

0361-7688/04/3004- © 2004

åÄIä “Nauka

/Interperiodica”0188

Programming and Computer Software, Vol. 30, No. 4, 2004, pp. 188–203. Translated from Programmirovanie, Vol. 30, No. 4, 2004.
Original Russian Text Copyright © 2004 by Bourdonov.

1. INTRODUCTION
The graph traversal problem, i.e., the construction of

a path passing through all graph edges, is well known.
In the case of a directed graph, the problem is more
complicated, since the path must traverse any directed
edge (arc) only in one direction. A directed graph can
be traversed starting from any initial vertex only if it is
strongly connected, i.e., any vertex of the graph can be
reached from any other vertex by a certain path.

In the majority of studies, the graph is assumed to be
a priori known in an explicit form [2, 3] before a cover-
ing path is constructed. The case where, before starting
the traversal, nothing is known about the graph and the
information is obtained in the course of the traversal is
more complicated [4, 5]. This is the well-known prob-
lem of traversing a maze [6] by a man (or device) in the
case where the plan of the maze is unknown. The maze
passages and junctions correspond to the graph edges
and vertices, respectively. From a junction, we can see
passages that form this junction but do not know where
any passage leads to until we traverse it and reach
another junction. To solve our problem, we, first, are
provided with a certain internal memory (e.g., a note-
pad), where we can write down information obtained in
the course of the maze traversal, and, second, may mark

up passages and junctions traversed. A directed graph
corresponds to a maze with one-way passages.

If the internal memory is limited to a finite number
of states, we obtain a robot (finite automaton) on a
graph, which is a kind of the Turing machine [1, 7–11].
Instead of the tape, we have the graph; a cell of the tape
corresponds to a graph vertex; and the tape motions to
the left or to the right correspond to traversing one of
the arcs originating from the current vertex. The robot
must indicate somehow which outgoing arc has been
selected. If the arcs originating from a vertex

v

 are
numbered by means of indices 1, …,

d

out

(

v

), where

d

out

(

v

) is the outdegree of the vertex

v

, then the robot
may simply indicate the arc number. However, to
ensure the finiteness of the output robot alphabet, the
outdegree

d

out

 is to be bounded from above.

This restriction can easily be removed if we add

d

out

(

v

) memory cells to each vertex

v

 and combine
these cells into a loop, which is further referred to as the

v

-loop. The robot is supplemented by the

inner

 transi-
tion to the cell of the next arc in the

v

-loop. In the case
of the

outer

 transition along the arc (

v

,

v

'), the robot
occurs in the cell of the first arc in the

v

'-loop. Thus,
there is no need to identify the arc; the robot may just

Traversal of an Unknown Directed Graph by a Finite Robot

I. B. Bourdonov

Institute for System Programming, Russian Academy of Sciences,
Bol’shaya Kommunisticheskaya ul. 25, Moscow, 109004 Russia

e-mail: igor@ispras.ru

Received January 20, 2004

Abstract

—A covering path in a directed graph is a path passing through all vertices and arcs of the graph, with
each arc being traversed only in the direction of its orientation. A covering path exists for any initial vertex only
if the graph is strongly connected, i.e., any of its vertices can be reached from any other vertex by some path.
The strong connectivity is the only restriction on the considered class of graphs. As is known, on the class of
such graphs, the covering path length is

Θ

(

nm

), where

n

 is the number of vertices and

m

 is the number of arcs.
For any graph, there exists a covering path of length

O

(

nm

), and there exist graphs with covering paths of the
minimum length

Ω

(

nm

). The traversal of an unknown graph implies that the topology of the graph is not a priori
known, and we learn it only in the course of traversing the graph. At each vertex, one can see which arcs orig-
inate from the vertex, but one can learn to which vertex a given arc leads only after traversing this arc. This is
similar to the problem of traversing a maze by a robot in the case where the plan of the maze is not available.
If the robot is a “general-purpose computer” without any limitations on the number of its states, then traversal
algorithms with the same estimate

O

(

nm

) are known. If the number of states is bounded, then this robot is a
finite automaton. Such a robot is an analogue of the Turing machine, where the tape is replaced by a graph and
the cells are assigned to the graph vertices and arcs. Currently, the lower estimate of the length of the traversal
by a finite robot is not known. In 1971, the author of this paper suggested a robot with the traversal length

O

(

nm

 +

n

2

log

n

). The algorithm of the robot is based on the construction of the output directed spanning tree of
the graph and on the breadth-first search (BFS) on this tree. In 1993, Afek and Gafni [1] suggested an algorithm
with the same estimate of the covering path length, which was also based on constructing a spanning tree but
used the depth-first search (DFS) method. In this paper, an algorithm is suggested that combines the breadth-
first search with the backtracking (suggested by Afek and Gafni), which made it possible to reach the estimate

O

(

nm

 +

n

2

loglog

n

). The robot uses a constant number of memory bits for each vertex and arc of the graph.

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 30

No. 4

2004

TRAVERSAL OF AN UNKNOWN DIRECTED GRAPH 189

indicate what—outer (

o

) or inner (

i

)—transition it
implements (Fig. 1).

We assume that two cells are simultaneously acces-
sible to robot for reading and writing: the cell of a ver-
tex and the cell of the current arc originating from this
vertex. Note that this is not a restriction: if the cell of a
vertex

v

 is not available, then the cell of the first arc of
the

v

-loop can always be used instead. When the robot
occurs at a vertex, it reads information about the vertex
from the cell of the first arc and stores it in its state. To
update the information about the vertex, the robot
moves along the

v

-loop to the cell of the first arc and
writes to it. All cells are assumed to be initially empty
(contain a standard empty symbol).

The problem of the traversal of a graph by a finite
robot was set by Rabin [11] in 1967.

The author of this paper studied this problem in
1969–1971, when he was a student of the Department
of Mechanics and Mathematics of Moscow State Uni-
versity. At that time, it was known that, in the class of
strongly connected directed graphs, the traversal (non-
robot) length was

Θ

(

nm

), where

n

 is the number of ver-
tices and

m

 is the number of arcs in the graph. For any
graph, there exists a covering path of length

O

(

nm

).
There also exist graphs with the covering paths of min-
imal length

Ω

(

nm

). The robot

R

0

 having one state was
known to be able to traverse any strongly connected
directed graph for exponential time but could not stop
after completing the traversal. This robot traverses all
arcs originating from a vertex always following one and
the same loop: 1, 2, …,

d

out

, 1, 2, ….
The author proved [12] that any robot with one state

had an exponential path length and could not stop. In
that work, two robots for graphs with a bounded outde-
gree have been suggested. Both algorithms were based
on constructing an

out

-tree (output directed spanning
tree) and a forest of

in

-trees (input directed spanning
trees) in the course of the graph traversal. These trees
allowed the robot to find a path from the end of a tra-
versed arc to its beginning. The algorithms used differ-
ent methods for traversing the

out

-tree. The first robot

R

1

 applied depth-first search (DFS) and constructed a
covering path of length

O

(

n

3

), and the second robot

R

2

applied breadth-first search (BFS) and constructed a
covering path of length

O

(

n

2

log

n

). Being applied to
graphs without restrictions on the outdegree (with

v

-
loops of arcs), these estimates take the form

O

(

nm

 +

n

3

)
and

O

(

nm

 +

n

2

log

n

), respectively.
In both estimates, the second addend appears

because of the

backtracking

, i.e., returning

n

 – 1 times
to the previous (closer to the root) vertex in the course
of searching for the

out

-tree. Although the backtracking
along one arc involves a simple path of length

O

(

n

), the
robot is not capable of reading the future and has to
repeatedly pass along this path when searching for the
desired vertex. The robot

R

1

 constructed a simple

out

-
path beginning at the initial vertex and a forest of

in

-
trees, which allowed it to reach the

out

-path from any

traversed vertex. When all arcs originating from the end
of the

out

-path turned out traversed, the robot had to
return from the end of the

out

-path to the previous ver-
tex. For this purpose, a cycle consisting of a simple

in

-
path and a simple

out

-path was used. The robot marked
the first vertex on the

out

-part of the cycle and, having
traversed one arc, remembered whether its end was the
end of the

out

-path. If it was not, then, after the next
passage, the label was shifted to the next vertex of the
cycle. As a result,

O(n) passages were required, so that
all returns required totally O(n3) passages along the
arcs. The robot R2 used the same expedient; however,
instead of the out-path, the out-tree was used, and the
label was shifted to the nearest crotch of this out-tree
rather than to the next vertex. Owing to this, the total
estimate reduced to O(n2logn).

In 1978, Kobayashi [13] suggested an algorithm
based on the depth-first search. The algorithm has an
exponential complexity and stops after completing the
traversal. In 1988, Kutten [14] suggested a traversal
algorithm of minimal complexity O(nm); however, his
robot was not finite since it used graph cells with the
numbers of memory bits logarithmically depending on
the number of vertices. Finally, in 1993, Afek and Gafni
[1] suggested a finite robot A (called Traversal-3) based
on the depth-first search with the traversal length esti-
mate O(nm + n2logn). This robot is similar to R1 but
requires fewer passages in each cycle in the course of
the backtracking. This was achieved through labeling
all vertices of the out-path, except for its end, and deter-
mining the parity of the number of vertices marked. At
the next passage, labels of the vertices having the oppo-
site parity are deleted, and the parity of the number of
the remaining marked vertices is determined anew, and
so on, until there remains one marked vertex, which is
the next-to-last vertex of the out-path. Owing to this
“parity method,” the number of passages reduces from
O(n) to O(logn).

The problem of the graph traversal has practical
applications in data networks. The graph is interpreted
as a network, with the graph vertices and arcs being the
network nodes and connections, respectively. Studies in
distributed networks focus usually on bidirectional net-
works, which correspond to undirected graphs.

1

2

30 i

v dout

Fig. 1. Vertex v and v-loop of the outgoing arcs.

190

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 4 2004

BOURDONOV

However, one encounters unidirectional networks
(directed graphs) more often than one might expect.
First of all, unidirectional networks appear as a result of
failures or breaks in connections. For example, a
modem LSI can stop receiving (or sending) data at one
end of a connection while continuing its operation in
the opposite direction. In addition, unidirectional con-
nections can be found in radio networks with asymmet-
ric transmission matrices, which are due to differences
in station capacities, in fiber-optic networks, and in
VLSI [10].

In the network terms, the traversal of a graph can be
interpreted in two ways. In one interpretation, the only
mobile robot is one process moving from one node to
another, reading labels in the nodes, and writing new
labels. The network nodes are passive devises designed
only for storing the labels made by the robot. In another
interpretation, vice versa, there is one passive message
moving from one node to another. Active devices are
network nodes, which actuate as automata only when
they receive the message, sending, in turn, a new mes-
sage through one of the outgoing connections. From a
mathematical standpoint, these interpretations differ in
that they treat differently the notions of the states (mes-
sages in the network versus information in the nodes)
and input/output symbols (labels in the nodes versus
received/transmitted messages).

In some applications, such as VLSI, the size of
memory in nodes and the message length are bounded.
It is in this case that we face the problem of an algorith-
mic traversal with a constant number of bits at each
node and the traversal process carrying a finite amount
of information (in the second interpretation, in a unidi-
rectional network of finite automata with the only cir-
culating message of finite length).

The author became interested in this problem again
in the 1990s during his work in the RedVerst [15] group
in the course of the execution of a project on software
testing based on implicit formal specifications of pro-
gram objects modeled by finite automata [16–20].
Here, one also faces the problem of traversing an
unknown graph of states of the automaton being tested.
True, in this case, the finiteness of the robot implement-
ing the traversal algorithm, as a rule, is not required.
One side result of that work was the robot R3 discussed
in this paper, which combines the breadth-first search
used by R2 and the “parity method” used by the robot A.
As a result, we get the estimate O(nm + n2loglogn) for
the covering path length.

2. PROBLEM STATEMENT

A directed graph (on which the robot works) can be
defined as G = (V, E, α, β, γ, δ, X, χ), where

• V is a set of vertices;

• E is a set of arcs (for convenience, we assume that
E ∩ V = ∅);

• α: E V is a function determining the initial
vertex (beginning) of an arc;

• β: E V is a function determining the terminal
vertex (endpoint) of an arc;

• γ: V E is a function determining the first arc in
the loop of the outgoing arcs with the condition

• δ: E E is a function determining the next arc
in the loop of the outgoing arcs with the condition

where δk = δ � δ � … � δ and the superposition sign is
applied k – 1 times;

• X is a set of symbols that can be stored in the cells
of vertices and arcs; and

• χ : V ∪ E X is a function determining symbols
stored in the cells of vertices and arcs.

A graph is said to be finite if the sets V and E are
finite. The number of vertices of a finite graph is
denoted by n = |V |. Two arcs e and e' are said to be adja-
cent if β(e) = α(e'). A path is a sequence of adjacent
arcs. A path is said to pass through a vertex if this vertex
is either the beginning or the endpoint of some arc of
the path. The beginning point of the first arc of a path is
called the beginning of the path, and the endpoint of the
last arc of the path is called its end. A simple path is a
path that does not pass through one vertex more than
once. A cycle is a path the beginning and the endpoint
of which coincide; in a simple cycle the beginning and
the endpoint are the only coinciding vertices. A path is
referred to as a covering path if it contains all arcs of
the graph. A graph is said to be strongly connected if
any two vertices of the graph are connected by some
path.

A robot on a graph G is defined as R = (Q, X, T),
where

• Q is a set of states,
• X is a set of input symbols (coincides with a set of

symbols in the cells of the graph), and
T ⊆ Q × X × X × Q × X × X × {i, o} is a set of tran-

sitions.
At any time, the robot is located at a current vertex

v ∈ V on a current arc e ∈ E originating from v; i.e.,
α(e) = v. The robot is in a state q ∈ Q and reads the
symbol of the vertex xv = χ(v) and the symbol of the arc
xe = χ(e). The transition (q, xv, xe, q', , , i/o) ∈ T
means that the robot transfers to the state q' and writes
symbols to the cell of the vertex χ(v) = and to the

cell of the arc χ(e) = . In the case of an inner transi-
tion (i), the robot remains in the same vertex v but
transfers to the next arc in the v-loop δ(e). In the case of
an outer transition (o), the robot passes along the arc e
to its terminal vertex β(v) on the first arc γ(β(v)) origi-
nating from it.

v∀ V dout v() 0 α γ v()()⇒>∈ v ;=

e E k∃∈∀ 0 … dout α e()() 1: δk e() γ α e()(),=–, ,=

xv' xe'

xv'

xe'

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 4 2004

TRAVERSAL OF AN UNKNOWN DIRECTED GRAPH 191

The robot is said to be finite if the sets Q and X are finite.
The robot is deterministic if, for any triple (q, xv, xe) ∈
Q × X × X, there does not exist more than one transition
(q, xv, xe, q', , , i/o) ∈ T. If, for some triple (q, xv,
xe), no transition exists, the robot is said to stop in the
state q at a vertex with the symbol xv on an arc with the
symbol xe.

One symbol ε ∈ X is assumed to be initial; it is con-
tained in all cells of the graph vertices and arcs at the
beginning of the robot operation. The vertex at which
the robot starts its operation is called initial and denoted
by v0; the initial arc is the first outgoing arc γ(v0).

The sequence of all outer transitions of the robot R
in a graph G determines a path in G, which is referred
to as a traversed path. If the robot stops, this path is
finite. The robot is said to traverse a graph if it stops on
this graph and the traversed path is a covering path. If
each arc originating from a vertex v belongs to a path
P, this vertex is said to be completely traversed (in the
path P). Clearly, in the case of strongly connected
graphs, the traversed path is a covering path if and only
if all vertices of the graph are completely traversed.

The problem to be solved in this paper is to construct
a finite robot that traverses any finite strongly connected
directed graph starting from any initial vertex.

An arbitrary directed graph is partitioned into
strongly connected components. Given a vertex v, K(v)
denotes the component to which this vertex belongs. A
connecting arc is an arc the beginning and endpoint of
which belong to different components of the graph. A
graph of the first kind is a graph with a linear order of
the components in which each (but the last) component
has exactly one outgoing arc leading to the next compo-
nent (Fig. 2). A traversed graph of a path is a subgraph
consisting of the arcs belonging to the path and the inci-
dental vertices. We use the notation Gt for this graph.

Lemma 1. A traversed graph of a path is a graph of
the first kind. The beginning and the end of the path
belong to the first and last components, respectively.

The proof of this lemma is obvious.

3. DESCRIPTION OF THE ROBOT R3

The suggested robot R3 satisfies the following
restriction: an arc can repeatedly be traversed only from
a completely traversed vertex. Actually, in an incom-
pletely traversed vertex v, the robot R3 behaves like the
robot R0: it traverses all arcs in the order they are
arranged in the v-loop, which does not depend on the
robot and is determined by the graph itself. In particu-
lar, this implies that the behavior of the robot R3 at a
vertex does not depend on the number of untraversed
arcs originating from this vertex.

Although the robot is designed for traversing
strongly connected graphs, it can work in any directed
graph and, in the case of a finite graph, stops in a finite
number of steps.

xv' xe'

We will use C to write an algorithm of the robot.
Cells of the vertices and arcs are represented by struc-
tures consisting of several fields, each of which can
store a finite number of values called labels. Thus, the
set of symbols X is a set of values of such structures. An
initial symbol ε is considered to be a structure with zero
values in all fields. The current vertex is denoted by v,
and the current outgoing arc, by p; thus, to access the
field field of the cell of the vertex or arc, the constructs
v.field or p.field, respectively, are used. A state of the
robot is a set of values of state variables, which are ordi-
nary variables of C (except for v and p). For inner and
outer transitions, external procedures Next and
Traverse modifying v and p are used. The external pro-
cedure Sink is used for determining whether a current
vertex is terminal (a vertex without outgoing arcs) (Fig. 3).

3.1. Structure in a Graph

Let us describe a data structure in a graph, which is
created and used by the robot. This structure consists of
vertex cells and arc cells connected into loops of the
outgoing arcs for each vertex. The cell content is shown
in Fig. 4; the initializing values depicted correspond to
the state existing before the beginning of the robot
operation.

The close-vertex v (v.close == 1) is a vertex that is
known to be completely traversed. This happens when
the robot repeatedly comes to the vertex after it has left
this vertex along the last untraversed arc. A vertex that is
not a close-vertex is called an open-vertex (v.close == 0).

For an arc, the field status may take the four follow-
ing values (Fig. 5):

• 0-arcs are untraversed arcs (the cell of a 0-arc con-
tains an empty symbol);

• 1-arcs are traversed arcs forming an output
directed out-tree T1 (with the root coinciding with the
initial vertex v0), which contains all open-vertices, such
that all leaves of T1 are open-vertices;

• 2-arcs are former 1-arcs; 1-arcs and 2-arcs alto-
gether form the out-tree T12, which is the output
directed spanning tree of the traversed graph Gt (with
the root coinciding with the initial vertex v0); clearly, T1
is a subtree of T12 with the same root v0;

• 3-arcs are chords of the tree T12, i.e., arcs the begin-
nings and ends of which belong to T12 but the arcs
themselves do not belong to T12.

At each vertex of the tree T1, one outgoing arc has
the label out. This is the last of the traversed arcs origi-
nating from this vertex traversed by the robot when it
moved along untraversed arcs or arcs of T1 searching

1 2 tt – 1

Fig. 2. A graph of the first kind.

192

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 4 2004

BOURDONOV

for untraversed arcs. At an open-vertex v, an out-arc
may be any traversed arc with an arbitrary status (1, 2,
or 3) that is followed in the v-loop either by a 0-arc or,
if all arcs originating from v have already been tra-
versed, by the first arc of the v-loop. If v is a close-vertex,
then the out-arc originating from it is always a 1-arc
(Fig. 5).

The in-arcs form a forest of in-trees covering all tra-
versed vertices (Fig. 6). Each in-tree is an input directed
spanning tree of a component of the traversed graph Gt;
the root of this tree is also called the root of the compo-
nent. The root of the initial component coincides with
the initial vertex v0, and the root of another component
coincides with the end of the connecting arc of the tra-
versed graph Gt leading to this component. According
to Lemma 1, all roots are located on one path in the out-
tree T1 leading from the root to a leaf.

The label root of a vertex indicates that this vertex is
the root of a component. Other labels of a vertex play
an auxiliary role and will be explained later in the
course of the algorithm description.

3.2. Robot’s Algorithm

The operation of the robot can be represented as a
sequence of steps including the following four proce-
dures: (1) search for an untraversed arc, (2) traversal of
an untraversed arc, (3) returning along a chord, and
(4) reduction of the tree T1.

At the beginning of each step, the current vertex is a
root r of the last component of the traversed graph.
Each step, except for the first and last ones, consists in the
successive execution of procedures 1, 2, and 3 or 1 and 4.
The first step differs from the others in that it begins with

1 1

1
1

1

1

2

222
22

0

0

0

0

0

Close-vertex Out-tree T1

Fig. 5. Out-trees T1 and T12.

1

0

0

1,2,3

Fig. 6. An out-arc in the loop of arcs originating from a vertex.

/* Inner transition: p=((p) */
Next ();

/* Outer transition: v=((p), p=((((p)) */
Traverse ();

/* Returns 1 if the current vertex is terminal dout(v)=0 or 0 otherwise */
unsigned Sink ();

Fig. 3. Robot’s external procedures.

struct vertex {
unsigned close: 1 = 0;
unsigned root: 1 = 0;
unsigned end: 1 = 0;
unsigned new: 1 = 0;
unsigned crotch: 1 =
0;

};
vertex v;

struct arc {
unsigned status: 2 =
0;
unsigned in: 1 = 0;
unsigned out: 1 = 0;

};
arc p;

Fig. 4. Structure of the vertex and arc cells.

1

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 4 2004

TRAVERSAL OF AN UNKNOWN DIRECTED GRAPH 193

procedure 2 rather than with procedure 1. The last step
may stop after the execution of procedures 2 or 4.

The meaning of the vertex and arc marking
described above refers to the state existing before the
beginning of the step. In the course of the step execu-
tion, the marking may differ from the standard one.

The out-tree is used as a means for reaching an
incompletely traversed vertex or a completely traversed
leaf vertex of the out-tree T1 that has not been marked
as close yet (the procedure “Search for an untraversed
arc”). In the course of each search in the tree T1, an out-
path is selected such that the sequence of the out-paths
corresponding to the sequence of robot’s steps simu-

lates the breadth-first search in the spanning tree of the
graph. The two following cases are possible:

• Case 1. If an incompletely traversed vertex is
reached, the robot moves along untraversed arcs until it
occurs in a terminal vertex (dout = 0) and, then, stops, or
until it traverses a chord of the tree T1 (the procedure
“Traversal of an untraversed arc”); in the latter case, it
returns to the root of the last component of the traversed
graph (the procedure “Returning along a chord”).

• Case 2. If a completely traversed leaf of the tree T1
is reached, the robot marks it as close and deletes the
last segment of the path (containing only close-verti-
ces) in the tree T1 leading to it (the procedure “Reduc-
tion of the tree T1”).

In the last two procedures, the robot uses also a for-
est of in-trees: out- and in-arcs form a cycle along
which the robot repeatedly moves trying to attain its
goal. This process is discussed in more detail in the
descriptions of the procedures constituting the steps.

The general scheme of the algorithm is shown in
Fig. 8.

3.2.1. Search for an untraversed arc. The procedure
is formally described in Fig. 9 and is illustrated by an
example shown in Fig. 10.

We are situated in a root r of the last component,
which is not a leaf of the tree T1. Hence, it has at least
one outgoing 1-arc. Our goal is to move from the root r
along a path in the tree T1 to the beginning of an untra-
versed arc or to a completely traversed (but not marked
as close yet) leaf of the tree. During the passage, at each
current vertex v, we select a 1-arc that follows an out-
arc q in the v-loop of arcs. To do this, we look through

Fig. 7. Forest of in-trees.

Robot() {
/* First step */

v.root = 1;
if (Traversal of untraversed arcs () == "chord traversed")

Returning along a chord ();
else /* "came to a terminal vertex" */

return;

/* Other steps */
while (1) {
if (Search for untraversed arcs () == "untraversed arc is found")
/* Case 1 */

if (Traversal of untraversed arcs () == "chord traversed")
Returning along a chord ();

else /* "came to a terminal vertex" */
return;

else /* "leaf of tree T1 became a close-vertex" */
/* Case 2 */

if (Reduction of tree T1 () == "last component is completely traversed")
return;

/* else "tree is successfully reduced" */
}

}

Fig. 8. General scheme of robot’s algorithm.

Current vertex

1

1

1

Roots of
in-trees at the beginning

of a step

An arc of
the tree T1

1

194

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 4 2004

BOURDONOV

the v-loop until the out-arc q is found, remove the label
out from it, and inspect the next arc qnext in the v-loop.
Here, the following three cases are possible:

• Case 1: v is an open-vertex, and qnext is an untra-
versed arc (0-arc). Return from the procedure with the
verdict “an untraversed arc is found.”

• Case 2: v is an open-vertex, and qnext is a traversed
arc (not a 0-arc). Conclude that all outgoing arcs are tra-

versed. Mark v as close and check whether v is a leaf
vertex of the tree T1, i.e., whether it has outgoing 1-arcs.
If v is a leaf vertex, return from the procedure with the
verdict “the leaf of the tree T1 became a close-vertex.”
If v is not a leaf vertex, perform the same actions as in
Case 3.

• Case 3: v is an inner close-vertex. In this case, at
least one 1-arc originates from v. Look through the
v-loop until the closest 1-arc is found and place the
label out on it. Go along the out-arc and repeat these
actions for a new current vertex.

3.2.2. Traversal of untraversed arcs. The procedure
is formally described in Fig. 11 and is exemplified in
Fig. 12.

We are situated in an open-vertex v. If at least one
arc originates from it, then the current arc p is the first
untraversed arc in the v-loop. Move along untraversed
arcs to a traversed or terminal vertex. To this end, we
first check whether v is a terminal vertex. If v is termi-
nal, then return from the procedure with the verdict
“reached a terminal vertex.” Note that, in a strongly
connected graph, a vertex may be terminal only if it is
the only vertex of the graph. In this case, the graph has
obviously been traversed by the robot. If v is not a ter-
minal vertex, there exists an untraversed arc p = (v, w)
originating from it. Mark the vertex v by the label new,
modify status of the arc p from 0 to 1, mark it as an out-
arc, and move along it to its end w. If w is traversed,
return from the procedure with the verdict “the chord is
traversed.” Otherwise, mark it as a root-vertex and
repeat the actions for the vertex w.

1

1

1

0

0

1

1

1

Close-vertex Current vertex

out

out

out

out

out

out

out

Fig. 10. Search for untraversed arcs.

char* Search for an untraversed arc () {
while (1) {

while (!p.out) Next (); /* search for an out-arc q */
p.out = 0;
Next (); /* transition to the arc qnext */
if (!v.close)

if (p.status == 0)

/* Case 1: Vertex v is open, and arc qnext is not traversed */
return ("an untraversed arc is found");

/* Case 2: Vertex v is open, and arc qnext is traversed */
v.close = 1;
/* check whether v is a leaf of the tree T1 */
p.out = 1;
do Next (); while (p.status != 1 && !p.out);
if (p.status != 1) return ("leaf of the tree T1 has become a close-vertex");
while (!p.out) Next ();
p.out = 0;

}

/* Case 3: Vertex v is an internal close-vertex */
while (p.status != 1) Next (); /* search for a 1-arc */
p.out = 1;
Traverse ();

}
}

Fig. 9. Procedure “Search for untraversed arcs.”

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 4 2004

TRAVERSAL OF AN UNKNOWN DIRECTED GRAPH 195

3.2.3. Returning along a chord. The procedure is
formally described in Fig. 13 and illustrated in Fig. 14.

We have traversed a chord (a, b) and are situated at
its end v = b. Our goal is as follows: (1) to modify, if
necessary, the in-trees, (2) to find the vertex a and
change the status of the arc (a, b) from 1 to 3, (3) delete
all redundant labels new, and (4) go to the root r of the
last component.

First of all, we mark the vertex b by the label end in
order to recognize it when we occur in it again.

Let r be the root of the component K(b). We have a
cycle P consisting of a simple [b, r]-in-path and an
[r, b]-out-path, which, in turn, consists of a simple
[r, a]-out-path and an out-arc (a, b). If b = r, then the in-
path is of zero length; if a = r, then the out-path is of
zero length. We will solve our problem traversing this
cycle P. The in-path is traversed as follows: at each ver-
tex v, we look through arcs in the v-loop until the first
in-arc is found and move along it until we occur in a
root-vertex. The out-path is traversed as follows: at
each vertex v, we look through arcs in the v-loop until
the first out-arc is found and move along it until we
occur at a vertex with the label end.

First, we move from the vertex b to the root r along
the in-path.

Then, we return from the root r to the vertex b along
the out-path. In the course of this motion, in all root-
vertices after r, we delete the label root and, starting
from the first root-vertex we met after r, we make the
in-arc originating from it coincide with the out-arc. As
a result, all required components are glued with the
component K(b), and we will be able to reach the root r
from all their vertices by the in-arcs. In addition, we set

the variable new_counter > 1 if there are more than one
new-vertex on the out-path. Note that a is a new-vertex.

Now, we need to find the vertex a. To do this, the
robot will have to traverse the cycle P as many times as
there are new-vertices on its out-path; in each passage
(but the last one), the label new that was met first is
removed.

We are situated at the vertex b and know whether the
new-vertex that was met first on the out-path coincides
with a. If it does not coincide, we move along the cycle
P to the root r and, further, to the closest new-vertex,
remove the label new from it, and move further setting

Fig. 12. Traversal of untraversed arcs.

char* Traversal of untraversed arcs () {
while (1) {
if (Sink())

/* No outgoing arcs */

return ("came to a terminal vertex");

/* Outgoing arcs are available */

v,new = 1;
p.status = 1;
p.out = 1;
Traverse ();

if (p.status != 0)

/* The end of the arc has been traversed */
return ("the chord has been traversed");

/* The end of the arc has not been traversed */
v.root = 1;

}
}

Fig. 11. Procedure “Traversal of untraversed arcs.”

out0

1

1

1

0

0

out

out

out

new

new

new

Vertex

196

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 4 2004

BOURDONOV

void Out-Traverse () { /* traversing an out-arc */
while (!p.out) Next ();
Traverse ();

}

void In-Traverse () { /* traversing an in-arc */
while (!p.in) Next ();
Traverse ();

}

void Returning along a chord () {
unsigned new_counter = 0;
unsigned root_flag = 0;

v.end = 1; /* vertex b */

while (!v.root) In-Traverse (); /* [b, r]-in-path */

while (!v.end) {/* [r, b]-out-path */

if (v.new && new_counter < 2) new_counter += 1;
/* counting the number of new-vertices */

Out_Traverse ();

/* gluing components */

if (v.root) {
v.root = 0;
root_flag = 1;
while (!p.out) Next ();
p.in = 1;

}
else

if (root_flag) {
while (!p.in) Next ();
p.in = 0;
while (!p.out) Next ();
p.in = 1;

}
}

/* search for a vertex a */

while (new_counter != 1) {
new_counter = 0;
while (!v.root) In-Traverse (); /* [b, r]-in-path */
while (!v.new) Out-Traverse (); /* searching for the first new-vertex */
v.new = 0; /* removing the first new-vertex */
while (!v.end) { /* counting the number of the remaining new-vertices */
if (v.new && new_counter < 2) new_counter += 1;
Out-Traverse ();

}
}
v.end = 0; /* vertex b */

/* moving to vertex a */

while (!v.root) In-Traverse (); /* [b, r]-in-path */
while (!v.new) Out-Traverse (); /* [r, a]-out-path */

v.new = 0; /* vertex a */
while (!p.out) Next ();
p.status = 3; /* arc (a, b) */

while (!v.root) In-Traverse (); /* [a, r]-in-path */
return;

}

Fig. 13. Procedure “Returning along a chord.”

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 4 2004

TRAVERSAL OF AN UNKNOWN DIRECTED GRAPH 197

the variable new_counter > 1 if there remained more
than one new-vertices on the out-path. This process is
repeated until there remains only one new-vertex
(new_counter = 1), which, obviously, coincides with
the vertex a.

Now, we are situated at the vertex b and remove the
label new from it. Then, we move along the cycle P to
the new-vertex a, remove the label new from it, change
the status of the out-arc (a, b) from 1 to 3, move along
the in-arcs to the root r, and return from the procedure.

3.2.4. Reduction of the tree. The procedure is for-
mally described in Fig. 15 and illustrated in Fig. 16.

The current vertex a is a leaf of the tree T1 that
turned to a close-vertex, and the current arc is an out-
arc. Our goal is to remove the vertex a together with the
incoming arc (a1, a) from the tree T1. Now, if the vertex
a1 is also a leaf close-vertex, we have to remove it
together with the incoming arc (a2, a1), and so on.

A close-vertex with more than one outgoing 1-arcs
is called a crotch. Hence, we have to remove from the
tree T1 a maximal finite segment [c, a] of the path [v0, a]
that does not contain open-vertices and crotches. If
there remained open-vertices or crotches in T1, then,
clearly, the vertex c is to be the last open-vertex and/or
crotch on the path [v0, a]. We will seek such a vertex c
on the path [r, a], where r is the root of the last compo-
nent. If it turns out that r is not a crotch but is a close-
vertex, then the robot stops. Note that, in a strongly
connected graph, this may happen only if r = v0, and, in
this case, the robot, obviously, has traversed the graph.

The vertex c can be sought in the same way as the
vertex a was sought in the procedure “Returning along
a chord.” In this case, the path [r, a] is to be traversed as
many times as there are open-vertices and crotches on
it. We, however, will use the “parity method” suggested
by Afek and Gafni. Namely, we mark all open-vertices
and crotches on the path [r, a] by the label crotch and,
then, on each passage of the path, reduce the number of
the crotch labels by two times, such that the desired ver-
tex c always remains marked.

First of all, we check whether the vertex a is a root-
vertex. If it is, we return from the procedure with the
verdict “the last component has been completely tra-
versed.” Otherwise, we mark a by the label end in order
to recognize it when we occur in it again.

We have a cycle P consisting of a simple [a, r]-in-
path and a simple [r, a]-out-path, such that a ≠ r. Mov-
ing along P, we mark the root r and all subsequent
open-vertices and crotches on the [r, a]-out-path by the
label crotch. In doing so, we store the parity of the num-
ber of the crotch-vertices in the variable crotch_parity
and set the variable crotch_counter > 1 if the number of
the crotch-vertices is greater than one. Note that the
parity of the desired vertex c is equal to crotch_parity.
If crotch_counter > 1, then we pass along the path P
again, remove the label crotch from all crotch-vertices
of the parity |crotch_parity – 1|, store again the parity of
the number of the remaining crotch-vertices in the vari-

able crotch_parity, and set anew the variable
crotch_counter > 1 if the number of the remaining
crotch-vertices is greater than one. Note that the vertex
c remained a crotch-vertex, and its parity is again equal
to crotch_parity. This process continues until there
remains only one crotch-vertex (crotch_counter = 1),
which, obviously, coincides with c.

Further, we move along the cycle P to the crotch-
vertex c and remove the label crotch from it. Then, we
continue moving from c to a, change the status of all
arcs belonging to the [c, a]-out-path from 1 to 2,
remove the label out from all these arcs (except for the
first arc originating from c), remove the label end from
the vertex a, and move to the root r along the in-arcs.

Now, it is required to check whether the root r is an
open-vertex or has at least one outgoing 1-arc. If this is
true, we return from the procedure with the verdict “the
tree has successfully been reduced.” Otherwise, we
return from the procedure with the verdict “the last
component has successfully been traversed.”

4. THEOREM ABOUT THE ROBOT R3

Theorem. The robot R3 stops on any finite directed
graph and traverses all finite strongly connected graphs.
The length of the covering path is O(nm + n2loglogn),
and the required memory is O(n + m). For any n and m,
there exists a graph with n vertices and m' ≥ m arcs, for
which the length of the covering path constructed by
the robot R3 is equal to Ω(nm' + n2loglogn).

Proof. Denote the graph processed by the robot by
G, and let VG be a set of its vertices.

The robot stops on any finite graph. The fulfillment
of the step conditions before the initial step, as well as
at the end of each step if these conditions are fulfilled in
the beginning of the step, is checked immediately by

Fig. 14. Returning along a chord.

Roots of in-trees Strongly connected

out

new

new

new

new

end

in

in

in

out

out

out

out

out

out

a

r

b

components

out

198

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 4 2004

BOURDONOV

void Reduction of the tree () {
unsigned crotch_counter = 0;
unsigned crotch_parity = 0;

v.end = 1; /* vertex a */

while (!v.root) In-Traverse (); /* [a, r]-in-path */

/* placing labels crotch on [r, a]-out-path */

while (!v.end) {
if (!v.root || !v.close) v.crotch = 1; /* root r or an open-vertex */
else {/* checking a crotch */

while (p.status != 1) Next ();
if (p.out) do Next (); while (p.status != 1);
if (!p.out) v.crotch = 1; /* crotch */

}
if (v.crotch) {

crotch_parity = (crotch_parity == 1) ? 0: 1;
if (crotch_counter < 2) crotch_counter += 1; /* counting the number of crotch-vertices */

}
Out-Traverse ();

}

/* parity method */

while (croth _counter !=1) {
unsigned v_crotch_parity: 1 = 0;
unsigned new_crotch_parity: 1 = 0;
crotch_counter = 0;
while (!v.root) In-Traverse (); /* [a, r]-in-path */
while (!v.end) { /* [r, a]-out-path */

if (v.crotch) {
v_crotch_parity = (V_crotch_parity == 1) ? 0: 1;
if (v_crotch_parity != crotch_parity)

v.crotch = 0; /* removing label crotch */
else { /* remaining crotch-vertex */

new_crotch_parity = (new_crotch_parity == 1) ? 0: 1;
if (croth _counter < 2)

croth _counter += 1; /* counting the number of the remaining crotch-vertices */
}

}
Out-Traverse ();

}
crotch_parity = new_crotch_parity;

}
/* moving to vertex c */
while (!v.root) In-Traverse (); /* [a, r]-in-path */
while (!v.crotch) Out-Traverse (); [r, c]-out-path */

v.crotch = 0; /* vertex c */

/* remove [c, a]-path */

while (!p.out) Next ();
p.status == 2;
while (!v.end) {

Out-Traverse ();
while (!p.out) Next ();
p.status == 2;
p.out == 0;

}

v.end = 0; /* vertex a */

/* moving to root r */

while (!v.root) In-Traverse ();

/* checking whether the root r is an open-vertex or has at least one outgoing 1-arc */

if (v.close) {
while (!p.out) Next ();
do Next (); while (p.status != 1 && !p.out);
if (p.out) return ("the last component is completely traversed");

}
return ("the tree has successfully been reduced");

}

Fig. 15. Procedure “Reduction of the tree.”

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 4 2004

TRAVERSAL OF AN UNKNOWN DIRECTED GRAPH 199

using the description of robot’s algorithm. It is easy to
see that, at each step, all four procedures are executed
in a finite time. Therefore, in order to prove that the
robot stops in a finite time, it is sufficient to show that
it performs a finite number of steps. Indeed, the first
step begins with the second procedure “Traversal of
untraversed arcs,” where, at least, one untraversed arc is
traversed if the initial vertex v0 has outgoing arcs at all.
During any subsequent step, in the first procedure
“Search for an untraversed arc,” either one open-vertex
becomes a close-vertex or we turn to the second proce-
dure, where at least one untraversed arc is traversed.
Since the number of vertices and arcs in the graph is
finite, the number of steps is finite as well, and the robot
stops in a finite time.

The robot traverses all finite strongly connected
graphs. The termination condition is as follows: the
root of the last component of the traversed graph Gt
becomes a close-vertex and, hence, is completely tra-
versed and has no outgoing 1-arcs. Hence, it follows
that there are no open-vertices in the last component
and, thus, there are no untraversed arcs beginning in
vertices of the last component; i.e., the last component
is completely traversed. In a strongly connected graph,
this may happen only in the case where the traversed
graph consists of one component and coincides with the
entire graph G.

The amount of the required memory is O(n + m).
Since the cells of the vertices and arcs may contain a
finite number of labels from a finite alphabet, the total
amount of memory is O(n + m).

The upper bound of the covering path length is
O(nm + n2loglogn). In the procedure “Search for an
untraversed arc,” we follow a path in the tree T1 and,
therefore, pass along a simple path of length not greater
than n – 1. In so doing, either one open-vertex becomes
a close-vertex or we turn to the procedure “Traversal of
untraversed arcs,” where we traverse at least one untra-
versed arc. Thus, the total number of arcs traversed in
the first procedure at all steps is not greater than
(n − 1)(n + m) = O(nm).

In the procedure “Traversal of untraversed arcs,”
we move along untraversed arcs and, thus, the total
number of arcs traversed in this procedure at all steps is
not greater than m.

In procedure 3, “Returning along a chord,” we fol-
low several times the cycle P consisting of two simple
paths and one arc, whose length is not greater than
n − 1 + n – 1 + 1 = 2n – 1, and, then, traverse once a
simple in-path of length not greater than n – 1. The
number of passages of the cycle P during the ith step is
ki + 1, where ki is the number of new-vertices in the
cycle P as the beginnings of arcs traversed first time in
the procedure 2 “Traversal of untraversed arcs” (at this
and previous steps). Therefore, at the ith step, in proce-
dure 3, we traverse not more than ki(2n – 1) + n – 1 arcs.
Since an arc changes its status (from an untraversed arc
to a traversed one) only once, the sum of ki over all steps

can be estimated as ki |i = 1…} ≤ m. Thus, the total
number of arcs traversed in procedure 3 over all steps is
not greater than m(2n – 1) + n – 1 = O(nm).

The fourth procedure “Reduction of the tree” is of
most interest for us. We will show that the total number of
arcs traversed by the robot in this procedure over all steps
is not greater than O(n2 + n2loglogn). Thus, since
n − 1 ≤ m, the total upper estimate is O(nm + n2loglogn).

We will consider only those steps of the robot at
which it performs the fourth procedure and use the
index i = 1, 2, …, I to number the steps. At the ith step
in procedure 4, we several times traverse the cycle Pi
consisting of two simple paths whose length, thus, is
not greater than n – 1 + n – 1 = 2n – 2. Then, we traverse
once a simple in-path of length not greater than n – 1.
The cycle Pi is traversed at least twice: (1) in the very
beginning to place labels crotch and (2) in the very end
to remove labels out from all arcs of the [c, a]-path,
except for the first arc with the beginning at c, and to
remove label end from the vertex a.

The number of the remaining passages of the cycle
Pi, which constitute the basic part of the backtracking,
is denoted by bi. Thus, the number of the traversed arcs

{∑

Fig. 17. Trees T1(i), T12(i), T12[I], and T[i].Fig. 16. Reduction of the tree.

out

1

in

end

in

in

out

out

out

out
outout

r

a

crotch

crotch

crotch

crotch

crotch

c
in

1

0

2

1
1

1 1

1

0 0
0

0

0 0

0

2 2 2 2

2

Tree T[i] Tree T1[i]

1

200

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 4 2004

BOURDONOV

in procedure 4 at the ith step does not exceed (2n – 2)(2 +
bi) + n – 1 = (2n – 2)bi + 5n – 5.

Let us denote by ci the number of open-vertices and
crotches in the out-part of the cycle Pi. After the first
passage of the cycle Pi, all these vertices and the root r
receive the label crotch; hence, the number of such ver-
tices does not exceed ci + 1. Since each of these bi pas-
sages reduces the number of the crotch-vertices by two
times, we have bi ≤ log2(ci + 1). Thus, at the ith step in
procedure 4, the robot traverses not more than
(2n − 2)log2(ci + 1) + 5n – 5 arcs. Since the inequality
bi > 0 implies that ci ≥ 1, we have (2n – 2)log2(ci + 1) +
5n – 5 ≤ 2n log22ci + 5n – 5 = 2nlog2ci + 7n – 5. Now, it
suffices to show that the sum of log2ci over all steps sat-

isfies the inequality ≤ O(nloglogn).

Note that the tree is reduced only if n ≥ 2, and, in the
case of n = 2, we have = 0 = nlog2log2n. If n ≥ 3,

we take advantage of the Cauchy inequality ()1/n ≤

n–1 , from which it follows that ≤

nlog2(n–1). If we prove that ≤ Cn log2n for

some constant C, we will have ≤
n log2(n−1Cn log2n) ≤ C 'n log2log2n, where C ' = 1 +

log2C/log2log23. Thus, it is sufficient to show that =
O(nlogn). Let c(v) denote the number of steps at which
the vertex v received the label crotch. Clearly, =

c(v)|v ∈ VG}, where VG is the set of vertices of the
graph G. For a graph G, we introduce the notation C(G) =

c(v)|v ∈ VG}.

The status of an arc can be changed only as follows:
0 3 (a chord) or 0 1 2 (an arc of the tree T12).
Therefore, the tree T12 may only grow: T12(i) ⊆ T12(i + 1).

ci2log∑

ci2log∑
ci∏

ci∑ ci2log∑
ci∑ ci∑

ci2log∑
ci∑
ci∑

{∑
{∑

It is maximal (T12) when the robot stops T12(I). The tree
T1 may both grow (in the procedure 2 “Traversal of
untraversed arcs”) and reduce (in the procedure 4
“Reduction of the tree”). Let us consider the graph
T(i) = (T12[I]\T12(i)) ∩ T1(i) at the beginning of the ith
step; it is composed of 1-arcs and the 0-arcs that are
going to turn to 1- or 2-arcs, i.e., of all arcs of the tree
T12[I] but those that have already become 2-arcs by the
beginning of the ith step. It is evident that, from a vertex
of the tree T12(i) that does not belong to the tree T1(i),
i.e., from the end of a 2-arc, there may originate only
2-arcs of the tree T12(i). Therefore, T(i) is also a tree
with the root v0 (Fig. 17). At each step (recall that we
consider only the steps that include procedure 4), the
tree T(i) looses exactly one leaf vertex, since all arcs
belonging to the out-path leading to it change their sta-
tus from 1 to 2. The tree T(i) is maximal at the very
beginning, T = T(1).

For a given vertex v, we consider a subtree T(v, i) ⊆
T(i) generated by its root v. Clearly, if v is not a crotch
in the tree T, then c(v) = 0. Now, we consider the case
where v is a crotch in the tree T. At each step when the
vertex v receives the label crotch in procedure 4, it is an
open-vertex or a crotch of the tree T1 and, hence, a
crotch of the tree T(v, i), and the latter tree looses
exactly one leaf vertex at each step. We are interested to
know in how many steps the vertex v stops being a
crotch of the tree T(v, i), since this number is, obvi-
ously, just c(v).

Let us number the arcs of the tree T originating from
v in the order they are arranged in the v-loop by the
index j = 1, 2, …. Let vj denote the end of the jth arc
and xj(i) denote the number of leaf vertices in the sub-
tree T(vj, i) ⊆ T(i) of the ith step generated by the root
vj. (If no arcs of the tree T(i) originate from vj, then we
assume that xj(i) = 1 (one leaf vertex coinciding with
the root vj); if the vertex vj itself does not belong to
T(i), then we assume that xj(i) = 0.) Clearly, the num-

1) c(v) ≤ x – x1 + x2
= 7 – 3 + 2 = 6

2) c(v) ≤ x – x1 + x2 – 1
= 7 – 3 + 2 – 1 = 5

3) c(v) ≤ x – 1 = 7 – 1 = 6

x3 = 2 x1 = 3 x2 = 2

x3
2
2
2
1
1
1
0

x1
3
3
2
2
2
1
1

x2
2
1
1
1
0
0
0

NN
1
2
3
4
5
6

x3 = 3 x2 = 2 x1 = 2

x3
3

x2
2

x1
2

NN
1

3
3
2
2
2

2
1
1
1
0

1
1
1
0
0

2
3
4
5

x3
1

x2
3

x1
3

NN
1

x1 = 1 x2 = 3 x1 = 3

1
1
0
0
0
0

3
2
2
2
1
1

2
2
2
1
1
0

2
3
4
5
6

Fig. 18. Estimate for c(v).

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 4 2004

TRAVERSAL OF AN UNKNOWN DIRECTED GRAPH 201

bers xj(i) do not increase with the growth of i and
achieve their maximal values x1(1), x2(1), … before the
first step. At each step when the vertex v receives the
label crotch in procedure 4, one of the nonzero numbers
x1(i), x2(i), … reduces by 1. Let us number their initial
values x1(1), x2(1), … in nondecreasing order of their
magnitudes, using a subscript for the numbering: x1 ≥ x2 ≥
x3 ≥ …. Let us introduce the notation for their sum x =
x1 + x2 + x3 + …. The vertex v stops being a crotch when
there remains only one nonzero number xj(i). Since the
numbers x1(i), x2(i), … reduce by 1 in turn, in the order
determined by the v-loop, the following three cases
where we introduce an upper estimate s(v) for c(v) are
possible (Fig. 18):

(1) x1 > x2 and, in the v-loop, the number x1 = xj1(1)
corresponds to an earlier arc than at least one arc with
the number x2 = xj2(1); i.e., j1 < j2. Then, c(v) ≤ x2 + x2 +
x3 + … = x – x1 + x2.

(2) x1 > x2 and, in the v-loop, the number x1 = xj1(1)
corresponds to a later arc than any arc with the number
x2 = xj2(1); i.e., j1 > j2. Then, c(v) ≤ (x2 – 1) + x2 + x3 + … =
x – x1 + x2 – 1.

(3) x1 = x2. Then, c(v) ≤ x1 + x2 + x3 + … – 1 = x – 1.
The equality “c(v) = …” takes place when none of

the leaves of the tree T(v, i) can be removed “without
participation” of the vertex v; i.e., until the vertex v
itself “is reduced” from the tree T1, it is traversed in pro-
cedure 4 by an out-path for reducing the tree. In other
words, in the course of the robot operation, no roots of
in-trees are formed in the tree T above v. Otherwise, the
strict inequality “c(v) < …” takes place.

Defining s(v) = x – x1 + x2, we obtain the upper esti-
mate c(v) ≤ s(v).

For vertices that are not crotches of the tree T and, in
particular, for leaf vertices, s(v) is defined as s(v) = 0;
for the other vertices, it is defined by the recurrent for-
mula s(v) = x – x1 + x2, which extends the computations
along the tree T from the leaves to the root. Note that,
although c(v) depends on the order of arcs in the
v-loop, s(v) does not.

Introducing the notation S = S(G) = s(v)|v ∈
VG}, we have C(G) ≤ S(G). The spanning tree T of the
graph G with given v-loops of arcs for each vertex v is
denoted as Tv. It is evident that C(G) actually depends
on Tv and S(G) depends on T, so that we use the nota-
tion C(Tv) = C(G) and S(T) = S(G). Let X be the number
of leaf vertices of the tree T. We will show that S(T) ≤
Xlog2X.

First of all, we note that a vertex a that is not a crotch
in the tree T can be not taken into account: if the arcs (b, a)
and (a, c) merge together in one arc (b, c) with the dele-
tion of the intermediate vertex a (if a = v0 is the root of T,
we simply delete the arc (a, c) such that c becomes the
root), then neither c(v) nor s(v) is changed whatever
the crotch v. Let us repeat this procedure until all non-
leaf vertices of T become crotches. In what follows, we

{∑

consider only such, homeomorphically irreducible,
trees.

A tree vertex is called binary if it has exactly two
outgoing arcs. A tree is said to be binary if all of its non-
leaf vertices are binary.

Lemma 2. For any nonbinary tree T with X leaf ver-
tices, there exists a binary tree T* with the same number
of leaf vertices such that S(T) ≤ S(T*).

Proof. Since all nonleaf vertices in the tree T are
crotches, the total number of arcs is not less than twice
the number of the nonleaf vertices, i.e., m ≥ 2(n – X).
Denote by L = m – 2(n – X) the number of “redundant”
arcs. We introduce an elementary transformation of the
tree T that conserves the number X, reduces L, and does
not reduce the sum S(T). Let T contain a nonbinary non-
leaf vertex a with at least three outgoing arcs and,
hence, x1 ≥ x2 ≥ x3 ≥ 1. Let the ends of the arcs originat-
ing from a be denoted as a1, a2, a3, …, where ai is a ver-
tex whose subtree T(ai) has xi leaves. Let us add a vertex
a' and replace the arcs (a, a1) and (a, a2) by the three
arcs (a, a'), (a', a1), and (a', a2) (Fig. 19). The tree
obtained is denoted by T '.

Clearly, the number s(v) changed only at the vertex
a and was added to the new vertex a' (the modified val-
ues are equipped with the prime, s'(v)).

(1) S(T) = s(v)|v ∈ VG&v ≠ a} + s(a);{∑

m – mT

n – nT

V0

nTmt

Fig. 20. An example of a graph for which estimate Ω(nm' +
n2loglogn) of the covering path length is achieved.

x3
x3x2 x1

x1x2

a

a1

a

a2a3
a3

a'

a2 a1

Fig. 19. Transformation of a nonbinary tree to a binary one.

202

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 4 2004

BOURDONOV

(2) S(T ') = s(v)|v ∈ VG&v ≠ a} + s'(a) + s'(a');
(3) s(a) = (x1 + x2 + x3 + …) – x1 + x2 = x – x1 + x2,

where x = x1 + x2 + x3 + …;
(4) s'(a) = ((x1 + x2) + x3 + …) – (x1 + x2) + x3 = x –

x1 – x2 + x3, since the trees T(a1) and T(a2) merged into
one tree T(a') with x1 + x2 leaves and x1 + x2 > x2 ≥ x3;

(5) s'(a') = x1 + x2 – x1 + x2 = 2x2;
(6) S(T ') – S(T) = s'(a) + s'(a') – s(a) = (x – x1 – x2 +

x3) + 2x2 – (x – x1 + x2) = x3 ≥ 1.
Repeating this procedure as many times as possible,

we obtain the desired binary tree T*. �
Lemma 3. For y ≥ x ≥ 1, the inequality ylog2y +

xlog2x + 2x ≤ (x + y)log2(x + y) holds.
Proof. Consider the difference f(x, y) = (x + y)log2(x +

y) – ylog2y – xlog2x – 2x. We need to show that f(x, y) ≥ 0.
Let us take the second derivative with respect to x:

for y ≥ x ≥ 1. Therefore, it suffices to check whether the
inequality f(x, y) ≥ 0 holds at the boundaries (1) x = 1 and
(2) x = y.

(1) f(1, y) = (1 + y)log2(1 + y) – 1log21 – ylog2y – 2.
Let us take the first derivative with respect to y:

for y ≥ 1. As can be seen, f(1, y) does not decrease, so
that it is sufficient to check whether the inequality
f(1, y) ≥ 0 holds for the minimal value y = 1. We have

(2) f(y, y) = 2ylog22y – ylog2y – ylog2y – 2y =
2y(log22y – log2y – 1) = 2y(log22 – 1) = 0. �

Lemma 4. For binary trees with X leaf vertices, the
estimate S(T) ≤ Xlog2X holds.

Proof. We prove this lemma by induction on the
number of leaves X. For X = 1, we have S(T) = 0 =
1log21. Let us assume that the assertion of the lemma is
true for all binary trees with the number of leaves less
than X, where X > 1. Consider a binary tree T with X
leaves. Two arcs originating from its root v0 lead to ver-
tices v1 and v2; the subtrees T(v1) and T(v2) have X1
and X2 leaves, respectively; and X = X1 + X2. Let, for
definiteness, X1 ≥ X2. Then,

(1) S(T) = S(T(v1)) + S(T(v2)) + s(v0);
(2) by the induction hypothesis, S(T(v1)) ≤ X1log2X1

and S(T(v2)) ≤ X2log2X2;
(3) s(v0) = (X1 + X2) – X1 + X2 = 2X2;
(4) by Lemma 3, S(T) = S(T(v1)) + S(T(v2)) + s(v0) ≤

X1log2X1 + X2log2X2 + 2X2 ≤ (X1 + X2)log2(X1 + X2) =
Xlog2X. �

{∑

f x' x y,() x y+()2log e2log x e 2,–2log–2log–+=

f x'' x y,() e2log()/ x y+() e2log()/x–=

= e2log() y–()/ x y+() 0<

f 1' y() 1 y+()2log e y2log–2log+=

– e2log 1 1/y+()2log 0>=

f 1 1,() 2 2 1 12log– 2–2log 0.= =

From Lemmas 2 and 4, it follows that, for any tree T
with X leaf vertices, the estimate S(T) ≤ Xlog2X holds.

The lower bound for the covering path length is
Ω(nm' + n2loglogn). First, we show that Xlog2X is an
exact (in terms of the order) estimate for C(Tv).

Lemma 5. For any constant 0 < A < 1, there exists
an infinite sequence of trees T1, T2, … with an infinitely
growing number of leaves X1, X2, …, where Xi is the

number of leaves in the tree Ti, such that C() ≥
Xilog2Xi.

Proof. Consider a graph the spanning tree of which
is a binary justified tree T such that the distance from
the root to each leaf is h. In order to make the graph
strongly connected, it is sufficient to draw a chord from
each leaf vertex to the root of the tree. The level h con-
tains X = 2h leaves, and the level i = 0, 1, …, h – 1 con-
tains 2i nonleaf vertices, such that each vertex has two
outgoing arcs leading to vertices belonging to level i + 1.
Since, for each nonleaf vertex v, the subtrees T1 and T2
with the roots at the ends of two arcs originating from
v have equal numbers of leaves, X1 = X2, we have c(v) =
(X1 + X2) – 1. If v is located at a level i < h, then X1 = X2 =
2h – i – 1. Therefore,

For 0 < A < 1 and any h > 1/(1 – A), we have

(1) X = 2h > 21/(1 – A);

(2) log2X > 1/(1 – A) > [1/(1 – A)](1 – 1/X) = (X –
1)/[(1 – A)X] = (1 – 1/X)/(1 – A);

(3) (1 – A)Xlog2X > X – 1;

(4) C(Tv) = Xlog2X – X + 1 > AXlog2X. �

Let us select the number of leaves X of the tree T
from Lemma 5 such that the number of vertices nT in T
would approximate the number n/2 – 1 from below as
close as possible: nT = 2h + 1 – 1, log2n – 3 < h ≤ log2n – 2.
For each leaf vertex of the tree T, we add a chord lead-
ing to the initial vertex v0; the number of the chords is
equal to 2h. For the remaining n – nT vertices, we add a
simple path of length n – nT leading from the initial ver-
tex to the root of the tree. For the graph obtained, the
estimate for the total backtracking is Ω(n2loglogn).
The number of arcs in this graph is mT = (nT – 1) + 2h +
(n – nT). Let us define m' = max{m, mT}. If mT ≥ m, the
covering path length is Ω(nm' + n2loglogn). If mT < m,
it is sufficient to add m – mT arcs leading from the leaf
vertices of the tree T to the initial vertex (Fig. 20).

This completes the proof of the theorem on the
robot R3. �

Ti
v

C Tv() 1 2h 1–() 2 2h 1– 1–()+=

+ 22 2h 2– 1–() … 2h 1– 21 1–() 2h 20 1–()+ + +

= h2h 1 2 … 2h 1–+ + +()– h2h 2h– 1+=

= X X X– 1.+2log

PROGRAMMING AND COMPUTER SOFTWARE Vol. 30 No. 4 2004

TRAVERSAL OF AN UNKNOWN DIRECTED GRAPH 203

5. CONCLUSIONS
Unfortunately, an exact estimate of the length of the

traversal of a finite directed strongly connected graph
by a finite robot (minimum of the upper bounds of the
algorithms over all possible traversal algorithms) is not
known. Moreover, although it seems unlikely that a
finite robot could traverse a graph for Ω(nm), this fact
has not been proved yet.

REFERENCES
1. Afek, Y. and Gafni, E., Distributed Algorithms for Uni-

directional Networks, SIAM J. Comput., 1994, vol. 23,
no. 6, pp. 1152–1178.

2. Hoffman, D. and Strooper, P., ClassBench: A Frame-
work for Automated Class Testing, Software Mainte-
nance: Practice Experience, 1997, vol. 27, no. 5,
pp. 573–579.

3. Murray, L., Carrington, D., MacColl, I., McDonald, J.,
and Strooper, P., Formal Derivation of Finite State
Machines for Class Testing, Lecture Notes Comput. Sci.
(Proc. of the 11th Int. Conf. of Z Users), Berlin:
Springer, 1998, vol. 1493, pp. 42–59.

4. Albers, S. and Henzinger, M.R., Exploring Unknown
Environments, SIAM J. Comput., 2000, vol. 29, no. 4,
pp. 1164–1188.

5. Deng, X. and Papadimitriou, C.H., Exploring an
Unknown Graph, J. Graph Theory, 1999, vol. 32, no. 3,
pp. 265–297.

6. Ore, O., Theory of Graphs, Providence: AMS, 1962.
Translated under the title Teoriya grafov, Moscow:
Nauka, 1968.

7. Bhatt, S., Even, S., Greenberg, D., and Tayar, R., Tra-
versing Directed Eulerian Mazes, Proc. of WG’2000,
Brandes, U. and Wagner, D., Eds., Lecture Notes in
Computer Science, vol. 1928, pp. 35–46, Berlin:
Springer, 2000.

8. Blum, M. and Sakoda, W.J., On the Capability of Finite
Automata in 2 and 3 Dimensional Space, Proc. of the

Eighteenth Annu. Symp. on Foundations of Comput. Sci.,
1977, pp. 147–161.

9. Even, S., Graph Algorithms, Comput. Sci., 1979.
10. Even, S., Litman, A., and Winkler, P., Computing with

Snakes in Directed Networks of Automata, J. Algo-
rithms, 1997, vol. 24, pp. 158–170.

11. Rabin, M.O., Maze Threading Automata. Lecture Pre-
sented at MIT and UC Berkley, 1967.

12. Bourdonov, I.B., Study of the Automaton Behavior on
Graphs, MS Dissertation, Moscow: Moscow State Uni-
versity, 1971.

13. Kobayashi, K., The Firing Squad Synchronization Prob-
lem for a Class of Polyautomata Networks, J. Comput.
System Sci., 1978, vol. 17, pp. 300–318.

14. Kutten, S., Stepwise Construction of an Efficient Dis-
tributed Traversing Algorithm for General Strongly Con-
nected Directed Networks, Proc. of the Ninth Int. Conf.
on Comput. Commun., 1988, pp. 446–452.

15. http://www.ispras.ru/RedVerst/.
16. Bourdonov, I., Kossatchev, A., Petrenko, A., and Gatter, D.,

KVEST: Automated Generation of Test Suites from For-
mal Specifications, Proc. of FM’99, Lecture Notes in
Computer Science, vol. 1708, pp. 608–621, Berlin:
Springer, 1999.

17. Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V.,
Use of Finite Automata for Program Testing, Program-
mirovanie, 2000, no. 2, pp. 12–28.

18. Bourdonov, I., Kossatchev, A., Kuliamin, V., and
Petrenko, A., UniTesK Test Suite Architecture, Proc. of
FME 2002, Lecture Notes in Computer Science, Berlin:
Springer, 2002, vol. 2391, pp. 77–88.

19. Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V.,
Irredundant Algorithms for Traversing Directed Graphs:
The Deterministic Case, Programmirovanie, 2003,
no. 5, pp. 11–30.

20. Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V.,
Irredundant Algorithms for Traversing Directed Graphs:
The Nondeterministic Case, Programmirovanie, 2004,
no. 1, pp. 4–24.

