
ISSN 0361�7688, Programming and Computer Software, 2009, Vol. 35, No. 4, pp. 198–211. © Pleiades Publishing, Ltd., 2009.
Original Russian Text © I.B. Bourdonov, A.S. Kossatchev, 2009, published in Programmirovanie, 2009, Vol. 35, No. 4.

198

INTRODUCTION

In the existing conformance testing theories, it is
assumed that no priorities are imposed on the actions
the system may perform in a certain situation [1]. This
is called the nondeterministic rule of choice of the
action to be performed. However, this rule does not
always correspond to the desired behavior of software
and hardware systems. Consider several examples.

Divergence exit. By divergence, we mean endless
internal activity of the system (when it gets caught in
an endless loop). A request arriving from the outside of
the system can be neglected arbitrarily long if it has the
same priority as the system’s internal activity. Note
that the internal activity can be initiated by an earlier
request. If the system consists of several components,
such an internal activity can be a natural result of the
interaction between the components. In this case, in
order to handle the request arriving from the outside of
the system to one of its components, this request must
have a higher priority than the internal interaction.

Oscillation exit (the priority of the input over the
output). By oscillation, we mean an endless sequence
of output messages produced by the system. To inter�
rupt such a sequence and make the system handle an
outside request, this request must have a higher prior�
ity than the message output.

Priority of the output over the input in infinite
queues. This opposite example is characteristic of an
infinite queue used as a buffer between interacting sys�
tems (for example, in asynchronous testing or testing
in a context). In this case, we need that the retrieval
from the queue have a higher priority than the addition
to the queue. Otherwise, the queue can only receive

messages but never output them. In asynchronous
testing, this means that the input messages sent by the
test do not reach the implementation but are rather
endlessly accumulated in the queue; for the output
queue, this means that the test cannot receive mes�
sages from the implementation although it generates
them because these messages are accumulated in the
queue.

Interrupting a chain of actions. The cancel instruc�
tion must terminate the sequence of actions initiated
by a preceding request and initiate a chain of terminat�
ing actions. If there are no priorities, such an instruc�
tion, even if it is issued immediately after the request
was generated, may be executed only after the request
handling is actually finished; that is, it does not cancel
anything.

Priority handling of inputs. If several requests
simultaneously arrive in the system, it is often required
that they be handled according to certain priorities.
This requirement is often implemented using a prior�
ity queue or several queues with different priorities
assigned to them. For example, hardware interruption
handling in operating systems uses this type of priori�
ties.

The absence of priorities in models of software and
hardware systems does not allow one to test the
requirements that can be stated only in the form of pri�
orities. In this paper, we propose a technique for intro�
ducing priorities in the conformance theory. Namely,
priorities are included in the semantics of the interac�
tion and in the system model, in the conformance
relation, in test generation methods, and in the com�
position operator (which assembles the system from
interacting components). The conformance theory

Systems with Priorities:
Conformance, Testing, and Composition

I. B. Bourdonov and A. S. Kossatchev
Institute for System Programming, Russian Academy of Sciences, ul. Solzhenitsyna 25, Moscow, 109004 Russia

e�mail: igor@ispras.ru, kos@ispras.ru
Received July 15, 2008

Abstract—An approach to modeling the components of distributed systems whose interaction is based on
handling events with regard for their priorities is considered. Although the priority�based servicing of requests
or messages is widely used in practice, the mathematical models of the interaction of such programs often
neglect the priorities thus introducing extra nondeterminism in the description of their behavior. The pro�
posed approach attempts to avoid this drawback by defining the parallel composition that provides a model
for the interaction of this kind. The subject matter of this paper is the development of a formal theory of test�
ing the components that use priorities. Within this theory, the concept of a safe execution of the model and
the conformance relation between the models are introduced, and the generation of test suites that check
conformity is considered.

DOI: 10.1134/S0361768809040045

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 4 2009

SYSTEMS WITH PRIORITIES 199

without priorities is briefly described in [2]; a detailed
presentation including all the proofs is given in the dis�
sertation of one of the authors of this paper (see [3]).
The conformance theory for the class of the so�called
βγδ semantics is presented in [4]. Here, we first recall
the fundamental concepts of this theory, and then
modify them for the case of priorities.

1. CONFORMANCE THEORY
WITHOUT PRIORITIES

1.1. Semantics of the Interaction and Safe Testing

The verification of conformance is interpreted as
the check if the system conforms with the given
requirements. In the model, the system is mapped to
its implementation, the requirements are mapped to
the specification, and their conformity is mapped to
the binary conformance relation. If the requirements
are formulated in terms of the system’s interaction
with its environment, testing can be performed as the
verification of conformance in the course of testing
experiments when a test replaces the environment.
The conformance relation and its testing are based on
a certain interaction model.

We consider only the interaction semantics that are
based only on the external observable behavior of the
system but do not take into account its internal orga�
nization (which is mapped to the concept of state at
the level of the model). In this case, the black box (or
functional) testing can be performed. We can only
observe the behavior of the system that is, first,
induced by a test input and, second, can be observed in
an external interaction. Such an interaction can be
simulated using the so�called testing machine [1–6].
This machine is a black box containing the implemen�
tation (see Fig. 1). An operator controls the testing
machine by pressing buttons on the machine’s key�
board thus instructing (or allowing, or enabling) the
implementation to perform certain actions that can be
observed. The operator presses the buttons according
to a test, which is interpreted as a set of instructions to
the operator. Observations on the machine’s display
are classified into two types. Observation of an action
that is allowed by the operator and performed by the
implementation and observation of a refusal, which
means that no actions allowed by the buttons pressed
by the operator are observed. We denote actions by
lowercase letters and refusals (considered as sets of
actions) by uppercase letters.

We stress that the operator may allow the machine
to perform a set of actions (but not necessarily only a
single action). For example, when testing reactive sys�
tems based on the exchange of inputs and responses,
sending one input from the test to the implementation
can be interpreted as the permission for the imple�
mentation to execute only one action, namely, to
receive this input. However, the reception of the
response by the test means that the implementation is

allowed to produce an arbitrary response precisely to
check whether or not this response is correct. We will
assume that the operator presses a single button, but
this allows the implementation to execute a set of
actions. After an observation (of an action or a
refusal), the button is automatically released, and all
the external actions are disabled. Then, the operator
may press another (or the same) button.

The “button” set is, generally, not an arbitrary sub�
set of the set of all actions. There is a great variety of
opinions among the researches concerning the sets of
actions that can be enabled by a test and which sets are
prohibited. For example, it is usually assumed that, for
the reactive systems, it is not allowed (senseless) to mix
sending inputs with receiving the responses (Tret�
mans). However, there is also the opposite approach
stating that the implementation’s responses must not
be hampered; therefore, even when sending an input,
the test must be ready to receive a response (Petrenko
in [7]).

We also stress that the observation of a refusal is
possible not for each button that is pressed. Concern�
ing this issue, different researches also lean on differ�
ent assumptions. For reactive systems, it has long been
assumed that a test can observe the absence of
response (quiescence) when a timeout has expired;
however, it cannot detect whether or not the imple�
mentation receives an input (this is called input
refusal). On the other hand, an increasing number of
studies that have recently appeared admit or partially
admit such input refusals [2, 4, 8–14]. Moreover, the
responses, if they are received via different “output
channels,” can be received selectively; more precisely,
the test can receive only the responses that go via one
or several selected channels [12, 13].

Thus, the semantics of interactions is determined
by the set of observable (in principle) actions (the
alphabet of external actions L), the set of actions that
the test can enable (the set of buttons of the testing
machine), and by the sets of buttons for which the cor�
responding refusals are observable (the family � ⊆
�(L)) and not observable (the family � ⊆ �(L)). It is
assumed that � ∩ � = and ∪� ∪∪ � = L. Such
kind of semantics is called the �/� semantics.

In addition to the external observable actions, the
implementation can execute internal (unobservable
and, therefore indistinguishable for the operator)
actions, which are denoted by τ. The execution of such
actions is not controlled by the operator—they are

0

 Testing machine

A, B, C, ... ⊆L

Fig. 1.

200

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 4 2009

BOURDONOV, KOSSATCHEV

always enabled. It is assumed that any finite sequence
of such actions terminates in a finite amount of time
and an infinite sequence of actions terminates in an
infinite amount of time. The infinite sequence of τ�
actions (an infinite loop) is called divergence; it is
denoted by ∆. We also define a special action called
destruction that is not controlled by the buttons; this
action is denoted by γ. It models any prohibited or
unspecified behavior of the implementation. For
example, in terms of the preconditions and postcondi�
tions, the behavior of a program is defined (by a post�
condition) only if the corresponding precondition is
fulfilled. Otherwise, if the precondition is not fulfilled,
the program behavior is completely undefined. The
destruction semantics assumes, in particular, that the
system can be destructed as a result of such a behavior.

In testing, we should avoid unobserved refusals
(��refusals), attempts to exit from the divergence,
and destruction. Such a testing is said to be safe. The
harmfulness of destruction is implied by its semantics.
Let us explain the other cases. On the whole, their
harmfulness is in that, after pressing a button, the
operator does not always get an observation; hence, he
can neither continue the testing nor finish it. If, after
pressing the button P, there is the ��refusal of P, the
operator does not know whether to continue waiting
for the observation of an external action enabled by the
pressed button or it is senseless to wait because the
machine stopped. However, the operator cannot find
out whether the machine is stopped because this would
mean that the refusal of P is observed. The divergence
per se is not harmful, but, pressing any button after its
occurrence and observing no external actions or an
��refusal, the operator does not know whether such
an occurrence will happen later or the implementation
will endlessly continue its internal activity.

Note that, due to the internal activity, pressing an
empty ��button (the button with the empty set of
enabled actions) is not equivalent to the absence of a
pressed button. In both cases, all the external actions
are not allowed; however, the observation of a refusal
implies that the operator learns that the machine is
stopped (when it cannot perform even the internal
actions). An empty ��button cannot provoke a
destruction after an action (because no actions can be
performed), but it can be not safe (as any other button)
if there is the divergence. An empty ��button must
never be pressed because no observations can be made;
indeed, all the external actions are disabled and the
refusals are not observed. Therefore, we may assume
that ∉ ��button.

1.2. LTS�Model and Trace Model

We will use a labeled transition system (LTS) as a
model of the implementation and the specification.
LTS is a directed graph with a distinguished initial ver�
tex in which the arcs are labeled by certain symbols.

0

Formally, LTS is the collection S = LTS(VS, L, ES, s0),
where VS is a nonempty set of states (graph vertices), L
is the alphabet of external actions, τ is the symbol of
the internal action, γ is the symbol for destruction,
ES ⊆ VS × (L ∪ {τ, γ}) × VS is the set of transitions
(labeled arcs), and s0 ∈ VS is the initial state (the initial
vertex of the graph). The transition from the state s to

the state s' by the action z is denoted by s s'.

Define s =def s' s s'. The execution of an
LTS placed in the black box of a testing machine is
reduced to performing a transition defined in the cur�
rent state and enabled by the pressed button (τ� and γ�
transitions are enabled when any and none of the but�
tons is pressed). A state is called stable if no τ� and γ�
transitions are defined in it; a state is said to be diver�
gent if it begins an infinite chain of τ�transitions (in
particular, a τ�cycle including a τ�loop). The refusal of
P is induced by a stable state that contains no transi�
tions initiated by the actions from P.

In order to obtain LTS traces, it suffices to add, in
each stable state, virtual loops labeled by the refusals
induced by this state and add ∆�transitions in all the
divergent states. Then, all the finite routes in the LTS
that begin in the initial state and do not continue
beyond a ∆� or γ�transition are considered. The trace
of a route is defined as the sequence of labels of its
transitions in which the τ�transitions are omitted.
Such traces are called complete or F�traces, and the set
S of the F�traces of the LTS is called the complete trace
model or the F�model; it is denoted by F(S). An F�trace
in which all the refusals belong to the family � is
called an ��trace. These are the traces that can be
observed on the testing machine in the �/��seman�
tics. The set of all ��traces of an LTS, that is the pro�
jection of its F�model on the alphabet consisting of all
the external actions, ��refusals, and the symbols ∆
and γ, is called the ��model corresponding to the
“view” of the implementation in the �/��semantics.

1.3. Safety Hypothesis and Safe Conformance

Safe testing requires that a formal definition of the
safety relation a button is safe in the model after an
��trace be given at the model level. Under safe test�
ing, only safe buttons are pressed. This relation is dif�
ferent for the implementation and the specification
models. In the LTS implementation I, the safety rela�
tion safe in implies that pressing a button P after an
��trace σ cannot entail an attempt of exiting from the
divergence (there can be no divergence after a trace),
cannot entail destruction (after an action enabled by
the button), and cannot entail a unobservable refusal
(if this is a ��button):

z

z

∃ z

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 4 2009

SYSTEMS WITH PRIORITIES 201

In the LTS specification S, the safety relation safe
by is different only for the ��buttons: we do not
require that the trace σ be continued by a safe
��refusal �; rather, we require that it be continued
by at least one action z ∈ �. Moreover, if an action is
enabled by at least one nondestructive ��button, it
must also be enabled by a safe button. If this is a non�
destructive ��button, it is also safe. However, if all the
nondestructive buttons that enable this action are
��buttons, at least one of them must be declared safe.
Such a safety relation always exists; indeed, it is suffi�
cient to declare safe every nondestructive button that
enables an action continuing a trace. Nevertheless,
these requirements do not uniquely define the relation
safe by, and a specific relation must be chosen when
the specification is defined. The requirements for the
relation safe by are written as follows: ∀R ∈ � ∀z ∈
L ∀Q ∈ �,

(1) R safe by S after σ ⇔ R safeγ∆ in S after σ,

(2) ∃T ∈ � T safeγ∆ in S after σ & z ∈ T & σ ⋅ 〈z〉 ∈
F(S) ⇒ ∃P ∈ � ∪ � z ∈ P & P safe by S after σ,

(3) Q safe by S after σ ⇒ Q safeγ∆ in S after σ & ∃v ∈
Q σ ⋅ 〈v〉 ∈ F(S).

The safety of buttons determines the safety of the
actions and ��refusals after ��traces. The ��refusal
R is safe if the button R is safe after the trace. An action
is safe if it is enabled by a button that is safe after the
trace. Now, we can define safe traces. An ��trace is
said to be safe if the following holds. (1) The model is
not destructed at the very beginning (immediately
after the machine is switched on even before any but�
ton is pressed); that is, the model does not contain the
trace 〈γ〉. (2) Every symbol of the trace is safe after the
trace prefix that immediately precedes this symbol.
The sets of safe traces in the implementation I and the
specification S are denoted by SafeIn(I) and SafeBy(S),
respectively.

The testing safety requirement defines the class of
safe implementations that can be safely tested to check
their conformance or nonconformance with the given
specification. This class is defined by the following
safety hypothesis. The implementation I is safe for the
specification S if the following holds. (1) The imple�
mentation is not destructed at the very beginning if this
requirement is not included in the specification. (2)
After any safe trace that is common for the specifica�
tion and the implementation, any button that is safe in
the specification is safe after this trace in the imple�
mentation:

P safeγ∆ in I after σ =def u∀ P∈

σ u g,〈 〉⋅ F I() & σ ∆〈 〉⋅ F I().∉ ∉

P safe in I after σ =def P safeγ∆ in I

after σ & P � σ P〈 〉 F I()∉⋅⇒∈(). Then, we can define the (safe) conformance rela�
tion: The implementation I safely conforms (or just
conforms) with the specification S if it is safe and the
following condition under test is fulfilled: any observa�
tion that is possible in the implementation as a
response to pressing a safe (in the specification) button
is allowed by the specification:

Here, obs(σ, P, T) =def {u|σ ⋅ 〈u〉 ∈ F(T) & (u ∈ P ∨ u =
P & P ∈ �)} is the set of observations of the model T
that can be obtained by pressing the button P after the
trace σ. Note that the safety hypothesis cannot be
checked in the course of testing; this hypothesis is the
testing precondition. In the test, the remaining part of
the conformance condition is checked.

1.4. Parallel Composition and Test Generation

In the LTS theory, the interaction of two systems is
modeled by the parallel composition operator. We use
the composition operator similar to that used in the
CCS (Calculus of Communicating Systems) [15, 16].
We assume that, for each external action z, an opposite
action is defined such that = z. For example, for

sending an input from the test, the opposite action is
receiving the input in the implementation; and, for
producing a response by the implementation, the
opposite action is the reception of this response in the
test. The parallel execution of two LTSs over the alpha�
bets A and B is interpreted in such a way that the tran�
sitions corresponding to mutually opposite actions z
and , where z ∈ A and ∈ B, are executed simulta�
neously in both LTSs; in the composition, this pair of
transitions becomes a τ�transition. Such transitions
are called synchronous. The other external actions z ∈
A\ , z ∈ B\ , and τ and γ are called asynchronous.
The transition corresponding to such an action is exe�
cuted in one of the LTSs, while the state of the other
LTS remains unchanged. The result of the composi�
tion of two LTSs I and T is the LTS I ↑↓ T over the
alphabet A ↑↓ B =def (A\) ∪ (B\). Its sates are the
pairs of states it of the LTS operands, the initial state is
the pair of the initial states of the original LTSs, and
the transitions are induced by the following inference
rules:

(1) z ∈ {τ, γ} ∪ A\ & i i ' � it i 't,

(2) z ∈ {τ, γ} ∪ B\ & t t ' � it it ',

I safe for S =def γ〈 〉 F S()∉ γ〈 〉⇒ F I()∉()

& σ∀ SafeBy S()∈ SafeIn I() P∀ � �∪∈∩

P safe by S after σ P safe in I after σ⇒().

I saco S =def I safe for S

& σ∀ SafeBy S() SafeIn I() P safe by S∀∩∈

after σ obs σ P I, ,() obs σ P S, ,().⊆

z z

z z

B A

B A

B z z

A z z

202

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 4 2009

BOURDONOV, KOSSATCHEV

(3) z ∈ A ∪ i i ' & t t ' � it i 't '.

Testing is regarded as the closed composition of the
LTS implementation I over the alphabet A and the LTS
test T over the opposite alphabet B = . To detect
refusals in the test (but not in the implementation!),
special θ�transitions are allowed that fire if and only if
no other transitions can be performed:

(4) t t ' & Deadlock(i, t) � it it '.

Here, Deadlock(i, t) = i & i & t &

t & (∀z ∈ A ∩ i ∨t). We assume that
the test does not contain destruction (the requirement

t is always satisfied).
Since the alphabets of the implementation and of

the test are mutually opposite, the composition alpha�
bet is empty, and the composition LTS contains only
τ� and γ�transitions. Under safe testing, τ�transitions
are unreachable. The execution of a test is preceded by
passing a τ�route that begins at the initial state of the
composition I ↑↓ T. The test ends when a terminal
state of the test is attained. Each terminal state is
assigned the verdict pass or fail. An implementation
passes a test if the test states with the verdict fail are
unreachable. An implementation passes a suite of tests
if it passes every test in this suite. A suite of tests is
called significant if it is passed by every conformal
implementation; a suite of tests is called exhaustive if
no nonconformal implementations pass it. A suite of
tests is complete if it is both significant and exhaustive.
The task is to generate a complete suite of tests given a
specification.

Usually, only the so�called controllable tests are con�
sidered, that is, the tests without excessive nondeter�
minism. To be controllable, the set of external actions
for which transitions in the given test state are defined
must be one of the button sets of the �/��semantics
(more precisely, it must be a set of opposite actions
because the tests are defined over the opposite alphabet
in the CSS composition). When performing a test, the
operator uniquely determines which button must be
pressed in every given state of the test. If this as an
��button, a θ�transition must be defined in the test
state.

The set of primitive tests is always complete.
A primitive test is constructed on the basis of a distin�
guished safe ��trace of the specification. To this end,
before every ��refusal R, the button R is included, and
before every action z, any one safe (after the trace pre�
fix) button P is included that enables the action z. The
safety of the trace guarantees that the button R is safe
and that an appropriate safe button P exists. The but�
ton P is generally, not unique; therefore, given the
same safe trace, many different primitive tests can be
generated. To differentiate between buttons and refus�
als (both are subsets of the external actions), we will

B z z τ

A

θ τ

τ γ τ

γ

B
z z

γ

enclose buttons in double quotes and write “P”
instead of P. After all the buttons have been specified,
we obtain a sequence, which is called the �/��log (or
history) in the next section. This sequence provides
the basis for constructing the LTS test (Fig. 2). The
states of this test are the specified buttons, the initial
state is the first button in the sequence, the symbols of
transitions from the button�state are the actions that
are opposite to those that can be observed after press�
ing this button or the symbol θ if this is an ��button.
If this button is not the last one, one of the transitions
leads to the state corresponding to the next button.
The other transitions lead to terminal states. The ver�
dict pass is assigned if the specification contains the
corresponding trace; otherwise, the verdict fail is
returned. Such a verdict corresponds to strict tests;
these are the tests that, first, are significant (do not
detect false bugs) and, second, do not miss detected
bugs. Any strict test can be replaced by a union of
primitive tests that detects the same bugs.

2. CONFORMANCE THEORY
WITH PRIORITIES

2.1. Predicates on the Transitions of the LTS Model

Independently of the presence or absence of prior�
ities, the interaction semantics assumes that only the
transitions that are specified in the implementation
and are enabled by the operator of the testing machine
can be performed. In the absence of priorities, any
defined and enabled action can be executed, and the
choice of this action is nondeterministic. The pres�
ence of priorities implies that not all the defined and
enabled actions can be executed; in other words, the
executability of an action depends on the other
defined and (or) enabled actions. This dependence
can be illustrated by a predicate of the set of enabled
actions that is assigned to the corresponding transition
in the LTS model. Since the preceding state s is known

for the transition s s' and the other transitions
that begin at this state are known, the predicate
assigned to a transition can be assumed to be indepen�
dent of the set of defined (in the state s) actions.
In other words, transitions corresponding to the same
action beginning at different states can have different
predicates.

An LTS with priorities is an LTS with the alphabet
defined as the Cartesian product of the alphabet of the
external actions and the set of predicates over the
alphabet of the external actions Π = {π : �(L)
Bool} : S = LTS(VS, L × Π, ES, s0). The transition

s s' can be performed only if the operator enables
a set of external actions R ⊆ L such that z ∈ R ∪ {τ, γ}
and π(R) = true. If there are several executable actions,
one of them is actually executed (as before, the choice
of this action is nondeterministic).

z

z, π

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 4 2009

SYSTEMS WITH PRIORITIES 203

The predicate may be regarded as a Boolean func�
tion of Boolean variables z1, z2, … that are in one�to�
one correspondence with the corresponding external
actions over the alphabet L. For example, for the pred�

icate π = a&¬b ∨ c, the transition s s' can be per�
formed only if the operator enabled a set of external
actions R such that z ∈ R ∪ {τ, γ} & (a ∈ R & b ∉ R ∨
c ∈ R). This implies that z is an internal action, the
destruction, or an external action enabled by the opera�
tor and that at least one of the two conditions is fulfilled:
(1) the operator enabled the action a and disabled the
action b; (2) the operator enabled the action c.

Therefore, a predicate is a Boolean function of the
set of enabled actions. An important particular case is
when the predicate depends only on the enabled and
defined external actions. In other words, the predicate

on the transition s s' is independent of the Bool�
ean variables that correspond to the external actions
that do not have corresponding transitions from the
state s. This implies that the executability of a transi�
tion depends only on whether the action z is enabled
and what other actions are defined in the state s and
are enabled by the operator. In this case, the actions
that were enabled by the operator but cannot be exe�
cuted because they are not defined in the current state
of the implementation are of no importance for the
implementation (it “does not see” them). By pressing
a button, the operator sort of “highlights” certain
actions of the implementation that are defined in its
current state, and the executability of a transition cor�
responding to the highlighted action is determined by
the corresponding predicate of the set of the high�
lighted actions.

Being a Boolean function of actions, the predicate
can be represented by a principal disjunctive normal form
π = η1 ∨ η2 ∨ …, where ηi = xi1 & xi2 & … or xij = ¬zj and
zj runs over the set of all external actions. Then, the

transition s s' can be replaced by the set of multi�
ple transitions of which the predicates are the clauses

of s s'. In turn, the clause ηi is in one�to�one cor�
respondence with the set of actions Pi for which xij =
zj . For the LTS composition, this set is the set of
actions enabled by the other operand of the cpmposi�
tion. In the case when this operand is a test for the
given �/��semantics, these sets of enabled actions
correspond to the buttons contained in � ∪ �.
Therefore, we may assume that the buttons (i.e., tran�

sitions) s s' are assigned to the transitions rather
then the arbitrary predicates. When a button Pi is

pressed, only the transitions s s', where z ∈ Pi ∪
{τ, γ} can be performed. Such a transition from an LTS
with predicates to an LTS with buttons is similar to the
transition from the Extended Finite State Machines
(EFSMs) to the conventional FSMs).

z, π

z, π

z, π

z, ηi

z, Pi

z, Pi

2.2. Stop and Divergence

A machine without priorities stops at at a stable
(quiescent) state in which there are no transitions cor�
responding to the enabled external action. In the pres�
ence of priorities, the very concept of stability is
changed. It becomes conditional; namely, a state is
stable if, for all the transitions from this state, their
predicates of the empty set of the enabled external
actions are false, that is, if π() = false. Respectively,
the stopping criterion is changed: the machine stops if,
for the enabled set of external actions P, for all the
transitions from the current state, their predicates are
false, that is, if π(P) = false.

Here, we must define more precisely what happens
when a button is released. For a machine without pri�
orities, any button is automatically released when any
action or refusal is observed. After an action, the
machine can execute arbitrary τ�transitions (and also
the γ�transition); however, the machine stops after the
refusal because refusals occur in a quiescent state in
which there are no τ� and γ�transitions. For a machine
with priorities, releasing a button changes the set of
enabled actions (in an empty ��button, which
invokes the isolated observation of the empty refusal,
was not pressed). After an observation, the implemen�
tation starts performing τ�transitions having the prior�
ity π() = true. Note that this observation may be not
only an action but a refusal as well. The cause is that
the refusal P means the impossibility to perform the
enabled external actions z ∈ P and τ� and γ�transitions
because their predicates became false: π(P) = false.
After the button P is released, the set of enabled exter�
nal actions is empty, and now τ� and γ�transitions with
the predicates π() = true may be performed. Further,
the operator can press the same button (but the
repeated observation of the same refusal is not guaran�
teed if the implementation changed its state due to τ�
transitions) or another button.

If button switching is allowed (that is, if the next
button may be pressed before an observation after
pressing the preceding button is made), such a switch�
ing is interpreted as releasing the preceding button and
then pressing the next one. We assume that, in between
pressing two buttons, there is a situation in which no
buttons are pressed, and the implementation may per�
form τ� and γ�transitions with the predicates π() =
true. The general rule is that the situation when there
is no test input occurs every time when the machine is
switched on (before the first button is pressed), after
any observation, and between two test inputs. In the
next subsection, the button switching is discussed in
more detail.

We have already noted that, even for the machine
without priorities, the divergence is inconvenient not
per se but because it is difficult to quit it. In the pres�
ence of priorities, if an external action has a higher pri�
ority than the internal activity, the divergence stops.

0

0

0

0

204

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 4 2009

BOURDONOV, KOSSATCHEV

Now, the executability of τ�actions depends on the
pressed button, and we can indirectly control those
actions and, therefore, control the divergence. Conse�
quently, we may speak of the executable divergence;
namely, for some pressed buttons (or when no buttons
are pressed), all the τ�actions of the infinite chain are
executable; for other pressed buttons, they are not
executable; therefore, there is no endless loop. One
can quit the divergence that occurs when a button A is
pressed by pressing a button B for which the diver�
gence is not executable. Note that, for that purpose,
some buttons must be switched; that is, a button must
be pressed without observing the result of pressing the
preceding button. The only situation in which the
divergence cannot be quit for sure is the case when the
divergence is executable after pressing any button.

2.3. Button Switching

In the machine without priorities, a button may be
pressed either after the machine is turned on or after
an observation after pressing the preceding button is
made. In other words, buttons may not be switched
without observation (that is, one cannot release one
button and press another). This inhibition is explained
by the fact that, in the absence of priorities, the possi�
bility of switching buttons does not enhance the
capacity of testing. Indeed, if a button P was pressed,
and then another button Q was pressed (and P was
released) without making an observation, the imple�
mentation could only perform τ�actions between
pressing these buttons. However, the τ�actions are
always enabled; therefore, the implementation could
also perform these actions when the button Q was

pressed immediately without pressing P. Conse�
quently, any behavior that can be observed in the first
case can also be observed in the second case.

In the presence of priorities, switching without
observation is necessary for the completeness of test�
ing because different sets of enabled actions have a dif�
ferent effect on the execution of τ�actions (τ�transi�
tions can have predicates as well), which results in
externally distinct behavior. For example, suppose that
the reception of an input in a reactive system has a
higher priority than producing responses and perform�
ing τ�actions. Then, the τ�actions are executed if and
only if the implementation cannot receive an input
sent by the test. In the example shown in Fig. 3, in
order to obtain the response !y after the input ?a, this
input must not be sent directly (in this case, the
response will be !x); rather, the input ?b must be sent
first, and then the button {?b} must be switched over to
{?a} thus sending the input ?a. If the implementation
receives the input ?b, the buttons must be switched
before the input ?b is received. If the implementation
refuses ?b (there is not dotted transition), one does not
need to hurry; if the refusal of ?b is observable, one
may wait for it, and then send the input ?a.

However, there are strong reasons for prohibiting
button switching in the presence of priorities. The
point is the switching of buttons makes it possible to
evade unobservable refusals. Indeed, if the operator
switches the ��button P over to any other button Q,
the occurrence of an unobservable refusal of P does
not prevent such a switching (as illustrated in Fig. 3,
when there is no dotted transition corresponding to
the input ?b and the refusal of {?b} is not observable).
From a different point of view, if the refusal of P is pos�

“A”

“B”

“C”

fail

fail

fail

fail

pass

pass

pass

pass

pass

θ

b

c

σ = 〈A, b, c〉 ⇒ insert safe buttons ⇒

〈”A”, A, “B”, b, “C”, c〉 such that

A, B ∈ �, C ∈ �, b ∈ B, c ∈ C.

The external action has the subscript
“good” if it is included in the
specification after the trace prefix;
otherwise, it has the subscript “bad”.

Dashed lines show mutually exclusive
θ�transitions beginning in the same
state. The subscripts “good” and “bad“
denote the presence and, respectively,
absence of the continuation of the trace
prefix by the corresponding ��refusal.

abad ∈ A agood ∈ A

bbad ∈ B bgood ∈ Bbbad ∈ B bgood ∈ B

cbad ∈ C cgood ∈ C

θbad θgood

Fig. 2.

A primitive test for the � trace σ

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 4 2009

SYSTEMS WITH PRIORITIES 205

sible and the testing is safe, we must not press the but�
ton P without the subsequent switching to another
button (that is, with waiting for an observation) (in
Fig. 3, the button {?b} must be always switched to the
button {?a} or some other button). Therefore, if the
switching of buttons is allowed, the condition for the
safety of ��buttons is more complicated (it will be
thoroughly considered below). If the switching of but�
tons is allowed, testing in the presence of priorities
looks more conventional, namely, as an alternating
sequence of test inputs (a button is pressed) and obser�
vations. Furthermore, less temporal requirements are
placed upon the operator in this case.

2.4. Temporal Constraints on the Operator (Test) Actions

The introduction of priorities complicates the
operator’s work by imposing stricter temporal con�
straints. In the absence of priorities, the operator must
know how to quickly press a button after the machine
is turned on or after the preceding observation. Note
that, if the operator has not managed to press the but�
ton quickly enough, there is nothing to worry of
because the machine has time to perform only one or
several τ�actions that (in a machine without priorities)
it can also perform in the case when the button was
pressed immediately. In other words, we require that
the operator could work quickly but do not make him
always work quickly.

In the presence of priorities, the observation of var�
ious behaviors of the implementation requires from
the operator not only swift, but also slow, moderate,
and so on work. In Fig. 4, the input ?a can be received
in three states 1, 2, and 3; however, the responses are

different: !x, !y, or !z. These states are connected by τ�
transitions that are executable only if the test does not
send the input ?a. Therefore, the response !x is
observed only if the operator quickly presses the but�
ton {?a}, the response !y is observed only if the opera�
tor does not hurry, and the response !z is observed only
if the operation speed is moderate.

If the button switching is allowed, one must know
how to perform switching with different time intervals
so as to “make” the implementation perform the
desired number of τ�transitions between pressing two
buttons.

Therefore, for a machine with priorities, one must
take into account the time delays that are made by the
operator between the observation and the subsequent
button pressing or between button pressings when they
are switched without observation. We may assume that
the “weather conditions” that determine the nonde�
terministic choice also include the factors that affect
the “free will” of the operator thus determining the
time delays between button pressings. This is in agree�
ment with the requirement that the operator must
simulate arbitrary rate of the environment operation.
The operator models the execution of a test program
on a computer. Such a program is nondeterministic
only at a certain level of abstraction, when we neglect
other programs or the hardware affecting its behavior.

2.5. Logs

In the absence of priorities, the possibility of
observing an action after a certain history of interac�
tions is independent of which button enabling this
action is pressed. In the presence of priorities, this is
important because different buttons are associated
with different sets of enabled actions; therefore, the
corresponding predicate can be true when a certain
button is pressed (then, the action can be observed),
and it can be false when another button is pressed
(then, the action cannot be observed). Therefore, we
must keep in memory not only the observations but
also the buttons that were pressed. Hence, the result of
a test experiment is a sequence of actions, refusals, and
buttons. Such a sequence will be called history or log.
If we do not restrict ourselves to safe testing, we also
must include in the log the destruction and diver�
gence; however, the log cannot be continued after

Button switching

Initial state

!x, true ?a, true τ, ?a & ?b ?a, true !y, true

?b, true

Fig. 3.

 Time intervals

1 2 3

?a, true

!x, true

τ, ¬?a τ, ¬?a

?a, true

!y, true

?a, true

!z, true

Fig. 4.

206

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 4 2009

BOURDONOV, KOSSATCHEV

them (much like traces). It is clear that every external
action z in the log is immediately preceded by the but�
ton “P” that enabled this action z ∈ P; every refusal R
is preceded by an ��button “R.” Whether two buttons
may follow one the other in succession depends on
whether or not button switching is allowed.

For the given �/��semantics, the logs are called
�/��logs. Let us define them more formally.

Consider an LTS with the predicates S. For the set

of enabled actions P, the transition s s' is said to
be P�executable if its predicate is true, that is, if π(P) =
true. A τ�route is said to be P�executable for the set of
enabled actions P if all its transitions are P�executable.

The empty �/��log ends at the states that can be
attained from the initial state using �executable
τ�routes, that is, if no buttons are pressed after starting
the machine. Let the �/��log end in the set of states
S after σ. Consider various variants of continuing such
an �/��log. We assume that the �/��log does not
end by the destruction or divergence because there can
be no continuation after them.

Continuation by the button P, where P ∈ � ∪ �.
If button switching is allowed, such a continuation is
always possible. Otherwise, the �/��log must not
end in a button. Switching is interpreted as releasing
one button and then pressing another one. Therefore,
the implementation can first execute any �execut�
able τ�route beginning at a state in S after σ and then
continue the execution by any P�executable τ�route.
The set of endpoints of such routes forms the set of
states S after σ ⋅ 〈“P”〉. Note that, if the log was not
ended by a button, the endpoints of all the �execut�
able τ�routes already belong to S after σ.

Continuation by an external action z. Such a con�
tinuation is possible only if the �/��log has the form
σ ⋅ 〈“P”〉, that is, if it ends by a button P enabling this
action (z ∈ P). The action z is observed when a P�exe�
cutable transition by z from the state after the preced�

ing �/��log is performed; this is a transition s s',
where s ∈ (S after σ ⋅ 〈“P”〉) and π(P) = true. As a
result of such a transition, the button is automatically
released, and �executable τ�routes can be executed
until there is destruction, or a button (the same or
another) is pressed, or the operator turns the machine
off thus terminating the test session. The set of end�
points of these τ�routes forms the set S after σ ⋅ 〈“P”, z〉.
Note that the states at which a refusal was observed are
also included in this set (for the empty τ�route).

Continuation by the ��refusal P. Such a continu�
ation is possible only if the �/��log has the form σ ⋅
〈“P ”〉. The refusal of P occurs in the state s ∈ (S after
σ ⋅ 〈“P”〉) in which the machine stopping condition is
fulfilled: for every transition (by any action including τ

and γ) s s', it must be π(P) = false. After the
refusal, the button is released, and the implementation

z, π

0

0

0

z, π

0

z, π

can execute an �executable τ�route beginning in one
of the states in which the refusal was observed. The set
of endpoints of these τ�routes forms the set S after σ ⋅
〈“P ”, P〉. Note that the states in which the refusal was
observed also belong to this set.

Continuation by the destruction γ. Such a continu�

ation is possible only if the transition s s' is P�exe�
cutable in a state s ∈ (S after σ) if the �/��log ends
by the button P (no observation has been made yet and
the button P continues to be active) or if this transition
is �executable (no buttons are active after the obser�
vation). Since there is no continuation after the
destruction, we are not interested in the set of states
after this kind of continuation.

Continuation by the divergence ∆. Since the diver�
gence is not harmful per se but an attempt to quit it is
harmful, we are interested only in such kind of diver�
gences that are executable when a button P is pressed.
Such kind of divergence occurs after an �/��log of
the form σ ⋅ 〈“P”〉 if there is an endless P�executable
τ�route starting at a state in S after σ ⋅ 〈“P”〉 (it is clear
that it is sufficient to assume that this route begins in S
after σ). In this case, the symbol ∆ continues the
�/��log after the button P. Since there is no contin�
uation after the divergence, we are not interested in the
set of states after this kind of continuation.

Much like traces, we define complete logs or F�logs as
�/��logs for � = �(L) and, respectively, for � =
when any subset of external actions is an ��button.
The set of F�logs LTS S will be denoted by the same
symbol as the set of F�traces F(S) because we will only
consider logs rather than traces. An �/��log of an
LTS is an F�log of this system in which there are only
buttons from � and � and only ��refusals.

2.6. Safety and Conformance without Button Switching

Since the executability of transitions of the LTS
model with priorities depends on predicates defined
on these transitions, the button safety relations in the
implementation (safe in) and in the specification (safe
by) are changed.

If the button switching is not allowed, the relations
safe in and safe by are defined almost in the same man�
ner as for the machines without priorities except for
the following points: instead of ��traces, �/��logs
are considered, the safety or harmfulness of a button is
defined only after the �/��logs that do not end by a
button, continuation by an external action depends on
the button, divergence is possible only after a button,
and no destruction is possible not only after an action
but also after a refusal (for an ��button) and immedi�
ately after a button is pressed.

Here is the definition of safety in the implementa�
tion without button switching:

0

z, π

0

0

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 4 2009

SYSTEMS WITH PRIORITIES 207

The requirements for the safety relation in the
specification without button switching are as follows:
∀R ∈ � ∀z ∈ L ∀Q ∈ �,

(1) R safe1 by S after σ ⇔ R safeγ∆ in S after σ,
(2) ∃T ∈ �T safeγ∆ in S after σ & σ ⋅ 〈“T”, z〉 ∈

F(S) ⇒ ∃P ∈ � ∪ � P safe1by S after σ & σ ⋅ 〈“P”, z〉 ∈
F(S),

(3) Q safe1by S after σ ⇒ Q safeγ∆ in S after σ
.

The button safety relations in the implementation
and in the specification provide a basis for defining safe
actions, safe �/��logs Safe1In(I) and Safe1By(S), the
safety hypothesis, and the safety conformance much
like it was done for the traces in the case of the
machines without priorities. The differences are as fol�
lows:

(1) In the definition of safety of �/��logs and in
the safety hypothesis, one must use the log 〈γ〉 rather
than the trace 〈γ〉; that is, this definition involves the
destruction that is executable without pressing any
buttons (�executable):

(2) In the definition of the set of observations that
can be obtained over the model T by pressing the but�
ton P after the trace σ, one must use the continuation
of the �/��log by a button and by an observation
rather than the continuation of the trace by an obser�
vation:

P safeγ in I after σ =def σ “P” γ,〈 〉⋅ F I()∉

& u∀ P σ∈ “P” u γ, ,〈 〉⋅ F I()∉

& P �∈ σ “P” P γ, ,〈 〉⋅ F I()∉⇒().

P safeγ∆ in I after σ =def P safeγ in I

after σ & σ “P” ∆,〈 〉⋅ F I().∉

P safe1 in I after σ =def P safeγ∆ in I

after σ & P �∈ σ “P” P,〈 〉⋅ F I()∉⇒().

& v∃ Q σ “Q” v,〈 〉⋅ F S()∈ ∈

0

I safe for S =def (“0” γ,〈 〉 F S()∉

⇒ “0” γ,〈 〉 F I())∉

& σ Safe1By S()∀ Safe1In I()∩

P � �(P safe1by S after σ∪∈∀

⇒ P safe1 in I after σ).

obs σ P T, ,() =def {u σ “P” γ,〈 〉⋅ F T()∈

& u P∈ u = P & P �∈∨() }.

I saco S =def I safe for S

& σ∀ Safe1By S()∈ Safe1In I()∩

P safe1by S after σ∀

obs σ P I, ,() obc σ P S, ,().⊆

2.7. Safety and Conformance with Button Switching

If button switching is allowed, we can evade the
prohibition of unobservable refusals after pressing a
��button Q and the prohibition of divergence simply
by switching the button Q to another button P. The
safety relations are modified accordingly: the doubly
underscored clauses in the definitions of safe1in and
safe1by are removed, and only the conditions concern�
ing destruction remain:

Here are the requirements for the safety relation in the
specification with button switching: ∀R ∈ � ∀z ∈ L
∀Q ∈ �,

(1) R safe2 by S after σ ⇔ R safeγ in S after σ,

(2) ∃T ∈ �T safeγ in S after σ & σ ⋅ 〈“T”, z〉 ∈ F(S) ⇒
∃P ∈ � ∪ � P safe2 by S after σ & σ ⋅ 〈“P”, z〉 ∈ F(S),

(3) Q safe2 by S after σ ⇒ Q safeγ in S after σ.
There is a question: how many times can the oper�

ator switch buttons? We must take into account that
the ultimate aim of pressing buttons is making an
observation. Since we consider finite (in terms of the
execution time) tests, the chain of button switching is
finite; that is, it must end by pressing a button after
which the operator expects a guaranteed observation,
which, in particular, makes it possible to end the test�
ing session. This means that all the buttons in the
chain except for the last one are safe with respect to the
relation safe2in/by after the log prefix that immediately
precedes them, and the last button is safe with respect
to safe2 in/by:

Therefore, the safety relation with the subscript 2
defines the continuation of the log by a button that
does not cause destruction; the safety relation with the
subscript 1 additionally prohibits the unobservable
refusal and divergence. It is clear that any 2�safe but�
ton is also 1�safe; however, the converse is generally
not true. For a button to be completely safe, it must be
1�safe, and it must be possible to place a finite chain of
1�safe buttons after it and then a 2�safe button that
guarantees an observation.

P safe2in I after σ

=def P safeγin I after σ.

P safe in I after σ

=def P0∃ P P1 … Pn � �∪∈, , ,=

& i∀ 0…n 1Pi safe2 in I–=

after σ “P0” “P1” … “Pi 1– ”, , ,〈 〉⋅

& Pn safe1 in I after σ “P0” “P1” … “Pn 1– ”, , ,〈 〉 ,⋅

P safe by S after σ =def P0∃ P P1 … Pn, , ,=

∈ � � & i∀∪ 0…n 1 Pi safe2 by S–=

after σ “P0” “P1” … “Pi 1– ”, , ,〈 〉⋅

& Pn safe1 by S after σ “P0” “P1” … “Pn 1– ”, , ,〈 〉 .⋅

208

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 4 2009

BOURDONOV, KOSSATCHEV

On the basis of the button safety relations in the
implementation and in the specification, safe actions,
safe logs, the safety hypothesis, and the safe conform�
ance are defined as it was done in the case when button
switching was not allowed. The differences are as fol�
lows.

(1) In the safety hypothesis, the i�safety of a button
in the specification must imply the i�safety of this but�
ton in the implementation (here, i = 1, 2):

(2) In the definition of conformance, the nesting of
sets is required only after 1�safe logs, that is, after the
logs ending in a 1�safe button:

2.8. Parallel Composition and Test Generation

Consider the composition of two LTSs with priori�
ties I and T over the alphabets A and B, respectively.
Consider any composite state it. In the composition,
the set of enabled external actions for the LTS I in the
state i is the set of opposite external actions for which
there are transitions from the state t of the other LTS T
and conversely. Therefore, we first need to recalculate
the predicates of transitions from these states. Since
the composition operator is commutative (up to an
isomorphism, that is, up to the names of states it and
ti), it is sufficient to consider only the recalculation of
the predicates in one of the LTSs, for example, in I.

For the transition i i ', we must substitute a con�
stant expression of each variable corresponding to the
synchronous action z ∈ A ∩ into the predicate πi

interpreted as a Boolean function of Boolean action

variables. If there is the transition t t', then true is
substituted; otherwise, the substituted value is false.
Thus, we obtain a new predicate πit . Note that the
evaluation of the new predicate on the transition from
the state i depends on the state t with which it is com�
posed; that is, the predicates πit for different states t are
different.

The new predicate πit can be not a constant because
it can include variables corresponding to asynchro�
nous external actions belonging to A\ . Furthermore,
now this predicate must be considered over the com�
posite alphabet A ↑↓ B = (A\) ∪ (B/), although it

I safe for S =def (“0”, γ〈 〉 F S()∉

⇒ “0”, γ〈 〉 F I())∉

& σ∀ SafeBy S()∈ SafeIn I()∩

P∀ � �(P safei by S after σ∪∈

⇒ P safei in I after σ).

I saco S =def I safe for S

& σ∀ SafeBy S() SafeIn I()∩∈

P safe1by S after σ∀

obs σ P I, ,() obs σ P S, ,().⊆

z, πi

B

z, πt

B

B A

actually depends only on the variables corresponding
to the actions in (A\).

Any asynchronous transition corresponds to a cer�
tain (unique) transition in one of the LTS operands.
It can be executed if the inherited transition is execut�
able. Therefore, the predicate of an asynchronous
composite transition is identical to the predicate of the
inherited transition after the recalculation; that is, it is
identical to the predicate πit rather than to the original
predicate πi . A synchronous (or simultaneous) transi�
tion is the simultaneous execution of the transitions in
each LTS operand. It can be performed if both oper�
ands (transitions) are executable. Therefore, the pred�
icate of the synchronous composite transition is equal
to the composition of the recalculated transition oper�
ands πit & πti . By and large, the composite transitions
are generated by the following inference rules:

(1*) z ∈ {τ, γ} ∪ A\ & i i ' � it i 't,
(2*) z ∈ {τ, γ} ∪ B\ & t t ' � it it ',

(3*) z ∈ A ∩ & i i ' & t t ' � it i 't '.
As in the case of a machine without priorities, test�

ing is interpreted as the composition of the LTS imple�
mentation I over the alphabet A and the LTS test T over
the opposite alphabet B = . We also assume that the
test does not include destruction. The transitions cor�
responding to the external actions do not have predi�
cates in the test; more precisely, their predicates are
identically true. Therefore, all the transitions in the
composite LTS (they are only τ� or γ�transitions) are
the recalculated predicates of the implementation
transitions. Since the composite alphabet is empty,
these predicates are constants (true of false).

To detect refusals in the test (but not in the imple�
mentation!), θ�transitions with identically true predi�
cates are also used. If button switching is not allowed,
such a transition is performed if and only if no other
transitions are executable:

(4*) t t ' & Deadlock(i, t) � it it ';

here, Deadlock(i, t) = i & i & t &

(∀z ∈ A ∩ i ∨ t).
If button switching is allowed, it is represented in

the test as a τ�transition “P” “Q” from the state
corresponding to the button P to the state correspond�
ing to the other button Q. A θ�transition is defined in
the state “P” if P is an ��button. It is required that the
θ�transition could be performed independently of the

τ�transition of the button switching “P” “Q”; for

that purpose, the doubly underscored condition t
is removed.

We will consider only safe implementations and
safe tests. Here, by a safe test, we mean a test such that
its interaction with any safe implementation does not

B

B z, πi z, πit

A z, πt z, πti

B z, πi z, πt τ, πit & πti

A

θ τ

τ, πit γ, πit τ

B
z, πit z

τ

τ

τ

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 4 2009

SYSTEMS WITH PRIORITIES 209

cause destruction, divergence that is executable after
pressing a button, and deadlocks. Such tests are con�
structed on the basis of the safe specification logs.
A test log is either a safe specification log or a safe
specification log ending by a button σ ⋅ 〈“P”〉 that is
continued by an observation (an action z ∈ P or an
��refusal of P) that, in turn, is not included in the
specification after the log σ ⋅ 〈“P”〉. We consider only
the tests that terminate in a finite amount of time; they
are called finite tests. For a safe LTS test, this implies
that it does not contain infinite routes.

In the composition of the test with the implemen�
tation, all the predicates are constants; therefore, we
can remove all the transitions having false predicates.
If the implementation is safe and the test is finite and
safe, the remaining γ�transitions are unreachable.
As for the machines without priorities, the test execu�
tion corresponds to the passage of the τ�route begin�
ning at the initial state of the composition and ending
in the composite state it, where t is the terminal state of
the test assigned a verdict pass or fail. Note that the
composition can contain infinite routes; however, they
cannot be passed when testing. Indeed, since the test is
finite, the state of the test does not change in such a
route, and only asynchronous τ�transitions of the
implementation can follow. In the course of testing,
the operator always gets an observation in a finite
amount of time, presses or switches a button, which
means the change of the test state and, therefore, the
termination of the execution of an infinite chain of
τ�transitions of the implementation. Here, we use the
fact that only a finite chain of transitions can be exe�
cuted in finite time. The operator may also turn the
machine off (stop the testing), which happens in a
finite amount of time after observation.

The test must interact with the implementation
according to the same �/��semantics in which the
corresponding specification was considered. For that
reason, in each state of the test, the set of actions for
which transitions from it are defined must correspond
to an �� or a ��button and a θ�transition must be
additionally defined for the ��button. We assumed
that, immediately after turning the machine on before
the first button is pressed, after any observation, and
when buttons are switched, �executable τ� and
γ�transitions can be executed in the implementation.
This assumption is a part of the interaction semantics
that must be adhered to by the test. Therefore, we must
include in the implementation additional empty states
corresponding to the situation when no buttons are
pressed. These test states must enable the implemen�
tation to execute �executable τ�transitions. When all
the buttons are released, the set of enabled actions is
empty; therefore, only τ�transitions can be defined in
the empty state. Ultimately, these τ�transitions must
lead to nonempty states corresponding to a certain
button (the empty ��button corresponds to the state
in which a θ�transition is defined, and the empty

0

0

��button was disabled). Such an empty button has to
be the initial state and the poststate of each transition
with respect to the observation if this is not a terminal
state.

A primitive test is constructed in the same way as in
the case of the machine without priorities. However,
there are three differences. (1) In the absence of prior�
ities, we constructed a test on the basis of a satrace by
converting it into an �/��log; now, we immediately
begin with a safe �/��log. (2) If the log includes
switching from the button P to the button Q, then the

τ�transition “P” “Q” is performed in the test.
(3) Empty states are added. As before, the set of all
primitive tests is complete, and any strict test can be
replaced by a union of primitive tests that detects the
same bugs.

2.9. Examples of Setting Priorities

Let us show how the priorities can be set using
predicates on the transitions of an LTS model for the
examples discussed in the Introduction.

Divergence exit. The transition corresponding to
an external action has an identically true predicate,
and the τ�transition’s predicate π is true only on the
empty subset of the alphabet of external actions:
π(U) = (U =).

Oscillation exit (the priority of the input over the
output). The transition corresponding to an input has
an identically true predicate, and the transition corre�
sponding to a response has a predicate π that is true on
any subset of actions that does not include inputs:
π(U) = (∀?x ?x ∉ U). Usually, it is also assumed that
the internal activity has a lower priority than the input
reception; that is the τ�transition’s predicate is the
same as that of the transition corresponding to the
response.

Priority of the output over the input in infinite
queues. The transition corresponding to a response has
an identically true predicate, and the transition corre�
sponding to an input has a predicate π that is true on
any subset of actions that does not include responses:
π(U) = (∀!y !y ∉ U). As in the preceding case, the
τ�transition’s predicate is the same as that of the tran�
sition corresponding to the input.

Interrupting a chain of actions. The transition cor�
responding to the command cancel has an identically
true predicate, and all the other transitions have the
predicate π that is true on any subset of actions that
does not contain cancel: π(U) = (cancel ∉ U).

Priority handling of inputs. The set of inputs is
decomposed into nonoverlapping subsets X1, X2, … so
that the inputs in the sets with a greater index have a
higher priority. On the transition corresponding to the
input from Xi, the predicate π is true on any subset of
actions that does not contain inputs from the sets with
a greater index: πi(U) = (∀j > i U ∩ Xj =). It is also

τ

0

0

210

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 4 2009

BOURDONOV, KOSSATCHEV

possible to differentiate the transitions from a certain
state corresponding to the same input depending on
the presence or absence of less priority inputs. For
example, a transition corresponding to an input from
Xi is performed if the environment offers less priority

inputs: πi1(U) = πi(U) & (∃j < i U ∩ Xj ≠); such a
behavior is based on the assumption that this offer
remains and it will be possible to handle these inputs
later. Another transition is performed if there are no less

priority inputs: πi2(U) = πi(U) & (∀j < i U ∩ Xj =). If a
state has no transitions corresponding to inputs, such
kind of differentiation is also possible between the
transitions corresponding to responses and (or)
τ�transitions.

More exotic priorities can also be implemented. An
example is a cyclic priority of moving in different
directions: one goes to the North if it is impossible to
go to the East; one goes to the East if it is impossible to
go to the South; one goes to the South if it is impossi�
ble to go to the West; and one goes to the West if it is
impossible to go to the North. If all the four directions
are allowed, any of them may be chosen. Except for
this case, only the opposite directions have the same
priority when the two other directions are not allowed.
For example, the predicate of moving to the North is
as follows: πNorth(U) = (East ∉ U ∨ U = {North, East,
South, West}). Similarly, the predicates of moving to
the East, South, and West are constructed.

0

0

3. CONCLUSIONS

One can consider semantics in which, after the
machine is turned on, after observations, and after
button switching, the execution of τ� and γ�actions
can be disabled by the implementation even when they
are �executable. One can assume that, immediately
after turning on and after making an observation, the
machine stops and can execute actions only after a
button is pressed. Furthermore, button switching is
not interpreted as releasing the first button (with
enabling �executable τ� and γ�actions) and then
pressing the second button. In other words, after the
machine is turned on, after an observation, and
between two buttons when they are switched, there is
no “empty” interval. Such kind of semantics obviously
assumes enhanced testing possibilities than the weak
semantics considered in this paper. These semantics
have different requirements for safety and conform�
ance.

Any behavior that can be observed under the strong
semantics can also be observed under the weak one—
it is sufficient to find appropriate “weather condi�
tions” in which the operator has time to press or switch
a button sufficiently quickly. The converse is also true:
the behavior observed under the weak semantics can
also be observed under the strong semantics if an
empty button is added and pressed. However, the
safety conditions for these semantics are different.
Under the weak semantics, we must take into account
that τ� and γ�actions can be performed (in the pres�
ence of priorities, they must be �executable) after an

0

0

0

“A”

“B”

“C”

fail

fail

fail

fail

pass

pass

pass

pass

pass

θ

b

c

σ = 〈“A”, A, “B”, b, “C”, c〉 where

A, B ∈ �, C ∈ �.

The external action has the subscript
“good” if it is included in the
specification after the log prefix;
otherwise, it has the subscript “bad.”
Dashed lines show mutually exclusive
θ�transitions beginning in the same
state. The subscripts “good” and “bad”
denote the presence and, respectively,
absence of the continuation of the log

prefix by the corresponding ��refusal.

Small shaded circles denote empty
states

abad ∈ A agood ∈ A

bbad ∈ B bgood ∈ Bbbad ∈ B bgood ∈ B

cbad ∈ C cgood ∈ C

θbad θgood

τ

τ

τ

Fig. 5.

A primitive test for the safe �/� history σ

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 4 2009

SYSTEMS WITH PRIORITIES 211

observation by the button P, and these actions can lead
to the divergence or destruction; therefore, this button
is not safe. Under the strong semantics, we can simply
avoid pressing the empty button in this situation after
such an observation because it is not safe, and the but�
ton P will be safe. This also implies the corresponding
differences in conformance: an implementation can
be safe under the weak semantics and, therefore, non�
conformal; under the strong semantics it can be safe
and conformal. Under the same safety conditions (for
example, when the specification does not stipulate the
divergence, destruction, and unobservable refusals)
and in the presence of priorities, the strong semantics
imposes higher requirements for conformance. This is
explained by the fact that we obtain the possibility to
distinguish between the implementations in which an
action b enabled by the button B is executed immedi�
ately after the action a and the implementations in
which the action b is executed after the intermediate

�executable but not B�executable τ�activity.

REFERENCES

1. van Glabbeek, R.J., The Linear Time—Branching
Time Spectrum, Proc. of CONCUR'93, Baeten, J.C.M.
and Klop, J.W., Eds., Lect. Notes Comput. Sci., 1990,
vol. 458, pp. 278–297.

2. Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V.,
Formalization of Test Experiments, Programmirovanie,
2007, no. 5 [Programming Comput. Software (Engl.
Transl.), 2007, vol. 33, no. 5, pp. 239–260].

3. Bourdonov, I.B., Conformance Theory for the Func�
tional Testing of Software Systems Based on Formal
Models, Doctoral (Math.) Dissertation, Moscow: Insti�
tute for System Programming, Russian Academy of
Sciences, 2008; http://www.ispras.ru/~RedVerst/Red�
Verst/Publications/TR�01�2007.pdf.

4. Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V.,
Teoriya sootvetstviya dlya system s blokirovkami i
razrusheniem (Conformance Theory for Systems with
Refusals and Destruction, Moscow: Nauka, 2008.

5. van Glabbeek, R.J., The Linear Time—Branching
Time Spectrum, Proc. of CONCUR'90, Baeten, J.C.M.

and Klop, J.W., Eds., Lect. Notes Comput. Sci., 1990,
vol. 458, pp. 278–297.

6. Milner, R., Modal Characterization of Observable
Machine Behavior, Proc. CAAP, 1981, Astesiano, G.
and Bohm, C., Eds., Lect. Notes Comput. Sci., 1981,
vol. 112, pp. 25–34.

7. Petrenko, A., Yevstushenko, N., and Huo, J.L., Testing
Transition Systems with Input and Output Testers,
Proc. 15th Int. Conf. on Communicating Systems,
TestCom'2003, Sophia, Antipolis, France, pp. 129–145.

8. Bourdonov, I.B. and Kossatchev, A.S., Testing Compo�
nents of a Distributed System, Trudy Vserossiiskoi kon�
ferentsii nauchnyi servis v seti Internet (Proc. of the All�
Russia Conf. on the Research Services on the Internet),
Moscow: Mosk. Gos. Univ., 2005, pp. 63–65.

9. Bourdonov, I.B. and Kossatchev, A.S., Verification of
the Composition of a Distributed System, Trudy Vse�
rossiiskoi konferentsii nauchnyi servis v seti Internet
(Proc. of the All�Russia Conf. on the Research Services
on the Internet), Moscow: Mosk. Gos. Univ., 2005,
pp. 67–69.

10. Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V.,
Formal Conformance Testing of Systems with Refused
Inputs and Forbidden Actions, Proc. of MBT, Vienna,
2006.

11. Bourdonov, I.B., Kossatchev, A.S., and Kuliamin, V.V.,
“Security, Verification, and Conformance Theory,” in
Materialy vtoroi mezhdunarodnoi nauchnoi konferentsii
po problemam bezopasnosti I protivideistviya terrorizmu
(Proc. of the Second Int. Conf. on Security Problems
and Terrorism Counteractions), Moscow: MNTsMO,
2007.

12. Heerink, L. and Tretmans, J., Refusal Testing for
Classes of Transition Systems with Inputs and Outputs,
in Formal Description Techniques and Protocol Specifi�
cation, Testing and Verification, Chapman & Hill, 1997.

13. Heerink, L., Ins and Outs in Refusal Testing, PhD The�
sis, Enschede, Netherlands: Univ. of Twente, 1998.

14. Lestiennes, G. and Gaudel, M.�C., Test de systemes
reactifs non receptifs, J. Europ. des Systemes Automa�
tises, Modelisation des Systemes Reactifs, 2005,
pp. 255–270.

15. Milner, R., A Calculus of Communicating Systems,
Lect. Notes Comput. Sci., 1980, vol. 92.

16. Milner, R., Communication and Concurrency, Prentice�
Hall, 1989.

0

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

