where the traversal has not
been completed and the algorithm “knows” that there
does not exist a covering path at all in this graph. The
information of this kind reported by the algorithm
when it stops is referred to as a verdict of the algorithm.
The verdict is said to be correct if the information con-
tained in it is true.

4. ∆-TRAVERSALS OF GRAPHS

4.1. Strongly ∆-Connected Graphs

Lemma 4.1. If any path of a ∆-path D beginning at
a vertex a passes through a vertex b, then there exists an
[a, b]-∆-path.

Proof. The desired [a, b]-∆-path is constructed as a
set of initial segments of paths from D that are termi-
nated by the first occurrence of the vertex b.

A nonempty proper subset U of vertices of a graph
is called a ∆-isolated set if each ∆-arc beginning in U
contains an arc with the end in U. If a vertex a belongs

to a ∆-isolated set U, and a vertex b does not belong to
U, then such a set U is called [a, b]-∆-isolated.

Lemma 4.2. If there exists an [a, b]-∆-path D in a
graph, then there does not exist an [a, b]-∆-isolated set
of vertices in this graph.

Proof. Let us assume the contrary; i.e., let such a set
U exist. Any path P ∈ D leads from a ∈ U to b ∉ U.
Hence, there exists an arc in P that leads from U to the
outside. Let i be the number of the first arc of this kind,
P[i] = (c, x, d), where c ∈ U and d ∉ U. Consider a path
P from D that has a maximal index i among the paths
belonging to D. Since U is a ∆-isolated set, there must
exists an arc (c, x, d ') in the ∆-arc (c, x) such that d ' ∈
U. Then, since D is a ∆-path, there must exist a path
P' ∈ D such that P'[1, i – 1] = P[1, i – 1] and P'[i] =
(c, x, d '). It is evident that the number of the first arc in
the path P' that leaves the set U is greater than i. Thus,
we arrived at the contradiction, which proves the
lemma.

A ∆-subgraph is a subgraph that, for any ∆-arc of
the graph, either contains all its arcs or does not contain
it at all. A simple ∆-path is a ∆-path in which all paths
are simple paths. Clearly, the length of a simple ∆-path
does not exceed n – 1. A graph is called acyclic if it does
not contain cyclic paths; a source is a vertex that has no
incoming arcs; and a sink is a vertex without outgoing
arcs.

Lemma 4.3. If there does not exist an [a, b]-∆-iso-
lated set of vertices in a graph G, then there exists a sim-
ple [a, b]-∆-path in it.

Proof. First, we describe an algorithm for construct-
ing an acyclic ∆-subgraph in which the vertex a is a
source (which is, perhaps, not the only one) and b is the
only sink. At the beginning of each algorithm step, we
have an acyclic ∆-subgraph H with the only sink b. At
the very beginning, H consists of one vertex b and has
no arcs. The algorithm step consists in the following: if
a does not belong to VH and there exists a ∆-arc (c, x)
such that its beginning c ∉ VH and the endpoints of all
arcs belong to VH, then this ∆-arc is added to the sub-
graph H (its beginning is added to VH, and the arcs, to
EH). Otherwise, the algorithm stops.

Note that, if a ∉ VH, then such a ∆-arc (c, x) exists,
since, otherwise, the set of vertices VG\VH would be
[a, b]-∆-isolated. Hence, taking into account that the
number of ∆-arcs in the graph is finite, the algorithm
will stop after a finite number of steps immediately
after the vertex a occurs in VH and, evidently, becomes
its source. Since, at each step, the whole ∆-arc is added
to H, H remains a ∆-subgraph. Since the beginning of
the added ∆-arc did not belong to VH, H remains a
cyclic graph.

The desired simple [a, b]-∆-path is constructed as a
set of paths in the ∆-subgraph H that start at a and ter-
minate at b.

The next theorem follows immediately from Lem-
mas 4.1–4.3 and the definition of a simple [a, b]-∆-
path.

8

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 1 2004

BOURDONOV et al.

Theorem 4.1. For vertices a and b of a graph, the
following assertions are equivalent:

(1) there exists a ∆-path beginning at a any path of
which passes through b,

(2) there exists an [a, b]-∆-path,
(3) there does not exist an [a, b]-∆-isolated set of

vertices,
(4) there exists a simple [a, b]-∆-path.
The vertex b is said to be ∆-reachable from the ver-

tex a if any assertion of Theorem 4.1 is valid. A graph
is said to be strongly ∆-connected if any vertex of the
graph is ∆-reachable from any other vertex.

Theorem 4.2. (1) For any strongly ∆-connected
graph and any pair of its vertices a and b, there always
exists a covering [a, b]-∆-path of length O(nm).

(2) For any n and m, there exists a strongly ∆-con-
nected graph with n vertices and m' ≥ m arcs such that
any covering ∆-path of the graph has length Ω(nm').

Proof. (1) Let us introduce an arbitrary linear order
on the ∆-arcs of the graph, such that the first ∆-arc
begins at the vertex v 1 = a: (v 1, x1), (v 2, x2), …, (vm, xm).
Denote vm + 1 = b. In a strongly ∆-connected graph,
there always exists a simple [, v i + 1]-∆-path Di()

from the endpoint of any arc belonging to the ith ∆-

arc (v i , xi ,) ∈ (v i , xi) to the beginning v i + 1 of the
next (i + 1)th ∆-arc (for i = m, to the vertex vm + 1 = b).
Denote by Di = {Di()| ∈ (v i , xi)} the union of all
these simple ∆-paths. The desired covering ∆-path is
the set of all possible concatenations of arcs and simple
paths: D = (v 1,) ∧ D1 ∧ … ∧ (v i ,) ∧ Di ∧ … ∧
(vm,) ∧ Dm. Each path in D passes along, at least,
one arc from each ∆-arc; it begins at a, terminates at b,
and, therefore, is a stimulus-based covering [a, b]-path.
Since each stimulus-based covering path consists of m
arcs (one arc from every ∆-arc) and m connecting sim-
ple paths (belonging to the connecting simple ∆-paths),
its length does not exceed m + m(n – 1) = O(nm).

v i' v i'

v i'

v i'

v i' v i'

v i' v i'

v m'

(2) Since, in a deterministic graph, a ∆-arc coincides
with an ordinary arc, and a covering ∆-path is the same
as just covering path, we may consider a deterministic
graph depicted in Fig. 1, where p = k'/n' is the outdegree
of each vertex.

A covering path of this graph can be represented as
a concatenation of paths P1, …, Pt, where all paths
P1, …, Pt – 1 have the same last arc (v i , v 1) (i > 1) and
all paths P2, …, Pt – 1 begin at v 1. Each path in the
sequence P2, …, Pt – 1 is terminated by the arc (v i , v 1)
and has length i; the number of these paths is equal to
p – 1. Therefore, assuming that the length of the cover-
ing path P1 is not less than one and that its last arc is
(v j , v 1), we obtain the lower bound of the length of the
covering path (without regard to the last covering
path Pt),

(p – 1) + 2(p – 1) + … + n(p – 1) – j +1

= (p – 1)n(n – 1)/2 – j + 1

≥ (p – 1)n(n – 1)/2 – n + 1 = L.

It suffice to prove that L ≥ Cpn2 = Ck'n for some con-
stant C > 0 and any n > 0. It is easy to show that the
above relation holds, for example, for C = 1/3 and p ≥ 3,
and, thus, we obtain k' = max{k, 3n}.

Note that, in the graph depicted in Fig 1, the outde-
grees of all vertices are identical. This has been done in
order that not to impose lower bounds on the number of
stimuli in addition to the obligatory bound k'/n. Without
this requirement, the example can be simplified by
replacing all arcs leading from v i to v 1 by the arcs lead-
ing from v n to v 1, which requires k' – n + 1 stimuli
(Fig. 2).

In examples depicted in Figs. 1 and 2, there is a
strong relationship between the numbers of arcs and
∆-arcs, k' = m'. If we require, for example, that the num-
ber of arcs be t times greater than the number of ∆-arcs,
we can add, to each arc of this graph, one ∆-arc that has
the same beginning and consists of 2t – 1 arcs leading
to any vertices. The number of vertices will not be
changed; the number of arcs will be equal to k'' = k' +

V1

V3

Vn V2

p – 1

p – 1p – 1

p – 1

Fig. 1.

V2

Vn V1k – n + 1

Fig. 2.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 1 2004

IRREDUNDANT ALGORITHMS 9

k'(2t – 1) = 2tk'; and the number of ∆-arcs will be
m'' = 2k'. It is evident that the graph obtained is strongly
∆-connected, and the length of any covering ∆-path of
this graph is equal to Ω(nk') = Ω(nm'').

4.2. ∆-Reachable Graphs

Since mutual ∆-reachability of vertices is an equiv-
alence relation, the graph G is partitioned, generally,
into strongly ∆-connected components, on the set of
which the ∆-reachability is a partial order relation. A
component is a subgraph of the graph G the set of ver-
tices of which is an equivalence class and the arcs are
the arcs of the graph G the beginning and end points of
which belong to this class. The component containing
the vertex a is denoted by K(a). An arc (a, x, b) is a for-
ward arc if K(a) is ∆-unreachable from K(b). A ∆-arc is
called connecting if the endpoints of all of its arcs
belong to one component B that is different from the
component A of the beginning of the ∆-arc; the con-
necting ∆-arc is said to lead from A to B.

A factor graph of a graph G with respect to the
mutual ∆-reachability relation is a graph F(G) the ver-
tices of which are the strongly ∆-connected compo-
nents of G and the arc (A, x, B), where A ≠ B are com-
ponents of the graph G, is a connecting ∆-arc in G lead-
ing from A to B and colored by the stimulus x. It is
evident that the factor graph is a deterministic acyclic
graph.

A ∆-reachable graph is a graph all vertices of which
are ∆-reachable from a given initial vertex. By virtue of
Lemma 4.1, a ∆-traversal is possible only in a ∆-reach-
able graph; therefore, in what follows, we consider only
∆-reachable graphs.

Theorem 4.3. A graph G with an initial vertex v 0 is
∆-reachable if and only if its factor graph F(G) with
respect to ∆-reachability is an acyclic graph with one
source K(v 0).

Proof. Necessity. Any component K ≠ K(v 0) con-
tains, at least, one connecting ∆-arc (v, x), since, other-
wise, the VG\VK would be ∆-isolated in G, and none of
vertices from VK would be ∆-reachable from v 0.
Hence, any factor vertex of the factor graph, except for
K(v 0), has, at least, one incoming factor arc, and, being
an acyclic graph, F(G) has only one source K(v 0).

Sufficiency. For any vertex v, consider a simple
path F of length t in F(G) from K(v 0) to K(v). Its ith
factor arc is a connecting ∆-arc (v i , xi) of the graph G,
where i = 1, …, t. Considering all its arcs (v i , xi ,) ∈
(v i , xi) and introducing the notation v t + 1 = v, we find
that the vertices and v i + 1, where i = 0, …, t, belong

to one component, and, hence, there exists a [, v i + 1]-

∆-path D(). Denote by Di = {Di()| ∈ (v i , xi)}
the union of all such ∆-paths. Let D0 denote the [v 0, v 1]-
∆-path in the component K(v 0). The desired [v 0, v]-∆-

v i'

v i'

v i'

v i' v i' v i'

path is constructed as a set of all possible concatena-
tions D0 ∧ (v 1, x1) ∧ D1 ∧ … ∧ (v t , xt) ∧ Dt.

4.3. Graphs of the First Kind

A graph of the first kind is a graph with a linear ∆-
reachability order of the components in which all out-
going forward arcs (arcs leading to components with
greater numbers) of any (but the last) ith component
form one connecting ∆-arc that leads to the next,
(i + 1)th, component. Note that some arcs (but not
∆-arcs!) may lead to components with lesser numbers
(in the backward direction). By default, the initial ver-
tex v 0 belongs to the first component (Fig. 3). In the
deterministic case, the above definition of a graph of the
first kind coincides with that in [1].

A traversed graph of a ∆-path D is a subgraph GD
consisting of all arcs of all paths of this ∆-path and of
the incidental vertices. It is evident that a traversed
graph is a ∆-subgraph. Note that D is not necessarily a
covering ∆-path of GD, in contrast to the deterministic
case, where a path is always a covering path on the tra-
versed graph [1].

Theorem 4.4. (1) If a ∆-path D is a covering ∆-path
of its traversed graph GD, then GD is a graph of the first
kind, and the initial vertex v 0 of the ∆-path belongs to
its first component.

(2) A covering [a, b]-∆-path D exists if and only if
the graph is a graph of the first kind in which the verti-
ces a and b belong to the first and last components,
respectively; the minimum ∆-path length is O(nm).

(3) For any n and m, there exists a graph of the first
kind with n vertices and m' ≥ m ∆-arcs for which any
covering ∆-path has length Ω(nm').

(4) A covering ∆-path from any initial vertex v 0
exists if and only if the graph is strongly ∆-connected.

Proof.
(1) For any two vertices b and c, any path from the

covering ∆-path passes through both these vertices. Let
the first occurrence of b in the path P ∈ D precede the
first occurrence of c, and let P(b) be the initial segment
of P that ends by the first occurrence of b. The exten-
sions Q\P(b) of all paths Q ∈ D extending P(b) must
contain c. The set of all these extended paths, clearly,
forms a ∆-path in the traversed graph, and, by
Lemma 4.1, there exists a [b, c]-∆-path in the traversed
graph. Thus, for any pair of vertices of the traversed
graph, one of them is ∆-reachable from another in the
traversed graph. Hence, the traversed graph has a linear
order of ∆-reachability of the components. Since, for

1 2 t – 1 t...

Fig. 3.

10

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 1 2004

BOURDONOV et al.

any path from D, the initial vertex v 0 is passed before
any other vertex, all traversed vertices are ∆-reachable
from v 0, and, hence, v 0 belongs to the first component.

Now, it remains to show that any arc (b, x, c) in the
traversed graph that leads from the ith component to the
component with a greater number belongs to the con-
necting ∆-arc (ai , xi). Let us assume the contrary,
namely, that (b, x) ≠ (ai , xi). Any path P ∈ D must pass
through both these ∆-arcs. If P passes first through the
∆-arc (ai , xi), P[j] ∈ (ai , xi), then it occurs in the
(i + 1)th component, from which the ith component is
∆-unreachable. Hence, among the paths D that are
extensions of P[1, …, j], there is, at least, one that does
not lead to b and, thus, does not pass through the ∆-arc
(b, x), which is impossible on the strength of the fact
that D is a covering ∆-path of GD. If P passes first
through the ∆-arc (b, x), P[j] ∈ (b, x), then there exists
a path P' ∈ D that has first j – 1 arcs identical to those
of P, passes through the arc P'[j] = (b, x, c) ∈ (b, x), and
leads to the component from which the ith component
is ∆-unreachable. Hence, among the paths D that are
extensions of P'[1, …, j], there is, at least, one that does
not lead to ai and, thus, does not pass through the ∆-arc
(ai , xi), which is impossible in view of the fact that D is
a covering ∆-path of GD.

(2) Necessity follows from assertion (1). It is
required only to show that the vertex b belongs to the
last component. Since all paths in D pass through each
vertex c, their extensions after the first occurrence of c
forming a ∆-path end at b; hence, b is ∆-reachable from
any vertex c, i.e., belongs to the last component.

Sufficiency. We describe an algorithm for construct-
ing a covering [a, b]-∆-path. At the beginning of an ith
step, we have a ∆-path Di in which all paths P ∈ Di are
initial segments of the paths from the covering ∆-path
to be constructed. Each path P begins at the vertex a,
ends at a vertex c (different paths may have different
ends), and passes through all ∆-arcs of all components
preceding the component of the path end K(c). The step
is applied to each path from Di. If the current path is not
a stimulus-based covering [a, b]-path, it is replaced by
a set of paths extending it, which results in a new ∆-path
Di + 1. The algorithm stops when all paths are stimulus-
based covering [a, b]-paths. At the very beginning, we
have one path of zero length with the initial vertex a.
The algorithm step consists in the following:

1. Let there exist a path P such that all ∆-arcs origi-
nating from the vertices of the end component K(c) are
traversed in P. Then, in view of the step assumptions, P
is a stimulus-based covering path; however, it is not
necessarily terminated at b. Construct a [c, b]-∆-path Qb
and, instead of the path P, take a set of all concatena-
tions of this path with the paths from Qb. The step
assumptions clearly hold.

2. Let there exist a path P such that the vertex
d ∈ VK(c) has an outgoing ∆-arc (d, x) that has not been
traversed in P yet. The priority is given to nonconnect-
ing ∆-arcs; i.e., a connecting ∆-arc is selected only

when all other ∆-arcs originating from the vertex K(c)
have already been traversed in P. Construct a [c, d]-∆-
path Qd and, instead of the path P, take a set of all con-
catenations of this path with the paths from Qd and, fur-
ther, with arcs of the ∆-arc (d, x). If all arcs of the ∆-arc
(d, x) end at the component K(c) or the ∆-arc (d, x) is
connecting, then the step assumptions obviously hold.

3. Otherwise, some arcs (d, x, e) ∈ (d, x) end at com-
ponents K(e) ≠ K(c). In a graph of the first kind, the
component K(e) precedes K(c); i.e., all vertices K(c) are
∆-reachable from e. Then, for each path P obtained in
item 2 that ends at such a vertex e, construct an [e, c]-
∆-path Qc, and, instead of the path P, take all concate-
nations of this path with the paths from Qc. The step
assumptions obviously hold.

Since, at each step, every path that is not a stimulus-
based covering [a, b]-path is replaced by the paths
extending it, which is followed by an increase of the
number of the traversed ∆-arcs, the algorithm termi-
nates in not more than m steps by constructing a cover-
ing [a, b]-∆-path. At each step, any path is extended by
not more than the length of the path Qb (item 1) or the
length of the path Qd plus one arc (item 2) plus the
length of the path Qc (item 3). Since the path length
does not exceed n – 1, the length of each path and, thus,
the length of the constructed covering ∆-path do not
exceed m(2n – 1) = O(nm).

Assertion (3) immediately follows from Theorem 4.2
for strongly ∆-connected graphs.

Assertion (4) immediately follows from assertion
(2) and the definition of a strongly ∆-connected graph
as a graph with one strongly ∆-connected component.

4.4. Coverage of ∆-Reachable Graphs

A ∆-path is said to cover a vertex (∆-arc) of a graph
if each its path passes through this vertex (∆-arc). In
this sense, a covering ∆-path is simply a ∆-path that
covers all vertices and ∆-arcs of the graph. The set of all
∆-paths that begin at a given initial vertex is called a ∆-
coverage of the graph if any vertex and any ∆-arc of the
graph are covered by, at least, one ∆-path from the set.
The length of the ∆-coverage is the sum of lengths of its
∆-paths.

Theorem 4.5. A ∆-coverage exists if and only if the
graph is ∆-reachable; its minimum length is equal to
O(nm); for any n and m, there exists a ∆-reachability
graph with n vertices and m' ≥ m ∆-arcs any ∆-coverage
of which has length Ω(nm').

Proof. The assertion of the theorem on the existence
of a ∆-coverage immediately follows from the defini-
tion of a ∆-reachable graph G with an initial vertex v 0.
Indeed, for any vertex v, there exists a [v 0, v]-∆-path
D(v), and, for any ∆-arc (v, x), there is a ∆-path D(v) ∧
(v, x) (the set of all concatenations of paths from D(v)
and arcs from (v, x)) passing through this arc.

To estimate the length of the ∆-coverage for a ∆-
reachable graph G, we consider the factor graph F(G),

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 1 2004

IRREDUNDANT ALGORITHMS 11

which, by Theorem 4.3, is a deterministic acyclic graph
with one source K(v 0). Let t be the number of the com-
ponents and m0 be the number of the connecting ∆-arcs
in the graph G. Let us separate an output directed span-
ning tree (maximal tree) in the factor graph, the root of
which is a source component. It has t – 1 factor arcs,
and the remaining m0 – (t –1) factor arcs are factor
chords. To construct a coverage of the factor graph, it is
sufficient to take the set F of the following factor paths:
(a) all factor paths that lead from the root to the leaf fac-
tor vertices that do not have outgoing factor chords and,
additionally, (b) all factor paths that lead from the root
to the beginnings of all chords and pass then along
these chords. The number of the factor paths of the
form (a) does not exceed t, and the number of the factor
paths of the form (b) is not greater than m0 – (t – 1).
Thus, the total number of all factor paths is not greater
than m0 + 1.

Any factor path F ∈ F may be associated with an
alternating sequence of the components of the graph G
(beginnings and endpoints of the factor arcs of F) and
the connecting ∆-arcs of G (factor arcs of F): K(v 1),
(v 1, x1), K(v 2), (v 2, x2), …, (v f , xf), K(v f + 1) with
K(v 1) = K(v 0). Each, but the last, component K(v i) con-
tains a connecting ∆-arc (v i – 1, xi – 1) from the previous
component, and each, but the last, component K(v i) has
one outgoing connecting ∆-arc (v i , xi) that leads to the
next component. In each component K(v i) (except for
the first and last), for any incoming arc (v i – 1, xi – 1,

) ∈ (v i – 1, xi – 1), we select a [, v i]-∆-path

Di() from the endpoint of the incoming arc to the
beginning of the outgoing ∆-arc. In the last component,
such a ∆-path Df + 1() can be terminated at any ver-
tex; in the first component, the ∆-path D0 begins at the
initial vertex v 0. For i > 0, we denote the union of these
∆-paths as Di = ∪ {Di()|(v i , xi ,) ∈ (v i , xi)}.
Replacing each occurrence of a component by the cor-
responding set of paths, we associate the factor path F
with a set of all possible alternating concatenations of
sets of paths and the connecting ∆-arcs, D(F) = D0 ∧
(v 1, x1) ∧ D1 ∧ (v 2, x2) ∧ … ∧ (v f , xf) ∧ Df + 1, which is
obviously a ∆-path beginning at the vertex v 0.

Now, for each component K of the graph G, we
select one factor path F that passes through this compo-
nent K = K(v i). In the ∆-path D(F), we replace each
∆-path D = Di() in the component K by a covering
∆-path of the component with the same beginning and
endpoint. The desired ∆-coverage is the set of all such
∆-paths, D = {D(F)|F ∈ F}. If all ∆-paths Di()
remained simple ∆-paths, each ∆-path D(F) would also
be a simple ∆-path or a simple ∆-path extended by one
∆-arc (factor chord) and, hence, its length would not
exceed n, and the sum of lengths would not exceed
(m0 + 1)n. Since, for each ith component of G, only one

v i 1–' v i 1–'

v i 1–'

v f'

v i' v i'

v i 1–'

v i 1–'

path F contains the covering ∆-path of this component,
the ∆-coverage length does not exceed (m0 + 1)n +
Σ{O(nimi)|i = 1, …, f} = O(nm), where ni and mi are the
numbers of vertices and ∆-arcs in the ith component,
respectively.

The estimate Ω(nm') is reached on the graph
depicted in Figs. 1 and 2 with the initial vertex v 1.

5. ∆-TRAVERSAL ALGORITHMS

5.1. Graphs of the Second Kind and Free Algorithms

For a path in a graph, a ∆-arc is said to be traversed
if, at least, one arc from this ∆-arc is traversed; a vertex
is said to be completely traversed if all outgoing ∆-arcs
of this vertex are traversed.

A graph of the second kind is a graph of the first kind
in which all components (but, perhaps, the last one)
consist of one vertex and do not contain arcs other than
one connecting ∆-arc leading to the next component
(Fig. 4). Since all, but the last, components consist of
one vertex, all connecting ∆-arcs, but the last one, con-
sist of one arc. In the deterministic case, the above def-
inition of a graph of the second kind coincides with that
in [1].

Theorem 5.1. A ∆-traversal of a graph by a free
algorithm starting from an initial vertex v 0 belonging to
the first component and ending at a vertex belonging to
the last component is guaranteed only if the graph is a
graph of the second kind.

Proof. We will prove the assertion by reduction ad
absurdum. By Theorem 4.4, a covering ∆-path exists
only for a graph of the first kind. If the graph is not a
graph of the second kind, then there exists a component
(not the last one) of the graph that either consists of
more than one vertex or its only vertex has some outgo-
ing arcs in addition to the ∆-connecting arc. In the
former case, by virtue of the strong ∆-connectivity of
the component, there is a ∆-path from the beginning of
the connecting ∆-arc to some other vertex of the com-
ponent; hence, in addition to the connecting ∆-arc
(a, x), there is another ∆-arc (a, x') going from the
beginning of the connecting ∆-arc. In the latter case, the
existence of two such ∆-arcs is explicitly postulated.
When the algorithm deals with the vertex a for the first
time, none of the stimuli at this vertex are tested; there-
fore, the free algorithm must invoke the operation nex-
tcall. Since the ∆-traversal must be guaranteed, the path
being passed is to be a stimulus-based covering path,
independent of the result of the operation nextcall. Sup-
pose that the operation nextcall chooses the stimulus x.

1 2 t–1 t...

Fig. 4.

12

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 1 2004

BOURDONOV et al.

Then, we pass along an arc from the connecting ∆-arc
(a, x) to a vertex in the next component, from which
there is no ∆-path leading to the vertex a. Thus, the
∆-arc (a, x') remains untraversed, and we arrived at the
contradiction.

5.2. A Free Optimal-Complexity Algorithm

Theorem 5.2. There exists a free algorithm B1 that
stops on any graph and completes guaranteed ∆-tra-
versal of any graph of the second kind with an initial
vertex belonging to the first component. The length of
the traversed path is O(nm). The algorithm operation
time depends of the comparison operations used for the
vertex identifiers. If only equality comparisons (match-
ings) are involved, the algorithm operation time is
O(n2m); if greater/less comparisons are also used, then
the time is O(nm). The required memory is
O(nI + mX + m), where I and X are the sizes of
the vertex identifier and stimulus, respectively, in bits.

First, we define some terms and discuss a general
idea of the algorithm.

In a deterministic graph, the distance from a vertex
a to a vertex b is the length of a minimal [a, b]-path, and
the distance from a to a set of vertices B is defined as a
minimal distance from a to vertices b ∈ B. Similarly, in
the nondeterministic case, we can introduce a ∆-dis-
tance ρ(a) from a vertex a to a set B as the length of a
minimal [a, B]-∆-path beginning at a and ending in B
(i.e., ends of all of its paths belong to B). In a strongly
∆-connected graph, [a, B]-∆-paths always exist, and,
obviously, the minimal path among them is a ∆-path;
hence, ρ(a) ≤ n – 1. A ∆-distance of a ∆-arc without
loops ρ(a, x) is defined as the maximum of the ∆-dis-
tances of the endpoints of its arcs increased by one,
ρ(a, x) = max{ρ(c) + 1|(a, x, c) ∈ (a, x)}. It is evident
that, for a ∈ B, ρ(a) = 0, and, for a ∉ B, ρ(a) =
min{ρ(a, x)}, where (a, x) runs through all ∆-arcs with-
out loops that originate from the vertex a.

For a free algorithm that, at a certain moment, tra-
versed a path P, an unmarked vertex is the vertex at
which the operation nextcall returned the empty sym-
bol ε, i.e., the vertex that is “known” to be completely
traversed. In what follows, ∆-distances of vertices and
∆-arcs are always assumed to be measured from the set
of unmarked vertices.

If, at any time, the algorithm knew ∆-distances of all
vertices and ∆-arcs, it could work by the following sim-
ple scheme:

1. If all traversed vertices are marked, the algorithm
stops.

2. Otherwise, move from unmarked vertices along
untraversed ∆-arcs by means of the operation nextcall
until occur in a marked vertex or nextcall returns the
empty symbol ε and the current vertex becomes
marked.

n2log
m2log

3. If the marked vertex does not have outgoing
∆-arcs for which the ∆-distances are determined, the
algorithm stops.

4. Otherwise, move along the outgoing ∆-arc with
the least ∆-distance until occur in an unmarked vertex
or in a marked vertex that does not have such ∆-arcs.

In item 4, the algorithm passes along a path no
longer than n – 1 and, if occurs in an unmarked vertex,
passes a new ∆-arc in item 2. Thus, until it stops (in
item 1 or 3), the algorithm will pass a path of length
O(nm). If the graph is strongly ∆-connected, the situa-
tion described in item 3 is impossible, and the algo-
rithm will stop in accordance with item 1, after the
whole graph has been traversed by stimuli. In the case
of a graph of the second kind with an initial vertex
belonging to the first component, the algorithm, first,
moves along the connecting ∆-arcs until it occurs in the
last component, which is traversed then by stimuli.
However, in this case, vertices of (not last) components
will remain unmarked, and, although all ∆-arcs have
been traversed with guarantee, the algorithm will stop
at item 3.

Obviously, such an algorithm is redundant. Its irre-
dundant version can be created if we replace the ∆-dis-
tances calculated over the entire graph by the ∆-dis-
tances calculated over the traversed graph. These
∆-distances are to be recalculated every time when a
new arc is traversed. The length of the stimulus-based
traversal is, as before, O(nm); however, the algorithm
operation time will increase considerably.

The basic idea of the algorithm described below
consists in the use of a local approximation of the
∆-distance, which will be called a rank and denoted by
r(v) and r(v, x), for a vertex v and a ∆-arc (v, x), respec-
tively. In the course of the algorithm operation, ranks
may only be increased. If the rank of a vertex becomes
equal to or greater than the number of the traversed ver-
tices, the algorithm stops. This may happen only if the
graph is not strongly ∆-connected.

The algorithm manages a list of the traversed verti-
ces. For each traversed vertex v, there is a unidirec-
tional list of ranks of the outgoing ∆-arcs without loops
in the increasing order of their ranks. For each rank r,
there is a bidirectional list of the traversed ∆-arcs with-
out loops that begin at the vertex v and have rank r.

The algorithm uses the following data structures:
• List of the traversed vertices. The descriptor of ver-

tex v contains
+ a vertex identifier (returned by the operation sta-

tus),
+ a marked vertex attribute (the operation nextcall

returned the empty symbol ε), and
+ a reference to the first element of the rank list.
• List of ranks of the traversed ∆-arcs without loops

that originate from vertex v. The descriptor of rank r
contains

+ the rank value,

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 1 2004

IRREDUNDANT ALGORITHMS 13

+ a reference to the rank list, and
+ a reference to the first element of the list of ∆-arcs.
• List of the traversed ∆-arcs without loops that orig-

inate from vertex v and have rank r. The descriptor of
the ∆-arc (v, x) contains

+ a stimulus of the ∆-arc,
+ a “forward” reference in the list of ∆-arcs, and
+ a “backward” reference in the list of ∆-arcs.
• N is a counter of the traversed vertices.
• L is a counter of the marked vertices.
• v is a reference to the descriptor of the current vertex.
The rank of an unmarked vertex is considered to be

equal to zero, and the rank of a marked vertex is equal
to the maximal rank of the outgoing ∆-arcs without
loops, i.e., to the first rank in the list of ranks of the out-
going traversed ∆-arcs without loops. If the list of ranks
for a marked vertex is empty, then the vertex rank is not
defined.

At the beginning of the algorithm operation, lists of
vertices and the corresponding lists of ranks and ∆-arcs
are empty; both counters are set equal to zero; and the
reference to the current vertex v is also empty. Using
the operation status, the algorithm determines the iden-
tifier of the initial vertex v and creates a descriptor for
it with an empty list of ranks and the vertex being
unmarked. The counter of the traversed vertices is set
equal to one.

The further operation of the algorithm consists in
the execution of a sequence of steps. Each step contains
one call of the operation nextcall or call. As a result of
this operation, either one arc (v, x, v ') is traversed, or
the current unmarked vertex v is marked (nextcall
returns the empty symbol ε). We will use the prime
symbol to denote the ranks of vertices and ∆-arcs, the
current vertex, and the values of the counters at the end
of a step, i.e., r', v ', N', and L'. The algorithm step is as
follows:

1. The current vertex v is unmarked. Call the opera-
tion nextcall.

A. nextcall returns the empty symbol ε. Mark the
current vertex and increase the counter of the marked
vertices: L' = L + 1.

a. If the values of the counters of the traversed and
marked vertices are equal each other, N' = L', the algo-
rithm stops (stop 1).

b. Otherwise, if N' > L', analyze the rank of the ver-
tex v.

I. If the list of ranks of the ∆-arcs is empty (i.e., r'(v)
is not defined) or r'(v) ≥ N, the algorithm stops (stop 2).

II. Otherwise, the end of Step 1.
B. nextcall performs a transition along an untra-

versed ∆-arc (v, x) and returns its stimulus x. By means
of the operation status, determine the identifier of the
new current vertex v ', i.e., the end of the traversed arc
(v, x, v '). By means of this identifier, seek for v ' in the
list of descriptors of the traversed vertices.

a. If the vertex v ' is not found (a new one), create
the descriptor for it: the list of ranks is empty, and the
vertex is unmarked. Increase the counter of the tra-
versed vertices, N' = N + 1. Create the descriptor of the
∆-arc (v, x) and place the arc to the list of ∆-arcs of
rank 1 originating from the vertex v. If required, cre-
ate the descriptor of rank 1 for the vertex v. The end of
Step 2.

b. If the vertex v ' is not found (an old one), check
whether the traversed arc (v, x, x') is a loop.

I. It is a loop, v ' = v. The end of Step 3.
II. It is not a loop, v ' ≠ v. The rank of the ∆-arc (v, x)

is set equal to r'(v, x) = r(v ') + 1. Create the descriptor
of the ∆-arc and place it to the list of ∆-arcs of rank
r'(v, x). If required, create the descriptor of rank r'(v, x)
for the vertex v. The end of Step 4.

2. The current vertex v is marked. Select the ∆-arc
(v, x) originating from v with the least rank. For the
stimulus x of the selected ∆-arc, execute call(x). By
means of the operation status, determine the identifier
of the new current vertex v ', i.e., the end of the tra-
versed arc (v, x, v '). By this identifier, seek for v ' in the
list of the descriptors of the traversed vertices.

A. If the vertex v ' is not found (a new one), create
the descriptor for it: the list of ranks is empty, and the
vertex is unmarked. Increase the counter of the tra-
versed vertices, N' = N + 1. The end of Step 5.

B. If the vertex v ' is not found (an old one), check
whether the traversed arc (v, x, x') is a loop.

a. It is a loop, v ' = v. The descriptor of the ∆-arc
(v, x) is extracted from the list of ∆-arcs of rank r(v, x).
If the list of ∆-arcs of rank r(v, x) became empty,
remove the descriptor of this rank from the list of ranks
and delete it. Correct the reference from the descriptor
of the vertex v to the descriptor of the next rank. If the
list of ranks is empty, this reference will also be empty.
Analyze the rank of the vertex v.

I. If the list of ranks of ∆-arcs is empty, i.e., r'(v) is not
defined, or r'(v) ≥ N, then the algorithm stops (stop 2).

II. Otherwise, the end of Step 6.
b. It is not a loop, v ' ≠ v. Compare the rank r(v ') with

the rank of the beginning of the traversed arc r(v) = r(v, x).
I. r(v) > r(v '). The ranks of the ∆-arc (v, x) and the

vertex v have not been changed. The end of Step 7.
II. r(v) ≤ r(v '). The rank of the ∆-arc (v, x) is

increased: r'(v, x) = r(v ') + 1. The descriptor of the ∆-
arc is removed from the list of ∆-arcs of rank r(v, x) and
placed to the list of ∆-arcs of rank r'(v, x). If required,
create the descriptor of this rank. If the list of ∆-arcs of
rank r(v, x) is empty, delete the descriptor of this rank
and modify the reference from the descriptor of the ver-
tex v to the next rank in the list of ranks. Analyze the
rank of the vertex v.

(i) If the list of ranks of ∆-arcs is empty, i.e., r'(v) is
not defined, or r'(v) > N, the algorithm stops (stop 2).

(ii) Otherwise, the end of Step 8.

14

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 1 2004

BOURDONOV et al.

Lemma 5.1. The rank of a traversed ∆-arc without
loops is less than or equal to the maximum rank of the
endpoints of its traversed arcs plus one.

Proof. When the rank of a ∆-arc is set for the first
time (items 1.B.a and 1.B.b.II) or corrected afterwards
(item 2.B.b.II), it becomes equal to the maximum of the
determined ranks of the endpoints of its traversed arcs
increased by one. Since ranks of the ∆-arcs and, thus,
ranks of vertices do not decrease, the ranks of the end-
points of the arcs belonging to the ∆-arc do not decrease
between the corrections of its rank. The lemma is
proved.

Lemma 5.2. If there is an unmarked vertex in a
strongly ∆-connected component K, then, for any ver-
tex a ∈ VK of rank r(a) > 0, there exists a vertex b ∈ VK
of rank r(b) = r(a) – 1.

Proof. Let us assume the contrary. Let, for some
vertex a ∈ VK of rank r(a) > 0, the rank of any vertex
b ∈ VK satisfy the condition r(b) ≠ r(a) – 1. Consider
the set H of vertices that have rank equal to or greater
than r(a). Since K contains unmarked vertices of rank
0, H is a nonempty proper subset of VK. Since K is a
strongly ∆-connected component, H cannot be ∆-iso-
lated; i.e., there exists a ∆-arc (v, x) with the beginning
v ∈ H the endpoints of all arcs of which belong to
VK\H. It is evident that this ∆-arc is traversed (the rank
of its beginning v is greater than zero), and the end-
points of all of its traversed arcs have ranks lesser than
r(a) – 1. Then, by Lemma 5.1, r(v, x) ≤ r(a) – 1 and
r(v) ≤ r(v, x) ≤ r(a) – 1, which contradicts the condition
v ∈ H. The lemma is proved.

Lemma 5.3. When the algorithm stops at a vertex v,
the strongly ∆-connected component K(v) is traversed
by stimuli (all ∆-arcs originating from its vertices are
traversed).

Proof. If the algorithm termination corresponds to
stop 1, then all traversed vertices are marked.

If the termination corresponds to stop 2, then all tra-
versed vertices of the component K(v) are marked.
Indeed, this may happen in two following cases:

(1) all ∆-arcs originating from v have loops, or
(2) the vertex v has too large rank, r(v) ≥ N.
In the first case, v is the only vertex in K(v), and it

is completely traversed. In the second case, clearly,
r(v) ≥ N(v), where N(v) is the number of the traversed
vertices of the component K(v). If there were unmarked
vertices in K(v), then, by Lemma 5.2, K(v) would con-
tain vertices with the ranks r(v), r(v) – 1, …, 0. In this
case, we would have N(v) ≥ r(v) + 1 ≥ N(v) + 1, which
is impossible.

Thus, in both cases of the algorithm termination, all
traversed vertices of the component K(v) are marked;
i.e., all ∆-arcs originating from them are traversed. If
there were untraversed ∆-arcs in K(v), then the set of
the traversed vertices K(v) would be a ∆-isolated non-
empty proper subset of the set VK(v), which is not the
case. Hence, K(v) has been traversed by stimuli.

Guaranteed D-traversal of a graph of the second
kind with an initial vertex belonging to the first com-
ponent. In such a graph, the algorithm passes a simple
path leading from the initial vertex to the last compo-
nent. If it stops, then, by Lemma 5.3, it has traversed the
graph by stimuli. The fact that the algorithm stops on
any graph is proved below.

Lemma 5.4. The rank of a vertex is less than n, and
the rank of a ∆-arc does not exceed n.

Proof. The rank of a vertex before the algorithm
stops is less than N (stop 2). Since N ≤ n, the vertex rank
is less than n. On the strength of Lemma 5.1, the rank
of a ∆-arc does not exceed n.

The algorithm stops on any graph, with the
length of the traversed path being estimated as
O(nm). Let the rank of a ∆-arc with a loop be defined
equal to n. Consider the sum S = R∆ – r(v) + nL, where
R∆ is the sum of ranks of the traversed ∆-arcs (including
∆-arcs with loops) and r(v) is the rank of the current
vertex. Taking into account that L ≤ N ≤ n ≤ m and using
Lemma 5.4, we find that S = O(nm). At each step, the
algorithm traverses not more than one arc. Therefore, to
prove the assertion, it is sufficient to show that, at each
step (but, perhaps, the last one), the sum S is increased
by, at least, one; i.e., S' ≥ S + 1. Let us show that this is
true for all eight kinds of the step termination.

Step termination 1. = R∆, v ' = v, r'(v) < n, r(v) = 0,
L' = L + 1. Therefore, S' – S = (–r'(v) + r(v)) + n ≥ 1.

Step termination 2. = R∆ + 1, r'(v ') = r(v) = 0,
L' = L. Therefore, S' – S = 1.

Step termination 3. = R∆ + r'(v, x), r'(v, x) = n,
v ' = v, r'(v) = r(v), L' = L. Therefore, S' – S = n ≥ 1.

Step termination 4. = R∆ + r'(v, x), r'(v, x) = r(v ') +
1, r'(v ') = r(v '), r(v) = 0, L' = L. Therefore, S' – S =
r'(v, x) – r'(v ') = 1.

Step termination 5. = R∆, r'(v ') = 0, r(v) > 0, L' =
L. Therefore, S' – S = r(v) – r'(v ') ≥ 1.

Step termination 6. = R∆ + r'(v, x) – r(v, x),
r'(v, x) = n, r(v, x) = r(v) < n, v ' = v, r'(v ') < n, r(v) > 0,
L' = L. Therefore, S' – S = r'(v, x) – r(v, x) + r(v) – r'(v ') =
n – r(v) + r(v) – r'(v ') ≥ 1.

Step termination 7. = R∆, r'(v ') = r(v '), r(v) >
r'(v '), L' = L. Therefore, S' – S = r(v) – r'(v ') ≥ 1.

Step termination 8. = R∆ + r'(v, x) – r(v, x),
r'(v, x) = r(v ') + 1, r(v, x) = r(v) < n, r'(v ') = r(v '),
r(v ') ≤ r(v '), L' = L. Therefore, S' – S = r'(v, x) – r(v, x) +
r(v) – r'(v ') = r(v ') + 1 – r(v) + r(v) – r(v ') = 1.

Algorithm operation time. At each step, the num-
bers of elementary operations required are not bounded
by a constant (depend on the graph characteristics) for
only two following tasks: (1) searching for the identifier
of a vertex (the end of the traversed arc) among the

R∆'

R∆'

R∆'

R∆'

R∆'

R∆'

R∆'

R∆'

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 1 2004

IRREDUNDANT ALGORITHMS 15

identifiers of the traversed vertices and (2) moving
∆-arcs from one list to another when their ranks are
increased. As to (2), it suffice to note that, since the rank
of a ∆-arc is not decreased and does not exceed n, it is
totally (over all steps) moved by not more than n posi-
tions. Therefore, not more than O(nm) elementary oper-
ations (over all steps) are required to move all ∆-arcs.

Time required for item (1) depends on the compari-
son operations defined for the vertex identifiers. If only
the matching operation is defined, the number of the
comparison operations required for each search is O(n).
Multiplying it by the number of searches O(nm), we
find that the total number of matching operations is
O(n2m). If the comparison operations (“greater/less”)
are also defined, then, instead of a simple list of vertex
descriptors, we can organize a balanced tree of such
descriptors. Each search in such a tree requires
O() comparisons; multiplying it by the number of
searches O(nm), we obtain the total number of opera-
tions O(nm). The correction of a tree when a new
vertex is added requires O() operations; the num-
ber of such corrections is O(n); and the total number of
operations is O(n).

Required memory. Since the rank does not exceed
n, the rank value and a reference in the rank list
occupy O() bits. A reference in the list of ∆-arcs
occupies O() bits. Let I and X be sizes of the
vertex identifier and stimulus, respectively, in bits.
Then, the vertex descriptor occupies O(I +)
bits; the rank descriptor, O(+) bits; and
the ∆-arc descriptor, O(X +) bits. Since n ≤ m – 1
and each rank descriptor is associated with a non-
empty list of ∆-arcs, the total estimate is O(nI + mX +
m) bits. If a balanced tree of vertex descriptors
is supported, then each reference in a tree requires
O() bits of memory, and the total amount of
memory is O(n), which does not change the
order of the estimate.

This completes the proof of Theorem 5.2.

5.3. Modifications of the Algorithm

An irredundant version B2 of the free algorithm B1
can easily be constructed. To this end, a vertex is
marked when the algorithm leaves the vertex by the last
untraversed ∆-arc originating from this vertex. Now, let
us see what correct verdicts can the free algorithm B1

and the irredundant algorithm B2 return? If there are no
unmarked vertices when any of these algorithms stops,
the set of the traversed vertices is ∆-isolated, and the
algorithm has completed a stimulus-based traversal of
the graph. For B1, the following verdict is correct: “if
the graph is strongly ∆-connected, then the guaranteed
stimulus-based traversal has been completed” (recall

n2log

n2log
n2log

n2log

n2log
m2log

n2log
n2log m2log

m2log

m2log

n2log
n2log

that only ∆-reachable graphs are considered). B2
returns the following, stronger, verdict: “if the graph is
a graph of the second kind, then the guaranteed stimu-
lus-based traversal has been completed.” If there
remained unmarked vertices at the moment when the
algorithm stops, the free algorithm B1 does not know
whether they have been completely traversed. It may
state only that the strongly ∆-connected component of
the traversed graph has been traversed by stimuli, that
the algorithm stopped at this component, and that the
set of vertices of this component is ∆-isolated. On the
other hand, the irredundant algorithm B2 knows for
sure that the stimulus-based traversal has not been com-
pleted.

To return more accurate verdicts, the traversed
graph is to be analyzed. In the above-discussed version
of the algorithm, the traversed graph was not saved: we
stored only the traversed vertices and stimuli of the tra-
versed ∆-arcs. The algorithm can easily be modified in
order to keep information about all traversed arcs. This
will not change the order of the path length and the
algorithm operation time, but will certainly increase the
required amount of memory.

The algorithms discussed can be used also for con-
structing ∆-coverage of any ∆-reachable graphs,
which can be achieved by repeatedly running the algo-
rithms and saving information on the results of the
previous runs. In other words, the algorithms can
work with graphs for which the reliable operation
reset [2] is defined. This operation is used only when
needed instead of stop 2 (in particular, it is not used on
strongly ∆-connected graphs). The algorithm B2 can
be modified such that the modified version (denote it
as B3) can perform guaranteed stimulus-based tra-
versals of graphs of the first kind if it receives some-
how information about the connecting ∆-arcs. Let a
predicate π(x) of stimulus, which is further referred to
as the predicate of the connecting ∆-arcs, be given at
each vertex of the graph. The predicate is said to be
correct if it is true on the stimuli of the connecting ∆-
arcs and is not true on others. The algorithm with the
external operations next, call, and π is, of course, not
irredundant; however, in a sense, it is a “minimally
redundant” algorithm. The algorithm B3 differs from
B2 in that it passes first only nonconnecting ∆-arcs
that go out of the traversed vertices and stores stimuli
of the connecting arcs in their beginning vertices.
When there are no untraversed nonconnecting ∆-arcs
any more and all vertices are marked, the algorithm
considers the beginnings of the connecting ∆-arcs as
unmarked and, accordingly, corrects ranks of the ver-
tices and ∆-arcs (for this purpose, it looks through the
traversed graph again).

The predicate π is formally defined on the triples
(graph, vertex, and stimulus). A predicate is said to be
irredundant if it does not depend on the graph. More
precisely, the dependence of a predicate on the graph

16

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 1 2004

BOURDONOV et al.

is reduced to the dependence on the set of stimuli
admissible at the vertex; i.e., formally, the predicate is
defined on the triples (vertex, set of admissible stimuli
at the vertex, and stimulus). Considering the irredun-
dant predicate as an internal (rather than external)
operation of the algorithm and modifying accordingly
the algorithm B3, we obtain the irredundant algorithm
(denote it as B4) that can perform guaranteed stimu-
lus-based traversal of all graphs of the second kind
and those of the first kind for which the predicate is
correct. It should be noted, however, that an irredun-
dant predicate cannot be correct, of course, on all
graphs with given initial vertices v 0 that are isomor-
phic up to coloring of ∆-arcs by stimuli if these are not
graphs of the second kind.

Another field of the application of the algorithm
with the predicate (both redundant and irredundant) of
the connecting ∆-arcs is multilevel graphs. A two-
level graph can be defined as a second-level graph the
vertices of which are first-level graphs, with all these
graphs being strongly ∆-connected. In stricter terms, a
two-level graph is a graph some ∆-arcs of which are
marked. Removing marked ∆-arcs, we obtain a set of
isolated strongly ∆-connected graphs (first-level
graphs). By factoring a two-level graph with respect to
the mutual ∆-reachability of vertices through
unmarked ∆-arcs, we obtain a strongly ∆-connected
graph of the second level. If the predicate is meant to
be the predicate of the marked ∆-arcs, the algorithm
will traverse the two-level graph by levels: when the
algorithm enters a first-level graph first time, it, first,
completely traverses this graph by stimuli of the
unmarked ∆-arcs; then, goes to the next first-level
graph by the marked ∆-arc. When the algorithm enters
the first-level graph next time, it passes only the sim-
ple path till the required marked ∆-arc that originates
from this graph. A p-level graph is defined by induc-
tion as a two-level graph the components of which are
(p – 1)-level graphs. The algorithm discussed can be
modified for work with any predetermined number p
of graph levels. The length of the algorithmic traversal
of a p-level graph is, in many cases, almost optimal,
which is less than O(nm)

6. CONCLUSIONS

The free and irredundant algorithms of graph stimu-
lus-based traversal discussed in this paper and tests
based on them have been developing and testing since
1995 by the group RedVerst [15] in the course of the
execution of several large-scale projects on testing var-
ious software [16, 17]. The latter testing was based on
functional specifications obtained on the design or
reengineering stages.

As a rule, in testing, not only the complexity of the
algorithm of ∆-traversal in terms of time and memory
required is critical. A more important characteristic is
the number of test actions, i.e., the length of the ∆-path

constructed. The free algorithm B1 and its irredundant
modification B2, which have nice complexity esti-
mates, ensure only that the length of the ∆-path in the
worst case has the minimal order nm. At the same time,
for many graphs with the minimal covering ∆-path
length much less than nm, they construct as lengthy
covering ∆-paths as in the worst case. The study of irre-
dundant algorithms that tend to construct covering ∆-
paths of minimal length is a promising problem for
future researches. Similar results for deterministic
graphs can be found, e.g., in [18].

REFERENCES
1. Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V.,

Irredundant Algorithms for Traversing Directed Graphs:
The Deterministic Case, Programmirovanie, 2003,
no. 5, pp. 11–30.

2. Lee, D. and Yannakakis, M., Principles and Methods of
Testing Finite State Machines: A Survey, Proceedings of
the IEEE, vol. 84, no. 8, pp. 1090–1123, Berlin: IEEE
Computer Society, 1996.

3. Von Bochmann, G. and Petrenko, A., Protocol Testing:
Review of Methods and Relevance for Software Testing,
Proc. of ISSTA, 1994, pp. 109–124.

4. Burch, J.R., Clark, E.M., McMillan, K.L., and Dill, D.L.,
Sequential Circuit verification Using Symbolic Model
Checking, Proc. of the Design Automation Conf., 1990,
pp. 46–51.

5. Cabodi, G., Lavagno, L., Macci, E., Poncino, M., Quer, S.,
Camurati, P., and Sentovicha, E., Enhancing FSM Tra-
versal by Temporary Re-Encoding, Proc. of IEEE Int.
Conf. on Comput. Design, 1996, pp. 6–11.

6. Swamy, G.M., Singhal, V., Brayton, R.K., Incremental
methods for FSM Traversal, Techn. Report, Electronics
Research Lab., Univ. of California, Berkeley, 1995.

7. Luo, G., Petrenko, A., and von Bochmann, G., Test
Selection Based on Communicating Nondeterministic
Finite State Machines Using a Generalized Wp-Method,
IEEE Trans., 1994,vol. SE-20, no. 2.

8. Barnett, M., Nachmanson, L., and Schulte, W., Con-
formance Checking of Components against Their Non-
Deterministic Specifications, Microsoft Research Techn.
Report MSR-TR-2001-56.

9. Petrenko, A., Yevtushenko, N., and von Bochmann, G.,
Testing Deterministic Implementations from Nondeter-
ministic FSM Specifications, Selected Proc. of the IFIP
TC6 9th Int. Workshop on Testing of Communicating
Systems, 1996.

10. Fujiwara, S. and von Bochmann, G., Testing Nondeter-
ministic Finite State Machine with Fault Coverage, Proc.
of IFIP TC6 Fourth Int. Workshop on Protocol Test Sys-
tems, (1991), Kroon, J., Hei-jink, R.J., and Brinksma, E.,
Eds., North-Holland, 1992, pp. 267–280.

11. Milner, R., A Calculus of Communicating Systems, in
Lecture Notes in Computer Science, Berlin: Springer,
1980, vol. 92.

12. Tabourier, M., Cavalli, A., and Ionescu, M., A GSM-
MAP Protocol Experiment Using Passive Testing,
Proc. of the World Congr. on Formal Methods in Devel-

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 1 2004

IRREDUNDANT ALGORITHMS 17

opment of Computing Systems (FM'99), Toulouse,
1999.

13. Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V.,
Use of Finite Automata for Program Testing, Program-
mirovanie, 2000, no. 2, pp. 12–28.

14. Gurevich, Yu., Sequential Abstract State Machines Cap-
ture Sequential Algorithms, ACM Trans. Computational
Logic, 2000, vol. 1, no. 1, pp. 77–111.

15. http://www.ispras.ru/RedVerst/.
16. Bourdonov, I, Kossatchev, A., Kuliamin, V., and

Petrenko, A., UniTesK Test Suite Architecture, Proc. of

FME 2002, Lecture Notes in Computer Science,
vol. 2391, pp. 77–88, Berlin: Springer, 2002.

17. Bourdonov, I., Kossatchev, A., Petrenko, A., and Gatter, D.,
KVEST: Automated Generation of Test Suites from For-
mal Specifications, Proc. of FM’99, Lecture Notes in
Computer Science, vol. 1708, pp. 608–621, Berlin:
Springer, 1999.

18. Albers, S. and Henzinger, M.R., Exploring Unknown
Environments, SIAM J. Comput., 2000, vol. 29, no. 4,
pp. 1164–1188.

