
ISSN 0361�7688, Programming and Computer Software, 2009, Vol. 35, No. 6, pp. 301–313. © Pleiades Publishing, Ltd., 2009.
Original Russian Text © I.B. Bourdonov, A. S. Kossatchev, 2009, published in Programmirovanie, 2009, Vol. 35, No. 6.

301

INTRODUCTION

Testing is the experimental check of an implemen�
tation’s conformance to the requirements given in a
specification. The testing is complete if it unambigu�
ously decides whether the implementation contains
errors or not. An error is a violation of requirements,
that is, nonconformance. For practical purposes, test�
ing must terminate in a finite amount of time. In the
general case, testing turns out to be either incomplete
or infinite. The solution of the problem can be sought
by restricting the class of the implementations under
examination or using advanced testing capabilities.

The main causes of the infiniteness of complete
testing are the size of the implementation and (or)
specification and the nondeterminism of the imple�
mentation.

If the specification is infinite, all its requirements
cannot be checked in a finite amount of time. There�
fore, a finite testing of an infinite specification is cer�
tainly incomplete. If a requirement must be checked in
the implementation for an infinite number of situa�
tions, this also cannot be done in a finite amount of
time. For the finite testing to be complete, the imple�
mentation must be also finite.

However, it is not sufficient for the implementation
to be complete. Indeed, if the size of the implementa�
tion is unknown, we cannot be sure at any given time
that all the possible situations have been checked. We
need to estimate the size of the implementation in
advance (assuming that it is not only finite but also
bounded) or in the course of testing. In the latter case,
advanced testing capabilities are needed to observe the
part of the implementation that has already been

tested and draw conclusions concerning the presence
or absence of other parts.

If the implementation’s behavior is arbitrarily non�
deterministic, we cannot know at any particular time
whether or not the implementation has demonstrated
all the variants of its behavior. To make finite testing
complete, one has to impose certain restrictions on the
nondeterminism of the implementation.

In this paper, we consider testing of a finite imple�
mentation against a finite specification under two addi�
tional assumptions: (1) open�state testing, which
means that we can observe the implementation’s states
at which it comes in the course of testing; (2) the
implementation is limitedly nondeterministic, which
means that, if a certain test input repeats at the same
state of the implementation a sufficient (known in
advance) number of times, then the implementation
demonstrates all its behavior patterns. For this case,
we propose algorithms for finite complete testing and
give estimates of the number of test inputs and the
amount of computations.

In the first section of the paper, we outline the con�
formance theory that was developed in [1–3]. In Sec�
tion 2, we discuss problems of practical testing and dif�
ferent lines of attack on them. In Section 3, we pro�
pose traversal algorithms. In Section 4, testing
algorithms are proposed and the finiteness and com�
pleteness of testing are proved; complexity estimates
are also given.

Complete Open�State Testing
of Limitedly Nondeterministic Systems

I. B. Bourdonov and A. S. Kossatchev
Institute for System Programming, Russian Academy of Sciences,

ul. Solzhenitsyna 25, Moscow, 109004 Russia
e�mail: igor@ispras.ru, kos@ispras.ru

Received March 19, 2009

Abstract—An approach to the problem of complete testing is proposed. Testing is interpreted as the check of
an implementation’s conformance to the given requirements described by a specification. The completeness
means that a test suite finds all the possible implementation errors. In practice, testing must end in a finite
amount of time. In the general case, the requirements of completeness and finiteness contradict each other.
However, finite complete test suites can be constructed for certain classes of implementations and specifica�
tions provided that there are specific test capabilities. Test algorithms are proposed for finite specifications
and finite implementations with limited nondeterminism for the case of open�state testing. The complexity
of those algorithms is estimated.

DOI: 10.1134/S0361768809060012

302

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 6 2009

BOURDONOV, KOSSATCHEV

1. CONFORMANCE THEORY

1.1. Semantics of the Interaction and Safe Testing

The verification of conformance is interpreted as
the check of the system’s conformance to the given
requirements. In the model world, the system is
mapped to its implementation model (implementa�
tion), the requirements are mapped to the specifica�
tion model (specification), and their conformance is
mapped to a binary conformance relation. If the
requirements are formulated in terms of the system’s
interaction with its environment, testing can be per�
formed as the verification of conformance in the
course of testing experiments when a test replaces the
environment. The conformance relation and its test�
ing are based on a certain interaction model.

We consider the interaction semantics that are
based only on the external observable behavior of the
system but do not take into account its internal orga�
nization (which is mapped to the concept of state at
the level of the model). In this case, the black box (or
functional) testing can be performed. We can only
observe the behavior of the system that is, first,
induced by a test input and, second, can be observed in
an external interaction. Such an interaction can be
simulated using the so�called testing machine [1–6].
This machine is a black box containing the implemen�
tation (see Fig. 1). An operator controls the testing
machine by pressing buttons on the machine’s key�
board thus instructing (or allowing, or enabling) the
implementation to perform certain actions that can be
observed. Observations on the machine’s display are
classified into two types. Observation of an action that
is enabled by the operator and is performed by the
implementation, and observation of a refusal, which
means that no actions allowed by the buttons pressed
by the operator are observed. We denote actions by
lowercase letters and refusals (considered as sets of
actions) by uppercase letters.

We stress that the operator may allow the machine
to perform a set of actions (but not necessarily only a
single action). Each button is assigned an individual
set of actions. After an observation (of an action or a
refusal) has been made, the button is released, and all
the external actions are disabled. Then, the operator
may press another (or the same) button.

The testing capabilities are determined by the “but�
ton” sets available in the machine and by the set of
buttons for which refusal can be observed. Thus, the
semantics of the interaction is determined by the
alphabet of external actions L, the set of actions that
the test can enable (the set of buttons of the testing

machine), and by two sets of buttons for which the
corresponding refusals are observable (the family � ⊆
�(L)) and not observable (the family � ⊆ �(L)). It is
assumed that � ∩ � = and ∪� ∪∪ � = L. Such
kind of semantics is called �/� semantics.

It was shown in [1, 3] that its is sufficient to con�
sider only the semantics in which all the refusal are
observable (� =). Any �/� semantics is equiva�
lent to an � ∪ �/ ; namely, for any specification in
an �/� semantics, there exists (and can be con�
structed under certain practically reasonable con�
straints) a specification in the � ∪ �/ semantics
that defines the same class of conformal implementa�
tions and a not smaller class of testable implementa�
tions. For that reason, we consider only the � seman�
tics; that is, we assume that � = .

For an action to be executable, it is necessary that
it is defined in the implementation and is enabled by
the operator. If this condition is also sufficient, the sys�
tem does not have priorities. We consider only the sys�
tems without priorities.

In addition to the external actions, the implemen�
tation can execute internal (unobservable) actions,
which are denoted by τ. These actions are always
enabled. It is assumed that any finite sequence of arbi�
trary actions terminates in a finite amount of time and
an infinite sequence of actions terminates in an infi�
nite amount of time. The infinite sequence of τ�
actions (an infinite loop) is called divergence; it is
denoted by Δ. We also define a special action called
destruction that is not controlled by the buttons; this
action is denoted by γ. It models any prohibited behav�
ior of the implementation. The divergence per se is not
harmful, but, when the operator presses any button
after its occurrence to escape the divergence, he does
not know whether an observation should be expected
or the implementation will endlessly continue its
internal activity. Therefore, the operator cannot con�
tinue testing, nor can he finish it. The testing in which
there are no attempts to escape the divergence and
there is no destruction is said to be safe.

1.2. LTS�Model and Its Traces

We will use a labeled transition system (LTS) as a
model of the implementation and the specification.
LTS is a directed graph with a distinguished initial ver�
tex in which the arcs are labeled by certain symbols.
Formally, LTS is the collection S = LTS(VS, L, ES, s0),
where VS is the nonempty set of states (graph vertices),
L is the alphabet of external actions, ES ⊆ VS × (L ∪ {τ,
γ}) × VS is the set of transitions (labeled arcs), and s0 ∈
VS is the initial state (the initial vertex of the graph).
The transition from the state s to the state s' by the

action z is denoted by s s'. Define s ∃s'

0

0
0

0

0

z z =Δ

A, B, C, ... ⊆L

Fig. 1. Testing machine.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 6 2009

COMPLETE OPEN�STATE TESTING 303

s s' and s s' s s'. A route in an LTS
is a sequence of adjacent transitions such that the
beginning of each transition except for the first one
coincides with the end of the preceding transition.

The execution of an LTS in a testing machine is
reduced to performing the transition defined in the
current state and enabled by the pressed button (τ� and
γ�transitions are always enabled).

A state is called stable if there are no τ� and γ�tran�
sitions outdoing from it. A state is said to be divergent
if it begins an infinite chain of τ�transitions (in partic�
ular, a τ�cycle). The refusal P ∈ � is induced by a sta�
ble state that contains no transitions initiated by the
actions from P. The transition s s' is called
destructive if the beginning of a γ�transition can be
reached from s' by a chain (possibly empty) of τ�tran�
sitions.

In each stable state of the LTS S, we add virtual
loops labeled by the induced refusals and add Δ�tran�
sitions in all the divergent states. In the resulting LTS,
consider the routes that begin in the initial state and do
not continue beyond a Δ� or γ�transition. An ��trace
in the LTS S is the sequence of labels of the transitions
in such a route in which the symbols τ are omitted. The
set of ��traces of the LTS S is denoted by �(S).

1.3. Safety Hypothesis and Safe Conformance

Let us define the safety relation a button is safe in
the LTS after the ��trace as follows. Pressing the but�
ton P after the ��trace σ does not entail an attempt of
exiting from the divergence (there is no divergence
after th trace) and does not entail destruction (after an
action enabled by the button). In the case of safe test�
ing, only safe buttons are pressed. Formally, the button
P is safe in the state s (denoted by P safe s if the state s
is not divergent, there are no γ�transitions in the states
s' that are reachable from s by τ�transitions, and all the
transitions s' s'' where z ∈ P are nondestructive.

The safety relation in the set of states S is defined as

follows: P safe S ∀s ∈ S P safe s.

The safety relation after the trace s is defined as fol�

lows: P safe S after σ P safe (S after σ). Here, S after
σ is the set of states of the LTS S after the trace σ; that
is, this is the set of states that are reachable from the
initial state by the trace σ.

The safety of buttons implies the safety of the
actions and refusals after the trace. The refusal R is safe
after the trace σ (R safe (S after σ)) if the button R is
safe after σ. The action z is safe after the trace σ: z safe
(S after σ) if it is enabled (z ∈ P) by a button such that
P safe (S after σ). An ��trace is safe if the following
conditions hold. (1) The LTS is not destructed at the
very beginning; that is, it does not contain the trace 〈γ〉.
(2) Every symbol of the trace is safe after the trace pre�

z
z

=Δ ∃ z

z

z

=Δ

=Δ

fix that immediately precedes this symbol. The set of
safe traces of the LTS S is denoted by Safe(S).

The requirement of testing safety defines the class
of safe implementations that can be safely tested to
check their conformance to the given specification.
This class is defined by the following safety hypothesis.
The implementation I is safe for the specification S if
the following holds. (1) The implementation is not
destructed at the very beginning if this requirement is
not included in the specification. (2) After any safe
trace that is common for the specification and the
implementation, any button that is safe in the specifi�
cation is safe after this trace in the implementation:

I safe for S (〈γ〉 ∉ F(S)

⇒ 〈γ〉 ∉ F(I)) & ∀σ ∈ Safe(S) ∩ T(I) ∀P ∈ �
(P safe S after σ ⇒ P safe I after σ).

Note that the safety hypothesis cannot be checked
in the course of testing; this hypothesis is the testing
precondition. Then, we can define the conformance
relation: The implementation I conforms to the speci�
fication S if it is safe and the following condition under
test is fulfilled: any observation that is possible in the
implementation as a response to pressing a safe (in the
specification) button is allowed by the specification:

I saco S I safe for S

& ∀σ ∈ Safe(S) ∩ T(I) ∀P safe S after σ
obs(I after σ, P) ⊆ obs(S after σ, P),

Here, obs(M, P) {u|∃m ∈ M u ∈ P & m ∨u = P

& ∀z ∈ P m } is the set of observations that can be
obtained by pressing the button P in the states belong�
ing to the set M.

1.4. Test Suite Generation

In terms of the testing machine, a test is an instruc�
tion for the machine’s operator consisting of terminal
and nonterminal items. In each item, a button is spec�
ified that must be pressed by the operator and, for each
observation that is possible after pressing this button,
one must indicate the instruction item that must be
executed next or the verdict pass or fail (if the testing
must be stopped). In [1–3], such an instruction corre�
sponds to the formal definition of a controllable LTS
test that uniquely determines the operator’s behavior
(without excessive nondeterminism).

An implementation passes a test if its testing always
results in the verdict pass. An implementation passes a
suite of tests if it passes every test in this suite. A suite
is called significant if it is passed by every conformal
implementation; a test suite is called exhaustive if no
nonconformal implementations passes it. A test suite
is complete if it is both significant and exhaustive. The
task is to generate a complete test suite given a specifi�
cation.

=Δ

=Δ

=Δ u

z

304

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 6 2009

BOURDONOV, KOSSATCHEV

A complete test suite always exists; in particular, the
set of all primitive tests is complete. A primitive test is
constructed on the basis of a distinguished safe ��
trace of the specification. To this end, before every ��
refusal R, the button R is included, and before every
action z, an arbitrary safe (after the trace prefix) button
P is included that enables the action z. The safety of
the trace guarantees that the button R is safe and that
an appropriate safe button P exists. The button P is
generally, not unique; therefore, given the same safe
trace, many different primitive tests can be generated.
If the observation after pressing a button continues the
trace, the testing is continued. The last observation in
the trace and any “distracting” observation terminate
the testing. The verdict pass is assigned if the specifica�
tion contains the corresponding trace; otherwise, the
verdict fail is returned. Such verdicts correspond to
strict tests; these are the tests that, first, are significant
(do not detect false bugs) and, second, do not miss
detected bugs. Any strict test can be reduced to a set of
primitive tests that detect the same bugs.

2. PROBLEMS OF PRACTICAL TESTING

2.1. Nondeterminism and Global Testing

In the absence of priorities, the implementation
may execute any defined external action that is
enabled by the operator; also, it may execute defined
internal actions, which are always enabled. If there are
several such actions, one of them is chosen in a non�
deterministic way. We assume that nondeterminism is
a phenomenon pertaining to the abstraction level that
is determined by the testing observation and control
capabilities; that is, the nondeterminism depends on
the interaction semantics. In other words, the behav�
ior of the implementation depends on certain
“weather conditions” (which we do not take into
account) that uniquely determine the choice of an
action.

For the testing to be complete, one has to assume
that arbitrary weather conditions can be reproduced in
a testing experiment for every test. If this is possible,
the testing is said to be global [6]. In this paper, we dis�
regard the number of possible variants of the weather
conditions; it is only important that the system’s
behavior can be checked at any weather conditions
and any behavior of the operator. In practice, only a
finite number of each test can be run; therefore, with�
out additional assumptions, we cannot be sure that all
the necessary test runs were performed for every test at
all possible weather conditions. Various approaches to
overcoming this difficulty are possible.

One of these approaches is to use special test tools
for “weather control.” Here, we go beyond the scope
of the model in which we neglected the influence of
external factors (the weather). Testing becomes
dependent not only on the specification but also on
the implementation details; in other words, it depends

on the operation environment in which the imple�
mentation operates. For every variant of the operation
environment, a special test suite is designed. In some
cases, practical advantages can be gained using this
approach.

Another approach uses special hypotheses about
the implementation. They assume that, if the imple�
mentation’s behavior s correct under certain weather
conditions, it will also behave correctly under all
weather conditions [7].

The third approach is based on the knowledge of
the probability distribution of different weather condi�
tions. In this case, testing is complete with a certain
probability [8].

The fourth approach assumes that, in any situation
(after any trace), the number of nonequivalent
weather conditions is bounded by a known number t;
then, t test runs guarantee that the implementation’s
behavior is reproduced under any weather conditions
[9, 10]. This can be called limited nondeterminism
(t�nondeterminism). For t = 1, all the implementa�
tions under test are deterministic. This is used in prac�
tice (see [11–13]] when it is known that all the imple�
mentations of interest are deterministic.

2.2. Infiniteness of Complete Test Suites

Since the tests are finite, the complete test suite
usually contains an infinite number of tests; in partic�
ular, the set of primitive tests is also infinite. (A com�
plete test suite is finite only for models with a finite
behavior, that is, with a finite number of traces; this
corresponds to a finite LTS specification without
cycles.) However, only finite test suites can be used in
practice. This problem can be solved differently, but all
the solutions are reduced to special testing capabilities
and (or) implementation hypotheses. In essence, such
hypotheses assume that, if the implementation
behaves correctly on the tests of a certain finite test
suite, it also behaves correctly on all the tests of the
infinite suite. The knowledge of the structure of the
implementation of a certain class can justify such a
hypothesis. Such finite test suites are significant but
not complete on the class of all implementations; how�
ever, they are complete on the subclass of the imple�
mentations satisfying the implementation hypothesis.

The conformance theory uses the generic coverage
criterion that requires that all the specification
requirements are checked in all possible implementa�
tion situations. Often, special coverage criteria are
used that check not all the situations but only certain
classes of situations (based on an error model) [14–
16]. A fairly general approach uses a coarser specifica�
tion (a so�called test model) instead of the original
specification. The coarse specification is obtained by
factorizing the original specification with respect to
the transition equivalence relation, which usually
reduces to the equivalence of states and (or) actions
[17]. Sometimes, the factorization also eliminates

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 6 2009

COMPLETE OPEN�STATE TESTING 305

nondeterminism thus solving this problem as well.
Such an approach is justified if it is true that the errors
that can appear in the implementation are found by
testing against the factored specification (that is, the
errors are found when testing against a finite set satis�
fying the coverage criterion).

An example is testing a finite state machine (FSM)
against a specification given as an FMS [7, 11, 12, 18–
22]. The conformance under check is the equivalence
of finite state machines. It is usually assumed that the
specification and implementation are deterministic
and that the implementation has not more states than
the specification (up to the equivalence of states) or it
is assumed that the number of states in the implemen�
tation is greater than the number of states in the spec�
ification by given number.

2.3. Open State Testing

If an operation is available that allows one to reli�
ably examine (query) the current state of the imple�
mentation (status message), the testing is said to be
open state. It is known that the complete testing of the
equivalence of finite state machines is reduced to a tra�
versal of the transition graph of the FMS with querying
every state being passed [7, 11, 21, 23–26].

In the LTS model, state querying can be interpreted
in terms of the testing machine as pressing a special
button after every observation. This is equivalent to the
situation when the poststate appears on the machine’s
display as a part of the observation. It is important that,
if the implementation is in an unstable state i after per�
forming an action, the poststate on the display is not
necessarily i but can be any state that is reachable from
i by an empty trace �, that is, by a chain of τ�transi�
tions. Such a state i ∈ (I after �) is said to be initially
reachable. Therefore, we do not require that the inter�
nal operation of the implementation be stopped
between the observation and the state query. Similarly,
we do not require that the implementation be stopped
between the query of the state and the next test input
or the completion of the testing. Several queries in
succession make it possible to observe the progression
of the implementation through τ�transitions; however,
we believe that this option does not increase the capac�
ity of the saco conformance testing.

The start (or restart) of the system is interpreted as
one of the test inputs included in �. The difference
from the other test inputs is that an initially reachable
state is always obtained after the start (restart). In the
general case, the restart is not always defined at every
state of the implementation. We assume that, if the
restart is defined, then the action restart is observed;
otherwise, the restart refusal is observed. The imple�
mentation LTS is completed by the transitions by
restart, which “reset” the trace; that is, the trace of a
route is the trace of its postfix after the last restart.

2.4. Conditions for the Testing to Be Finite

Let us formulate the restrictions on the implemen�
tation and specification that make it possible to per�
form a finite complete testing. We consider the open
state saco conformance testing and the generic cover�
age criterion. For each restriction, we specify its weak�
ened variants, which we do not consider in detail for
the sake of simplicity.

t�Nondeterminism of the implementation. We assume
that, in any implementation state i, all possible pairs
(observation, poststate) are obtained after pressing any
button t times; that is, all the routes that begin at i and
have a trace 〈observation〉 are passed. This restriction
can be weakened by considering only the reachable
implementation states. For every given specification,
only the implementation states that are reachable by
safe traces of the specification are important. The
t�nondeterminism implies that, for any button (with
any button set) not more than t transitions by the
actions enabled by this button are defined.

To solve the problem of infiniteness of the complete
test suite, we impose restrictions on the size of the
��semantics, specification, and implementation.

The number of buttons is finite. Without this
restriction, we would have to apply an infinite number
of test inputs after each passed trace. For every given
specification, this restriction is weakened if only the
buttons that are safe in the specification after the trace
are taken into account.

An algorithm for enabling the button for all the
actions is available. For every action z and every button
P, such an algorithm determines in a finite amount of
time whether z ∈ P or z ∉ P. This is required to check
the safety of the button after the passed trace: the but�
ton is safe if there are no destructive transitions from
the states after the trace by the actions initiated by the
button. Such an algorithm can be easily constructed if
all the button sets are finite (then, the action alphabet
is also finite).

The number of specification states is finite. If the
number of states is infinite, the complete testing of the
specification is infinite as well. This restriction can be
weakened if only the states belonging to the safe traces
are taken into account. For every given implementa�
tion, not all such states of the specification are needed;
however, we assume that the specification is used to
test arbitrary implementations (with regard for the
restrictions on the nondeterminism and the size of the
implementation).

The number of transitions in the specification is
finite. This restriction is required to ensure the safety
of a button after the passes trace. All the transitions
that outgo the states after the trace must be examined.
If such a transition is destructive, one must check if the
action that labels this transition belongs to the given
button. This check can be performed in a finite
amount of time in two cases: (1) The number of tran�
sitions after the trace is finite. (2) The button is finite,

306

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 6 2009

BOURDONOV, KOSSATCHEV

the number of transitions is enumerable, and the spec�
ification is given in such a way that the transitions by
the same action are listed in succession. Since the
number of states is finite, the number of transitions by
the given action is also finite. In the course of examin�
ing the transitions, we mark the actions the transitions
by which are nondestructive and that belong to the
button until a destructive transition by the action is
found or until all the actions initiated by the button are
marked. If the number of transitions is infinite and the
specification is given in a different way, the check is not
guaranteed to terminate in a finite amount of time.
The same is also true if the set of transitions and the
button are infinite. This restriction can be weakened if
only the transitions that continue routes with safe
traces are taken into account.

The number of implementation states is finite.
Otherwise, it is not guaranteed that an error is found in
a finite amount of time; furthermore, if there are no
errors, the testing is infinite. This restriction can be
weakened by taking into account only the implemen�
tation states that are reachable by safe specification
traces. If this weakened restriction does not hold, the
conformal implementations take infinitely long time
to be tested.

Strong connectivity of the implementation. For the
testing to be complete, all the transitions in the imple�
mentation belonging to the routes with the traces that
are safe in the specification must be checked. When
the LTS generated by such transitions is tested, it is
traversed; namely, the route containing all the reach�
able transitions is passed. For such a traversal to exist,
the LTS must be strongly connected; that is, every state
must be reachable by transitions from any other state.
More precisely, the LTS must be a chain of strongly
connected components and exactly one transition
must lead from every component (except for the last
one) to the next component [11]. However, an algo�
rithm for such a traversal can be constructed only if
every component in the chain except for the last one is
a single state without loops. An LTS is strongly con�
nected if the restart is defined in every state. In what
follows, we assume that the LTS is strongly connected.

3. LTS TRAVERSAL ALGORITHM

First, we consider the traversal of an LTS imple�
mentation that does not contain the reachable
destruction and divergence and that satisfies the fol�
lowing conditions: the LTS is strongly connected, t�
nondeterministic, and the number of buttons is finite.

3.1. LTS of a Traversal

Denote by I the LTS implementation. When per�
forming the traversal, we are going to construct an LTS
that is called the passed LTS (it is denoted by G). The
transition i i ' by the external action z is added
when the action z ∈ P and the poststate i ' are observed

z

after pressing the button P at the state i. This indicates
that I contains a route beginning at i and ending at i '
that has the trace 〈z〉; in other words, this route con�
tains one transition by z and τ�transitions. If a refusal
with the same poststate i ' = i is observed, no transitions
are added. If the refusal P is observed with another
poststate i ' ≠ i, then the transition i i ' is added.
This indicates that I contains a τ�route beginning at i
and ending in i ' such that the state i ' is stable and con�
tains a refusal P. Together with the transition, we store
a button that was pressed to cause this transition (any
such button).

The traversal is completed when no new transition
can be added to G. It is easy to verify that, after such a
traversal, the LTSs I and G have the same set of reach�
able states and the same set of � traces. Any algorithm
that constructs a traversal of the LTS G guarantees a
traversal of the LTS I.

For every button P and every passed state i, we
define the counter c(P, i) of the number of clicks on P
at the state i. The button P is said to be completed at the
state i if one of the following conditions is satisfied. (1)
c(P, i) = 1, G does not contain τ�transitions from i,
and it does not contain the transition i i ', where
z ∈ P or (2) c(P, i) = t. This indicates that all the pos�
sible transitions from the state i by pressing the button
P have been obtained. In case (1), after pressing P at
the state i, a refusal P at the same state was observed;
another click on this button gives the same refusal.
In case (2), all the possible transitions were obtained
after pressing the button t times. The state i is said to be
completed if every button is completed in this state.
This indicates that all the possible transitions from the
state i in G have been obtained.

Initially, G contains a single state i ∈ {I after �} and
∀P ∈ � c(P, i) = 0.

3.2. General Scheme of the Traversal Algorithm

The general scheme of the traversal algorithm is
shown in Fig. 2. If the current state is uncompleted, a
certain button i is uncompleted in i. Then, we press
this button to obtain an observation P (an action or
refusal) and a poststate i ', which becomes the new cur�
rent state. Increment the counter c(P, i) := c(P, i) + 1,
and add to G the transition i i ' if o is an action and
add the transition i i ' if o is a refusal and i ≠ i '.

If the current state is completed, all the test inputs
have already been executed the required number of
times and all the possible observations and poststates
have been obtained. To continue the traversal, one
must go to an uncompleted state. If there are no such
states, the algorithm terminates because all the passed
states are completed and, therefore, all the reachable
transitions have been passed.

Consider a transition to an uncompleted state.
In the graph of the LTS G, there exists a forest of trees
that cover all the states and are directed to their roots

τ

z

o

τ

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 6 2009

COMPLETE OPEN�STATE TESTING 307

(the roots are all uncompleted states). Take an arbi�
trary forest and, for every transition i i ', denote by
P(i) the associated button. We perform the traversal by
pressing the button P(i) at every current state i.
Because of the nondeterminism, we can find ourselves
in a state i '' different from i ', in which we press the but�
ton P(i '').

We prove that any uncompleted state is reached in
a finite number of steps. The proof is by contradiction.
Assume that we performed an infinite number of steps
while always passing through completed states. The
length of the path in the forest from the state i to the
uncompleted state (which is unique for the given i) is
called the distance ri . Since the number of states is
finite, some completed states are visited an infinite
number of times. Take among them the state i with the
minimal distance ri . We leave the state i by various
transitions an infinite number of times by pressing the
button P(i); therefore, due to the restricted nondeter�
minism, we would have left i by a transition i i ' an
infinite number of times. Consequently, we also would
have visited the state i ' an infinite number of times. But
ri ' = ri – 1, which contradicts the assumption that ri is
minimal. This contradiction proves the desired result.

3.3. Estimation of the Number of Test Inputs

In Fig. 2, test inputs are performed in the blocks
surrounded by bold frames. Let n be the number of
states, b be the number of buttons (taking into account
the restart if it is defined at least in one state), and t be
the nondeterminism restriction.

Consider the block input + observation. In each
state, the test input is performed not more than bt
times (even less if refusals with the same poststate are
observed). In total, we have not more that btn test
inputs.

Consider the block “transition to an uncompleted
state”. Let us estimate the number of test inputs when
this block is executed once and the number of com�
pleted states is c. Consider all the visited completed
states. If the distance of a state is r = 1, then we leave it
not more than t times due to the t�nondeterminism.
Therefore, we leave the states with r = 2 not more than

o

o

t2 times. In the general case, we leave the states with
the distance r not more than tr times. Let ar be the
number of states with the distance r. Then, the number
of test inputs is not greater than f(c) = ≤ t +

t2 + … + t c = (tc + 1 – t)/(t – 1) for t > 1 and not greater
than c for t = 1.

Now, we estimate the total number of test inputs.
Let us enumerate the states in the order they become
completed. Assume that, at the time that immediately
precedes obtaining the jth triple (button, observation,
poststate) in the state i, there are cij uncompleted
states. If we moved to the uncompleted state i before
obtaining the jth triple, then denote by yij the number
of test inputs in the course of this transition; otherwise,
set yij = 0. As was proved above, we have yij ≤ f(cij).
Since cij ≤ i – 1 and the function f is monotone increas�
ing, we have f(cij) ≤ f(i – 1). The number of triples in
each state does not exceed bt. Therefore, the upper
bound on the number of test inputs in the block is

 ≤ ≤ ≤ =

bt = O(btn) if t > 1, and b =

O(bn2) if t = 1.
This bound is attained in terms of the order of mag�

nitude for the LTS shown in Fig. 3. Here, there is a sin�
gle action and a single button enabling this action.
If, in the course of traversing the LTS, every transition
shown by a dotted line is preceded by t – 1 transitions
to the initial state (bold arrows) due to nondetermin�
ism, then the lower bound is O(tn). Note that this
bound is attained for any traversal algorithm and not
only for the algorithm described above.

3.4. Estimation of the Amount of Computations

We assume that querying a state gives its unique
identifier but we do not know its structure; we only can
find out if two identifiers are identical. When querying
a state, we must determine whether it is new or old; if
it is old, we must identify it with the corresponding

art
r

()

r

∑

yij()

i j

∑ f cij()()

i j

∑ f i 1–()()

i j

∑ btf i 1–()()

i

∑

ti t–()/ t 1–()()

i

∑ i 1–()

i

∑

is the current state
uncompleted?

G contains an
uncompleted state?

Input + observation
Transition to an

uncompleted state

yes yes

no no End of
traversal

Fig. 2. General scheme of the traversal algorithm.

308

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 6 2009

BOURDONOV, KOSSATCHEV

state. This requires O(n) comparison operations.
Therefore, the amount of computations does not
exceed the length of the traversal more than by a factor
of n: O(nbtn) for t > 1 and O(bn3) for t = 1. Let us prove
that the other computations do not affect this order if
the algorithm is implemented properly.

Note that the forest of trees required for a pass to an
uncompleted state can be used multiply without mod�
ifications until an uncompleted state becomes com�
pleted.

Let us define the main data structures. We enumer�
ate the buttons from 1 to b and enumerate all the
passed states. Given the state index i, we can deter�
mine the following parameters:

the state’s identifier I(i);
the index of the current button B(i); initially, B(i) = 1,

and, if i is completed, B(i) = b + 1;
the counter of the current button; initially, C(i) = 0;
the list T(i) of different indexes of the states where

the transitions leading to i begin; initially, the list T(i)
is empty;

the index of the button in the forest of trees; ini�
tially, P(i) = 0.

The index of the current state ic, the counter N of
the passed states (initially, N = 0), the counter of com�
pleted states C (initially, C = 0), and the matrix of order
N × N are stored separately; the entry M(i, j) is the
index of the button associated with a transition

I(i) I(j) or 0 if there is no such button.
The block is the current state uncompleted? checks if

B(ic) ≤ b. The number of comparisons is equal to the
number of transitions, which is not greater than
O(btn).

The block input + observation. In the state ic, we
press the button B(i) to obtain an observation o and a
poststate. Determine the index of the poststate i ' by
looking through the array of states using O(n) opera�
tions. If i ' is a new state, it is assigned the index N + 1,
its description is created, the matrix M is extended by
adding N + 1 zero rows and a column, and we set N :=
N + 1. Furthermore, we set C(ic) := C(ic) + 1. If a
refusal is observed and i ' = ic or C(ic) = t, we choose the
next button: B(ic) := B(ic) + 1 and set C(ic) := 0.
If M(ic, i ') = 0, then the state ic is added to the list T(i ')
and the button B(i) is added to the matrix: M(ic, i ') :=
P. The current state is changed: ic := i '. The block is
executed not more than btn times, and the total esti�
mate of the amount of computations is O(btn2).

When the state ic becomes completed (B(ic) = b + 1),
we restructure the forest of trees for C := C + 1. Create
the working list L containing the indexes of the leaf

o

states of the forest. First, scan all the passed states once
to set the button indexes to zero (P(i) := 0) and add the
indexes of the uncompleted states to L (O(n) opera�
tions). Furthermore, for the element i at the head of
the list L, we scan the list T(i) and, for each state j in
this list, check if it already belongs to the forest of
trees. If it does not (P(j) = 0 & B(j) = b + 1), the state
j is placed at the tail of L and P(j) := M(j, i). The state
i is removed from L. The construction completes when
L is empty. The number of the transitions checked by
this procedure does not exceed O(btn). Therefore, the
forest is constructed using O(n) + O(btn) = O(btn)
operations. The forest is constructed when an uncom�
pleted state becomes completed (it remains completed
up to the end). Hence, the forest is constructed not
more than n times, which gives the estimate O(btn2) of
the complexity of constructing all the forests.

The total estimate for the block input + observation
is O(btn2).

The block G contains an uncompleted state?
checks the condition C ≠ N, which requires O(btn)
operations.

The block transition to an uncompleted state. To per�
form a transition, we press the button P(ic) and query
the poststate. Determine the index of the poststate i '
using O(n) operations, change the current state ic := i ',
and check if it is completed. If it is not (B(ic) < b + 1),
the operation is repeated. Taking into account the
number of test inputs in this block, we obtain the total
estimate of the amount of computations O(nbtn) for t > 1
and O(bn3) for t = 1.

For t > 1, we have n ≤ tn – 1. Therefore, we have the
following estimate of the amount of computations:
O(btn) + O(btn2) + O(btn) + O(nbtn) = O(nbtn) for t > 1
and O(btn) + O(btn2) + O(btn) + O(bn3) = O(bn3) for
t = 1.

3.5. Strongly Δ�Connected LTSs

The traversal algorithm just described can be used
for any finite strongly connected t�nondeterministic
LTS. When t = 1, we have the deterministic case with
the estimate of the traversal length O(bn2) and the
amount of computations O(bn3). However, for t > 1,
both estimates are exponential, which is hardly suit�
able for practice. These estimates can be improved if
we restrict ourselves to certain subclasses of LTS. One
such subclass consists of strongly Δ�connected LTSs.

The concept of strongly Δ�connectivity was intro�
duced in [7] to solve the problem of traversing the
transition graph of a nondeterministic FMS. In that
case, the test input is interpreted as sending a stimulus
to the machine and an observation is interpreted as
getting a response from it. The FMS does not contain
unlabeled transitions (τ�transitions in the LTS). Here,
we reformulate the basic definitions and results of [7]
in terms of the LTS and ��semantics.

Fig. 3. Example of an LTS.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 6 2009

COMPLETE OPEN�STATE TESTING 309

A Δ�transition (s, P) is defined as the set of transi�
tions s s', where z ∈ P ∈ �; the [u, V]�Δ route is
the set D of routes such that u is their common begin�
ning, V is the set of their endpoints, and, for any prefix
of any route in D ending in the state s, there is a button
P such that the set of transitions continuing this prefix
in D coincides with the Δ�transition (s, P). If V = {v},
then we have a [u, v]�Δ route. The length of a [Delta]�
route is the maximum of the lengths of its routes.
A route is called a button traversal if it contains at least
one transition from each nonempty Δ�transition.
A Δ�traversal is a Δ�route in which all the routes are
button traversals. A Δ�traversal algorithm performs a
button traversal for arbitrary nondeterministic behav�
ior of the LTS; in total, all these traversals form a
Δ�traversal. A Δ�path is defined as a Δ�route in which
all the routes are paths. If there exists a [u, v]�Δ path,
then v is Δ�reachable from u. An LTS is strongly
Δ�connected if any state is Δ�reachable from any other
state. Strongly Δ�connected LTSs do not contain
τ�transitions because an unstable state cannot be
Δ�reachable. Note that Δ�reachability is considered
with regard for restarts.

In [7], a Δ�traversal algorithm for strongly Δ�con�
nected LTSs was proposed in terms of LTS. That algo�
rithm has the sharp estimate O(nm) of the traversal
length and the estimate O(n2m) for the amount of
computations, where n is the number of states and m is
the number of Δ�transitions. The algorithm is based on
a local approximation of the Δ�distance of the state u
from the set of states V, where the Δ�distance is the
minimal length of the [u, V]�Δ route in the passed LTS.
The set of states in which not all the buttons were yet
pressed was used as V, In the case of t�nondetermin�
ism, the set of uncompleted states is used as V for the
traversal (but not Δ�traversal). Every Δ�transition con�
tains O(t) transitions and m ≤ bn; therefore, the esti�
mates are as follows: O(btn2) for the number of test
inputs and O(btn3) for the amount of computations.

4. TESTING ALGORITHM

First, we note that, if we are sure that the destruc�
tion and divergence are not reachable in the imple�
mentation under test (in particular, when they are not
included in the specification), then testing is reduced
to a traversal of the implementation and the subse�
quent analytical verification of the passed LTS. In the
general case, the traversal algorithms are modified,
and the verification is performed simultaneously with
the traversal.

4.1. Safely Reachable LTS

Denote the LTS implementation by I and the LTS
specification by S. When performing the tests, we
traverse the safely reachable LTS G in which the tran�
sitions are induced by pressing the buttons in the state
i that are safe after a trace that is safe in the specifica�

z

tion and ends in the implementation in the state i
(rather than all the buttons in the state i). If strong
Δ�connectivity is assumed, this property must be satis�
fied only for the safely reachable LTS of the imple�
mentation rather than the entire implementation.

As before, c(P, i) is the number of clicks of the but�
ton P in the state i (see Subsection 3.1). Also, for the
state i, we store the set S(i) consisting of the sets S = (S
after σ), where σ ∈ Safe(S) and i ∈ (I after σ). The set
s is added to S(i) when the trace σ is obtained and the
implementation is in the state i. The button P is admis�
sible in i if it is safe at least in one of the sets S ∈ S(i).
In the state i, only admissible buttons are pressed. The
definition of the completed state changes: now we
require that every admissible in this state (rather that
every) button be completed in this state.

The implementation I and the completely con�
structed LTS G have the same set of safely testable
traces of the form σ ⋅ 〈o〉, where σ ∈ Safe(S) ∩ T(I)
and the observation o is enabled by a certain button P
safe S after σ. Therefore, I saco S ⇔ G saco S. More�
over, I and G have the same set of states that are reach�
able by safely testable traces.

4.2. Start of the Algorithm

At the start of the testing, G contains a single state
i ∈ (I after �) and S(i) = {S after �}. All the buttons P
safe S after � are enabled, and c(P, i) := 0.

If the initial state of the implementation i0 is unsta�
ble, we need to obtain all the states from the set I after
� in the course of testing. To this end, it is necessary
and sufficient that the restart be defined at least at one
state of the implementation that is reachable by a safe
specification trace.

If this condition is not fulfilled and the state i0 is
unstable, the strong connectivity guarantees the tra�
versal but not the completeness of testing. An example
is shown in Fig. 4. Here, I saco S; indeed, from the
very beginning, I contains the action y, which is not
allowed by the specification (there must be the refusal
{y}). If we find ourselves in state 1 at the beginning of
testing, then, without the restart, we can reach state 0
only after pressing the button {x}. According to the
specification, the button {y} is unsafe after the traces
containing x—it may not be pressed. Therefore, the
bug will not be detected.

4.3. General Scheme of the Algorithm

The general scheme of the algorithm is shown in
Fig. 5. In distinction from the traversal scheme shown
in Fig. 2, there are three extra blocks here; they are
enclosed in a wide grey frame. In addition, only
admissible buttons can be pressed in the block input +
observation. This guarantees that only the traces that
are safe in the specification are passed because only
the buttons that were earlier pressed in the transition to

310

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 6 2009

BOURDONOV, KOSSATCHEV

an uncompleted state block can be pressed in the block
input + observation (and they are admissible).

Define the procedure Post(i i ', S) that com�
bines the verification of an observation (oracle) and
the computation of the set of the specification post�
states. Here, i i ' is a transition in the LTS G and
S ∈ S(i). If an error (nonconformance) is detected, the
testing terminates with the verdict fail. Otherwise, the
computed set of poststates S ' is added to the set S(i ')
provided that S ' ≠ and S ' ∉ S(i '); the new state is
labeled in S(i ') by a special flag added. Three cases are
possible.

(1) o is an external action. If there is a button P safe
S such that o ∈ P, then S ' consists of all the states s' that
are reachable from S by τ�transitions from the end�
points of the transitions s s', where s ∈ S. If S' = ,
then o ∉ obs(S, P), and an error is registered. If there
is no such a button P, nothing is done.

(2) o = P is a refusal (a virtual loop). If P safe S,
then S ' consists of all the states s' ∈ S that contain a

o

o

0

z 0

refusal P. If S ' = ststates S ' is added to the set S(i ') pro�
vided that S ' ≠ , then o ∉ obs(S, P), and an error is
registered. If P safe S, nothing is done.

(3) o = τ is an internal action. S ' = S is computed,
and no error is registered.

The block verification of observation goes on when a
new (possibly, virtual) transition i i ' is added. If o
is the restart, the set S after � is added to S(i ') if it is not
yet included there and label it by the flag added in
S(i '). If o is the refusal of the restart, nothing is done.
Otherwise, call the procedure Post(i i ', S) for
each S ∈ S(i). If no errors are registered, the block
propagation is invoked.

In this block, for every transition i i ', where o
is not the restart, the refusal of the restart, and an
added set of states S ∈ S(i'), we call the procedure
Post(i i ', S) and then remove the flag added from
the set S in S(i). These operations are repeated until
there are added sets. Since the sets of implementation
and specification states are finite (therefore, the num�

0

o

o

o

o

S
x y

x

I

x

y

0 1

γ

� = {{x}, {y}}, S — specification, I — implementation

Fig. 4. Example of a specification and nonconformal implementation.

 is the current
state uncompleted?

G contains an
uncompleted state?

Input + observation
Transition to an

uncompleted state

yes yes

no no
pass

fail

yesno New transition
is obtained

Verification of
observation

Propagation

Error

Fig. 5. General scheme of the algorithm.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 6 2009

COMPLETE OPEN�STATE TESTING 311

ber of sets of states of the specification is also finite),
the block propagation terminates in a finite amount of
time.

It is important to note that not only the observa�
tions obtained after actual traces passed in the course
of testing are verified but also possible observations
after potential traces are verified as well. More pre�
cisely, the observations are verified for which it is
established that they can be realized in the implemen�
tation after the known traces that are safe in the spec�
ification. This yields considerable savings in the num�
ber of test inputs needed to verify the conformance;
indeed, we perform many checks without actual test�
ing on the basis of the acquired knowledge about the
implementation’s behavior.

Let us prove that testing using the algorithm just
described is complete; that is, we prove that it is signif�
icant and exhaustive.

First, we prove that, for every state i in the LTS G,
every set S ∈ S(i) is an endpoint of a certain trace that
is safe in the specification: ∃σ ∈ Safe(S) ∩ T(I) S = (S
after σ) & i ∈ (I after σ). The proof is by induction on
the sequence of additions S(i) := S(i) ∪ S, where S ∉
S(i) for any S and any i. Such an addition is made in
three cases: (1) at the start of the work; (2) in the block
verification and observation for the restart; and (3) in
the procedure Post. In cases (1) and (2), the assertion
is true for the empty trace σ = �. The procedure
Post(i i ', S) adds the set of states S ' for the transi�
tion i i' to S(i') in such a way that, if ∃σ ∈ Safe(S) ∩
T(I) such that S = (S after σ) & i ∈ (I after σ), then o
safe (S after σ) & S' = (S after σ ⋅ 〈o〉) & i' ∈ (I after σ ⋅
〈o〉)for o ≠ τ and, for o = τ, S ' = S & i ' ∈ (I after σ). This
proves the proposition.

Significance. If the test detects an error, the imple�
mentation is not conformal. Taking into account the
proposition proved above, the procedure Post returns
fail when it detects that, after a trace σ ∈ Safe(S) ∩
T(I), a button P safe S after σ enables an observation
o ∈ obs(I after σ, P) that is not included in the specifi�
cation (o ∉ obs(S after σ, P)), that is, when the imple�
mentation is not conformal.

Exhaustiveness. If the test’s verdict is pass, the
implementation is conformal. It is sufficient to prove
that, at the end of the test, for every trace σ ∈ Safe(S) ∩
T(I), each state i ∈ (I after σ) belongs to the LTS G and
(S after σ) ∈ S(i). The proof is by induction on traces.
For the empty trace �, the assertion is true; indeed, at
the start of testing after the restarts, we add S after � to
S(i) for every state i ∈ (I after �).

Consider the nonempty trace σ ⋅ 〈o〉 ∈ Safe(S) ∩
T(I), where o is distinct from the restart and the refusal
of restart and is enabled by a button P safe S after σ.
Assume that the assertion is true for σ and prove it for
σ ⋅ 〈o〉. Let the state i ' ∈ (I after σ ⋅ 〈o〉). Then, the
implementation includes a state i ∈ (I after σ) and the
transition i i ' (if o is a refusal, this is the virtual
loop). By the inductive assumption, the state i is

o

o

o

included in G and (S after σ) ∈ S(i). In the case of the
verdict pass, all the states are completed; therefore, the
transition i i ' must be obtained and the procedure
Post(i i ', S) must be performed in the state i after
pressing the button P. In this case, (S after σ ⋅ 〈o〉) ∈
S(i), which was to be proved.

4.4. Estimation of the Number of Test Inputs

In contrast to traversal, only admissible buttons are
pressed in the course of testing. The admissibility of a
button depends on the trace. It may happen that the
state i ∈ (I after σ) is completed and the button P safe
S after σ is inadmissible in i because the trace σ was not
obtained (actually or potentially). After obtaining the
trace σ, i becomes uncompleted again.

Now, we cannot assume that a completed state
always remains in this position. When estimating the
amount of computations in the block transition to an
uncompleted state, we can no more assume that the
number of completed states is monotonically nonde�
creasing, and this number affects the estimate of the
number of test inputs for a single execution of this
block. We give an estimate based on the number of
executions of this block. After going to an uncom�
pleted state, we press an uncompleted button. There�
fore, the block is executed not more than btn times and
not more than f(n – 1) test inputs are applied. This
gives the estimate O(bntn) for t > 1 and O(bn2) for t = 1.

For the deterministic case (t = 1), the estimate did
not change, but it increased by a factor of n for t > 1.
One can suppose that this estimate is too high and the
exact estimate is the same—O(btn). This conjecture is
true for the case b = 1, which is identical to traversal.
Indeed, a completed state becomes uncompleted
again if a new button admissible in this state appears;
however, in this case, there is a single button.

This conjecture can also be proved if the restart is
defined in every state that is reachable in the test. The
transition to an uncompleted state is possible from the
initial state after the restart (or several restarts if the
initial state is unstable; this does not increase the esti�
mate). Select a tree that is oriented from the initial
state and contains all the passed states. Let us move on
this tree while pressing the corresponding buttons.
If we do not reach the desired transition because of
nondeterminism, we again make a restart and begin
from the beginning. Denote by ar the number of states
at the distance r from the initial state in the tree.
In order to surely reach this state, not more than O(t r)
test inputs are needed. In order to reach every state one

time, not more than ≤ t + t2 + … + tn – 1 =

O(tn – 1) test inputs are needed. We need to reach each
state not more than bt times; therefore, the ultimate
estimate is O(btn).

o

o

art
r

()

r

∑

312

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 6 2009

BOURDONOV, KOSSATCHEV

4.5. Estimation of the Amount of Computations

Consider the differences between the testing and
the traversal that affect the amount of computations.

1. More test inputs. The number of test inputs is
multiplied by n, which is the complexity of finding the
index of a state by its identifier; this yields O(bn2tn) for
t > 1, or O(bntn) if b = 1 or the restart is defined every�
where, and O(bn3) for t = 1.

2. The forest of trees is constructed more times,
namely, O(bn) times instead of O(n) because an
uncompleted state becomes completed when a certain
button is pressed for the last time. Therefore, the esti�
mate increases by a factor of b: O(b2tn2).

3. Additional blocks of the algorithm. The greatest
contribution is from the procedure Post(i i ', S)—
its one�time execution requires O(1) operations.
A specification with k states and an implementation
with n states can be constructed for which the LTS G
includes all the pairs (i, S); that is, it includes n2k pairs.
For each pair, not more than bt transitions are
checked. This gives the estimate O(btn2k).

All the checks performed by the procedure Post are
needed to verify the conformance: all the observations
that are possible in the implementations after all safe
specification traces are checked. Test inputs are
required only for a part of these checks (O(btn)); the
other checks are performed at the stage of propaga�
tion.

The final estimate is O(bn2tn) + O(b2tn2) + O(btn2k).
If b = 1 or the restart is defined everywhere, the first
term is O(btnn); if t = 1, then the first term is O(bn3).

4.6. Strongly Δ�Connected Implementations

The number of test inputs is mainly determined by
the transitions to uncompleted states. The algorithm
based on a local approximation of Δ�distances in the
LTS G assumes that every state becomes completed
only once. However, exact Δ�distances can be calcu�
lated. Again, the number of test inputs on the way to an
uncompleted state is not greater than O(n). The num�
ber of passes is not greater than btn; therefore, the final
estimate is O(btn2).

Consider the three terms of the amount of compu�
tations.

1. Finding state indexes from their identifiers. The
estimate of the number of test inputs is O(btn2); there�
fore, the estimate of the amount of computations is
O(btn3).

2. Computation of Δ�distances. Let us label the
Δ�transitions (buttons in the states) used to calculate
the minimal Δ�distances. This is similar to the con�
struction of the forest of trees and the required number
of operations is of the order of the number of transi�
tions O(btn). The Δ�distances are recalculated when
an uncompleted state becomes completed. A state
becomes completed when a certain button is pressed

o

for the last time; that is, not more than b times. The
total estimate is O(b2tn2).

3. Computations in the procedure Post. As in the
general case, the estimate of the number of operations
is O(btn2k).

The ultimate estimate is O(btn3) + O(b2tn2) +
O(btn2k).

REFERENCES
1. Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V.,

Formalization of Test Experiments, Programmirovanie,
2007, no. 5, pp. 3–32 [Programming Comput. Software
(Engl. Transl.), 2007, vol. 33, no. 5, pp. 239–260].

2. Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V.,
Teoriya sootvetstviya dlya system s blokirovkami i
razrusheniem (Conformance Theory for Systems with
Refusals and Destruction), Moscow: Nauka, 2008.

3. Bourdonov, I.B., Conformance Theory for the Func�
tional Testing of Software Systems Based on Formal
Models, Doctoral (Math.) Dissertation, Moscow: Insti�
tute for System Programming, Russian Academy of
Sciences, 2008; http://www.ispras.ru/~RedVerst/Red�
Verst/Publications/TR�01�2007.pdf.

4. van Glabbeek, R.J., The Linear Time—Branching
Time Spectrum, Proc. of CONCUR'90, Baeten, J.C.M.
and Klop, J.W., Eds., Lect. Notes Comput. Sci., 1990,
vol. 458, pp. 278–297.

5. van Glabbeek, R.J., The Linear Time—Branching
Time Spectrum II: The Semantics of Sequential Pro�
cesses with Silent Moves, Proc. of CONCUR'93,
Hildesheim, Germany, 1993, Best, E., Ed., Lect. Notes
Comput. Sci., 1993, vol. 715, pp. 66–81.

6. Milner, R., Modal Characterization of Observable
Machine Behavior, Proc. CAAP, 1981, Astesiano, G.
and Bohm, C. Eds., Lect. Notes Comput. Sci., 1981,
vol. 112, pp. 25–34.

7. Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V.,
Irredundant Algorithms for Traversing Directed
Graphs: The Nondeterministic Case, Programmiro�
vanie, 2004, no. 1, pp. 4–24 [Programming Comput.
Software (Engl. Transl.), 2004, vol. 30, no. 1, pp. 2–17].

8. Blass, A., Gurevich, Y., Nachmanson, L., and
Veanes, M., Play to Test Microsoft Research, Techn.
Report, MSR�TR�2005�04, 2005, 5th Int. Workshop on
Formal Approaches to Testing of Software (FATES 2005),
Edinburgh, 2005.

9. Fujiwara, S. and Bochmann, G.V., Testing Nondeter�
ministic Finite State Machine with Fault Coverage, in
Proc. of the Fourth IFIP TC6 Int. Workshop on Protocol
Test Systems, 1991, Kroon, J., Heijing, R.J., and
Brinksma, E., Eds., North�Holland, 1992, pp. 267–
280.

10. Milner, R., Calculus of Communicating Processes,
Lect. Notes Comput. Sci., 1982, vol. 92.

11. Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V.,
Irredundant Algorithms for Traversing Directed
Graphs: The Deterministic Case, Programmirovanie,
2003, no. 5, pp. 11–30 [Programming Comput. Software
(Engl. Transl.), 2003, vol. 29, no. 5, pp. 245–258].

12. Kuliamin, V.V., Petrenko, A.K., Kossatchev, A.S., and
Bourdonov, I.B., The UniTesK Approach to Designing

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 6 2009

COMPLETE OPEN�STATE TESTING 313

Test Suites, Programmirovanie, 2003, no. 6, pp. 25–34
[Programming Comput. Software (Engl. Transl.), 2003,
vol. 29, no. 6, pp. 310–322].

13. Petrenko, A., Yevtushenko, N., and Bochmann, G.V.,
Testing Deterministic Implementations from Nonde�
terministic FSM Specifications, in Selected Proc. of the
9th IFIP TC6 Int. Workshop on Testing of Communicat�
ing Systems, 1996.

14. Goodenough, J.B. and Gerhart, S.L., Toward a Theory
of Test Data Selection, IEEE Trans. Software Eng.,
1975, vol. SE�1, no. 2, pp. 156–173.

15. Grochtmann, M. and Grimm, K., Classification Trees
for Partition Testing, Software Testing, Verificcation and
Reliability, 1993, no. 3, pp. 63–82.

16. Zhu, Hall, May, Software Unit Test Coverage and Ade�
quacy, ACM Comput Surveys, 1997, vol. 29, no. 4.

17. Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V.,
Application of Finite Automatons for Program Testing,
Programmirovanie, 2000, no. 2, pp. 12–28 [Program�
ming Comput. Software (Engl. Transl.), 2000, vol. 26,
no. 2, pp. 61–73].

18. Vasilevskii, M.P., On the Detection of Faults in an
Automaton, Kibernetika, 2973, vol. 9, no. 4, pp. 93–
108.

19. Aho, A.V., Dahbura, A.T., Lee, D., and Uyar, M.Ü.,
Optimization Technique fpr Protocol Conformance
Test Generation Based on UID Sequences and Rural
Chinese Postman Tours, IEEE Trans. Commun., 1991,
vol. 3, no. 11, pp. 1604–1615.

20. Lee, D. and Yannakakis, M., Testing Finite State
Machines: State Identification and Verification, IEEE
Trans. Comput., 1994, vol. 43, no. 3, pp. 306–320.

21. Lee, D. and Yannakakis, M., Principles and Methods of
Testing Finite State Machines—A Survey, in Proc. of
the IEEE 84, 1996, no. 8, pp. 1090–1123.

22. Legeard, B., Peureux, F., and Utting, M., Automated
Boundary Testing from Z and B, Proc. of the Int. Conf.
on Formal Methods Europe, FME'02, Lect. Notes Com�
put. Sci., 2002, vol. 2391, pp. 21–40.

23. Bourdonov, I.B., Traversal of an Unknown Directed
Graph by a Finite Robot, Programmirovanie, 2004,
no. 4, pp. 11–34 [Programming Comput. Software (Engl.
Transl.), 2004, vol. 30, no. 4, pp. 188–203].

24. Bourdonov, I.B., Backtracking Problem in the Traversal
of an Unknown Directed Graph by a Finite Robot,
Programmirovanie, 2004, no. 6, pp. 6–29 [Programming
Comput. Software (Engl. Transl.), 2004, vol. 30, no. 6,
pp. 305–322].

25. Bourdonov, I.B., Examination of Unidirectional and
Bidirectional Distributed Networks by a Finite Robot,
Trudy Vserossiiskoi konferentsii nauchnyi servis v seti
Internet (Proc. of the All�Russia Conf. on the Research
Services on the Internet), 2004.

26. Edmonds, J. and Johnson, E.L., Matching, Euler
Tours, and the Chinese Postman, Math. Programm.,
1973, no. 5, pp. 88–124.

27. Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V.,
“Security, Verification, and Conformance Theory,” in
Materialy vtoroi mezhdunarodnoi nauchnoi konferentsii
po problemam bezopasnosti i protivideistviya terrorizmu
(Proc. of the Second Int. Conf. on Security Problems
and Terrorism Counteractions), Moscow: MNTsMO,
2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

