
I.Burdonov, A. Kosachev, P.Iakovenko.
Virtualization-based separation of privilege: working with sensitive data in untrusted
environment.
Proceedings of the 1st EuroSys Workshop on Virtualization Technology for Dependable
Systems,2009, pp.1-6.
6 стр.

 1

Virtualization-based separation of privilege:
working with sensitive data in untrusted
environment
I. BURDONOV, A. KOSACHEV, AND P. IAKOVENKO
Institute for System Programming, Moscow, Russia

Contemporary commodity operating systems are too big and do not inspire trust in their security and reliability.
Still they are used for processing sensitive data due to vast amount of legacy software and good support for
virtually all hardware devices. Common approaches used to ensure sensitive data protection are either too strict
or not reliable.

In this article we propose virtualization-based approach for preventing sensitive data leaks from a computer
running untrusted commodity OS without sacrificing public network connectivity, computer usability and
performance. It’s based on separating privileges between two virtual machines: public VM that has unlimited
network access and private (isolated) VM that is used for processing sensitive data. Virtual machine monitor
uses public VM to provide transparent access to public resources for selected trusted applications running inside
private VM on a system call level.

Proposed security architecture allows using one and the same untrusted OS on both virtual machines without
need to encrypt any data. However is poses a challenge of enforcing dynamic protection over trusted appli-
cations running in potentially compromised OS. We investigate this problem and provide our solution for it.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection; K.6.5 [Management
of Computing and Information Systems]: Security and Protection
General Terms: Design, Security
Additional Key Words and Phrases: security architecture, data leak prevention, memory protection,
disaggregation, virtualization, virtual machine monitor, VMM, hypervisor
__

1. INTRODUCTION

Computer and internet technologies constantly evolve their spread into various parts of

human life improving accessibility and efficiency of services. The downside of online

banking, shopping, e-government and other similar services is that personal data and

other private information are exposed to the computer used to access or provide the

service. This poses the question of how much we can trust potentially compromised

system software in preserving confidential data privacy and integrity. Commodity

operating systems are rather big and not sufficiently reliable and secure due to monolithic

kernel architecture [Tanenbaum et al. 2006] meaning that exploiting one kernel

vulnerability may provide malware with unrestricted access to system resources.

I.Burdonov, A. Kosachev, P.Iakovenko.
Virtualization-based separation of privilege: working with sensitive data in untrusted
environment.
Proceedings of the 1st EuroSys Workshop on Virtualization Technology for Dependable
Systems,2009, pp.1-6.
6 стр.

 2

Computer physical isolation from public network (Internet) or even complete network

disconnection does help to protect sensitive data leaks but such drastic approach is not

always possible and usually not convenient. Typically controlled network access is

achieved with the help of personal (application) firewalls that may be used to block

network access for all but limited set of trusted applications. However firewalls operate

on the same hardware privilege level as OS kernel and malware infecting kernel may

bypass them [Tereshkin 2006].

Reliability of privacy-preserving system may be improved if implementing it on a

higher privilege level than OS kernel. Thanks to virtualization technology such solution

may be realized for legacy OS. Hardware virtualization support in modern x86 processors

allows realization of relatively tiny hypervisor (eg. Xen [Barham et al. 2003] size is about

200 KLOC) comparing to the kernel size of contemporary consumer OS. This makes

hypervisor a perfect place for security systems since removing kernel from application

trusted computing base (TCB) and substituting it with hypervisor would dramatically

reduce TCB size.

We present novel approach for protecting privacy of confidential data based on the

separation of privileges between two virtual machines (VM): private and public, - both

running commodity untrusted OS. All sensitive data and applications that work with it are

located inside private VM. OS in private VM has unrestricted access to these data but

cannot transmit it outside because private VM is physically isolated from public network,

in fact it may not have network interface at all. In turn public VM has unlimited access to

public resources and may be connected to Internet. However OS in public VM may not

access sensitive data located in private VM due to isolation of virtual machines enforced

by hypervisor. Figure 1 provides architectural view on our approach.

I.Burdonov, A. Kosachev, P.Iakovenko.
Virtualization-based separation of privilege: working with sensitive data in untrusted
environment.
Proceedings of the 1st EuroSys Workshop on Virtualization Technology for Dependable
Systems,2009, pp.1-6.
6 стр.

 3

Linux kernel

Private (isolated)
VM

trusted
process

Protection
enforced by
hypervisorLinux

Hypervisor

Internet

Public VM

Linux

Inter-VM
channel for
trusted
applications

Access NOT
allowed

Access
granted

sensitive data

Figure 1. Security architecture based on privilege separation between two VM

Hypervisor maintains secure channel between virtual machines and grants access to it

to selected applications running in private VM. This channel provides trusted applications

a way to access public (Internet) resources which normally are not visible from inside

private VM. Hypervisor intercepts system calls executed by trusted processes in private

VM and forwards calls related to public resources for servicing to public VM. All other

system calls including process and memory management are serviced locally in private

VM. The channel may be implemented by sharing memory pages between virtual

machines (eg. using Xen grant tables) and restricting writes to these pages from untrusted

contexts in private VM, although the particular implementation of such channel is outside

the scope of this article.

The advantage of our approach is that sensitive data may be stored in private VM in

non-encrypted form and processed by legacy software without performance loss caused

by on-the-fly encryption. However the only obstacle that blocks kernel-level malware

from communicating stolen sensitive data to remote computer is lack of access to inter-

VM channel that is the only path to outer world. Access to the channel is granted to

I.Burdonov, A. Kosachev, P.Iakovenko.
Virtualization-based separation of privilege: working with sensitive data in untrusted
environment.
Proceedings of the 1st EuroSys Workshop on Virtualization Technology for Dependable
Systems,2009, pp.1-6.
6 стр.

 4

trusted processes only so it’s vital to protect execution of trusted process from attacks

performed by kernel malware.

In this article we describe hypervisor-based mechanism for protecting process

execution in untrusted environment. It watches over process memory and registers and

detects attempts to execute malicious code in the context of guarded process before even

the first byte of the code will be executed. The presented mechanism is based on the

hardware virtualization extensions available in modern x86 family processors. We

assume that private VM runs under Linux, however we believe that our approach may be

adapted for Windows.

2. GUARDED PROGRAM EXECUTION

Hypervisor realizes protection mechanisms basing on guarded program execution model.

In this model program P is considered as an active entity that transforms its states. State S

is a snapshot of process virtual memory (containing code, stack, heap, etc) and registers.

Program execution is interrupted regularly transferring control to OS kernel to serve

interrupt or other system event from the finite set of events E so the overall program

execution is comprised of ordered set of non-interruptible slices of execution. The

number of slices N varies between program executions due to asynchrony of external

interrupts. Program state at the interruption point is called output state)(OS while

program state at the moment when it resumes execution is called input state)(IS . Then

particular execution of program P may be described by a mapping

Ν≤≤0 ,→ kESS k
O

k),()((I)
k where k denotes the index of execution slice. The initial

input state)(
0

IS is constructed by OS program loader while final output state)(O
NS

corresponds to the state in which process calls exit() system call or in which process

receives signal terminating its execution.

OS kernel behavior may be described by mapping)(
1

(O)
k),(I

kk SES +→ meaning that

kernel services event kE and constructs new input state for the interrupted program.

I.Burdonov, A. Kosachev, P.Iakovenko.
Virtualization-based separation of privilege: working with sensitive data in untrusted
environment.
Proceedings of the 1st EuroSys Workshop on Virtualization Technology for Dependable
Systems,2009, pp.1-6.
6 стр.

 5

Assuming interrupt is serviced properly relations between current output state)(O
kS and

new input state)(
1

I
kS + produced by kernel are well defined and typically depend on the

event kind only. The pair of output state and event is used to construct constraint on the

next input state. For example if kE is caused by read() system call then differences

between)(O
kS and)(

1
I

kS + are allowed only within the provided buffer and contents of eax

register. Some events like registration of signal handler that adds new valid return (from

interrupt) point influence constraints for all subsequent input states. Constraint for the

initial input state is constructed from executable file contents basing on loaded segments

and starting execution address and externally provided addresses and sizes of heap and

stack.

Hypervisor guards process integrity by intercepting interrupt event kE , analyzing

program output state)(O
kS and constructing constraint 1+kC for the next input state)(

1
I

kS +

. Constraints are stored in the hypervisor private memory area. Whenever OS kernel

finishes servicing interrupt and transfers control back to the program, hypervisor

intercepts this event and validates actual program state against the constraint. Failing this

check means that process memory or registers (eg. return address) have been corrupted

while it was de-scheduled and program may not be considered as trusted any longer.

Hypervisor rejects all subsequent attempts to access public resources (through the

channel) made from the context of this process.

The implementation of guarded program execution model poses several challenges.

First, hypervisor should be able to intercept all events in the VM that interrupt program

execution and intercept control transfers from OS kernel to process after interrupt has

been serviced. Second, it should provide efficient mechanism for evaluating and

validating constraints. Finally, it should have means of identifying current context inside

VM in which public resource is accessed. In next sections we will describe our solution

for all these tasks and provide efficient approach for lazy evaluation and validation of

constraints.

I.Burdonov, A. Kosachev, P.Iakovenko.
Virtualization-based separation of privilege: working with sensitive data in untrusted
environment.
Proceedings of the 1st EuroSys Workshop on Virtualization Technology for Dependable
Systems,2009, pp.1-6.
6 стр.

 6

3. INTERCEPTING EVENTS INSIDE VIRTUAL MACHINE

Three groups of events are of interest to the hypervisor: process interruptions, control

transfers from kernel to process and memory accesses both to particular virtual and

physical pages. Hypervisor uses hardware virtualization to intercept and process these

events.

Process execution is interrupted whenever event that requires attention from OS

happens inside VM. It may be hardware or software interrupt, exception or system call.

All of these events including system calls that are executed using software interrupts may

be trapped by properly filling bit mask describing intercepted events in virtual machine

control block (VMCB). VMCB describes VM state and must be provided to CPU upon

starting or resuming VM execution. Event is intercepted before process enters kernel

mode so hypervisor may immediately take snapshot of memory and registers contents.

Hypervisor restricts using fast system call mechanism by intercepting and emulating

cpuid, wrmsr and rdmsr instructions.

Hypervisor maps VM physical memory addresses to actual machine addresses using

virtual TLB algorithm [Intel 2008]. There exist two copies of pages tables in computer

memory – guest OS page tables and shadow page tables maintained by hypervisor. Guest

OS freely modifies its page tables but attempt to load them into cr3 register is intercepted

by hypervisor and it loads shadow page tables instead. Whenever hypervisor intercepts

page fault exception it decides whether deliver it to OS (if there is no valid translation in

OS page tables) or update translation in shadow tables.

Hypervisor uses shadow tables to solve several distinct tasks: trap access to specific

virtual page, physical page and control transfer from kernel to user code. Trapping

memory accesses is required for memory integrity preserving algorithm described below.

Whenever process is interrupted hypervisor clears U/S and R/W flags in page directory

entries of shadow tables and sets fresh new TLB tag (ASID in AMD’s terminology) in

VMCB structure. In contrast hypervisor employs one and the same TLB tag for VM

execution in user mode. Such way of using TLB tags provides selective flushing of TLB

entries that correspond to kernel accesses. This assures trapping kernel memory accesses

to every page while minimizing performance impact caused by memory guarding

I.Burdonov, A. Kosachev, P.Iakovenko.
Virtualization-based separation of privilege: working with sensitive data in untrusted
environment.
Proceedings of the 1st EuroSys Workshop on Virtualization Technology for Dependable
Systems,2009, pp.1-6.
6 стр.

 7

mechanism. Clearing R/W flag is another optimization that helps trapping memory write

operations only. U/S flag is cleared to trap execution return to user mode.

4. CONTEXT IDENTIFICATION

The way hypervisor identifies current context depends on whether intercepted event

causes or is caused by switching current privilege level (CPL). This leaves us with three

cases: CPL switches to user level, CPL switches to kernel level and CPL stays at kernel

level.

If CPL switches to user level then hypervisor identifies context in which intercepted

event has happened and binds it to certain process inside VM basing on the overall state

of VM resources namely virtual memory and registers (particularly eip register).

Whenever process is scheduled for execution hypervisor iterates through available

constraints on input states and validates them against current VM state until it finds a

match. If match is found then hypervisor associates currently scheduled process with the

trusted process that owns matched constraint and stores trusted context identifier in own

memory. Mismatching all constraints means that scheduled process may not be trusted.

Stored context identifier is used to distinguish events happened in trusted context

(interruption of trusted process) from untrusted ones. Whenever event happens that

switches CPL to kernel level hypervisor queries this identifier and decides on context

trustworthiness. Finally event that keeps CPL on kernel level by definition happens in

untrusted context.

Hypervisor implements Linux-specific optimization that speedups context

identification. When process is scheduled it validates only registers’ values and virtual

page containing currently executing instruction. Checking other virtual pages is deferred

until that pages are accessed by the process. Such reduced check may result in locating

several matching constraints. To overcome this issue hypervisor lookups Linux kernel

task_struct structure, extracts process identifier and uses it as a key into set of constraints.

Additionally such help from Linux kernel saves hypervisor from iterating through all

available constraints.

Certainly process identifier provided by malicious kernel may not be trusted however

hypervisor uses it only as a hint to lookup constraint. If kernel intentionally provides

I.Burdonov, A. Kosachev, P.Iakovenko.
Virtualization-based separation of privilege: working with sensitive data in untrusted
environment.
Proceedings of the 1st EuroSys Workshop on Virtualization Technology for Dependable
Systems,2009, pp.1-6.
6 стр.

 8

wrong identifier then it will result either in immediate or deferred constraint mismatch.

Deferred mismatch may happen if state of scheduled malicious process equals the state of

trusted process (whose identifier OS uses to cheat hypervisor) in the part that is validated

during reduced check. In this case memory corruption will be detected later on access to

page containing malicious code. In any way guarded memory execution mechanism will

not be compromised.

5. MEMORY INTEGRITY

Hypervisor preserves memory integrity by detecting illegal changes made to process

working memory areas while it was de-scheduled. Working areas are comprised of

virtual memory pages that are accessed during program execution. In the majority of

cases contents of a virtual page in some input state must be exactly the same as in

previous output state; we will describe below cases that legally violate this rule.

Constraints that are enforced at initial virtual page access depend on memory area kind.

Contents of a page containing code and static data are validated at first access against

hash codes calculated beforehand on a separate trusted computer. We require that

executable file doesn’t contain relocatable symbols so its contents are not patched by the

loader. In contrast hypervisor allows heap and stack virtual pages to have arbitrary

contents at first access. Although initial stack contents (command line arguments,

environment variables, auxiliary vectors) are prepared by the loader which is not trusted

we assume that guarded process follows safety programming rules and checks validity of

the input data.

Hypervisor maintains two data structures for efficient memory integrity checking:

memory integrity table MIT : VA (HASH,PA) and access protection table

APT : PA (ID,VA). MIT represents process view on its virtual memory. Whenever

process accesses guarded virtual page it must find it in the same form at it left it during

previous access. This rule may be fulfilled by assuring any of following two conditions.

Either translation of virtual page VA points to the same physical page PA while there

were no external writes to PA since last access. Or VA page contains expected contents

validated by evaluating page hash and comparing it with stored HASH value. Initially

MIT table is filled with hash entries for code and static data pages. Hashing of pages

I.Burdonov, A. Kosachev, P.Iakovenko.
Virtualization-based separation of privilege: working with sensitive data in untrusted
environment.
Proceedings of the 1st EuroSys Workshop on Virtualization Technology for Dependable
Systems,2009, pp.1-6.
6 стр.

 9

modified during process execution is deferred until kernel decides to swap out the page.

Lazy hashing is implemented with the help of APT table which stores modified guarded

pages. Whenever hypervisor detects a write operation on physical page PA that is present

in APT table it lookups identifier ID of the owning process and updates hash value for the

virtual page VA in the corresponding MIT table. Figure 2 shows flowchart for the

memory integrity preserving algorithm. State ERROR corresponds to the detection of

memory corruption.

EXISTS(APT[PA])

No

THIS == APT[PA]

Yes

No

TLBOS[VA].RW ==1

Yes

Yes
MIT[VA].PA == PA No Yes

ERROR

EXISTS(MITTHIS[VA]) No

MITTHIS[VA].HASH == HASH(PA)
OR

HASH(MITTHIS[VA].PA) == HASH(PA)

No

Yes

No

OKOK

OK

#PF

PA is dirty page?
Then find the owner and

hash if necessary

Read-Write access?

Current process is the
owner?

Second-time accessed
page?

Either page is hashed and
then hashes must be equal

OR
hash of prevously used page
should be equal to the hash

of the attached page

OK

Yes

EXISTS(TLBOS[VA])

Yes

Deliver #PF to OSNo

Translation exists for this VA
in the guest OS page tables

Page is linked back to the
previous location

DELETE(APT[MITTHIS[VA].PA])
MITTHIS[VA] := (PA, NULL)

APT[PA] := (THIS, VA)

DELETE(APT[MITTHIS[VA].PA])
MITTHIS[VA] := (PA, NULL)

APT[PA] := (THIS, VA)

(ID, VAID) := APT[PA]
MITID[VAID].HASH := HASH(PA)

DELETE(APT[PA])

Figure 2. Flowchart for memory integrity preserving mechanism.

I.Burdonov, A. Kosachev, P.Iakovenko.
Virtualization-based separation of privilege: working with sensitive data in untrusted
environment.
Proceedings of the 1st EuroSys Workshop on Virtualization Technology for Dependable
Systems,2009, pp.1-6.
6 стр.

 10

The described algorithm protects memory integrity at page granularity. This is too

strict for the cases when kernel legally writes to the user space buffers (eg. passed in

read() system call) or when kernel invokes process-registered signal handlers which

implies saving signal frame on user-space stack. To work around such issues hypervisor

provides support for byte-granularity memory protection. Instead of hashing page

contents virtual pages that require fine-granular memory protection are guarded by saving

exact copies of byte sequences that should stay unchanged within the page. For read()

system call these are the data blocks between page start and buffer start and between

buffer end and page end.

6. RELATED WORKS

Protecting process execution in the commodity potentially compromised OS has been

studied in [Chen et al. 2008] and [Yang and Shin 2008]. Both systems maintain two

views for trusted process virtual memory: opened and encrypted. Depending on the

context in which memory is accessed they present page contents either in original (for the

owner) or encrypted (for the kernel) form.

Chen et al. [2008] and Yang and Shin [2008] also provide mechanisms for reliable

guest OS process identification and control transfer. Other approaches include tracking

changes of hardware virtual address translations [Jones et al. 2006] or accessing guest OS

kernel structures that are known to be present at fixed addresses [Onoue et al. 2008]

The idea of improving reliability and security by disaggregating resources between

separate address spaces is a keynote of microkernel architecture and it gained new wave

of attention with virtualization technology spread. Murray et al. [2008] report on reducing

TCB size in Xen by moving domain bootstrap code from Dom0 to separate DomB

domain and providing RPC-based communication between them. LeVasseur et al. [2004]

restrict driver access to kernel address space by moving driver execution into separate

virtual machines. Ta-Min et al. [2006] present Proxos system that isolates application

from OS on system call level by executing application code in separate VM which is

controlled by trusted OS.

Recent efforts in preventing execution of malicious code include Manitou [Litty and

Lie 2006] and NICKLE [Riley et al. 2008] systems. Manitou restricts executing code

I.Burdonov, A. Kosachev, P.Iakovenko.
Virtualization-based separation of privilege: working with sensitive data in untrusted
environment.
Proceedings of the 1st EuroSys Workshop on Virtualization Technology for Dependable
Systems,2009, pp.1-6.
6 стр.

 11

from unauthenticated memory pages. Before executing instruction from a page it

evaluates its hash and compares it against known hashes for this page. Page is considered

corrupted if no match is found. NICKLE prevents execution of malicious code in kernel

mode by copying authenticated kernel code to shadow memory located inside hypervisor

memory area. Every guest OS kernel instruction fetch is transparently redirected to

shadow memory which contains authenticated code only.

7. CONCLUSION

We have presented novel approach for preventing leaks of sensitive data based on

virtualization technology. Our approach differs from the existing solutions in the reduced

set of requirements. We allow computer to be connected to Internet and run commodity

untrusted OS while sensitive data may stay unencrypted both on persistent storage and in

memory. This allows using legacy applications without performance loss imposed by on-

the-fly memory encryption. The implementation challenge posed by this approach is to

protect memory and control transfer integrity of the trusted process granted with access

to public network. OS controls process execution and may inject malicious code into its

address space that will transmit sensitive data to remote computer. We have thoroughly

described our solution to this problem optimized for Linux and x86 hardware

virtualization.

8. REFERENCES
[1] TANENBAUM, A., HERDER, J., AND BOS, H. 2006. Can we make operating

systems reliable and secure? Computer 39, 44-51.
[2] TERESHKIN, A. 2006. Rootkits: Attacking Personal Firewalls. In Proceedings of

the Black Hat USA 2006 Conference, Las Vegas, USA, July 2006.
[3] BARHAM, P., DRAGOVIC B., FRASER, K., HAND, S., HARRIS, T., HO, A.,

NEUGEBAUER, R., PRATT, I., AND WARFIELD, A. 2003. Xen and the Art of
Virtualization. In Proceedings of the 19th ACM Symposium on Operating Systems
Principles. Bolton Landing, NY, USA, 164-177.

[4] INTEL. 2008. Intel® 64 and IA-32 Architectures Software Developer’s Manual.
Volume 3B: System Programming Guide, Part 2. 358-363.

[5] CHEN, X., GARFINKEL, T., CHRISTOPHER LEWIS, E., SUBRAHMANYAM
P., WALDSPURGER C., BONEH, D., DWOSKIN, J., AND PORTS, D. 2008.
Overshadow: A Virtualization-Based Approach to Retrofitting Protection in
Commodity Operating Systems. In Proceedings of the 13th international
conference on Architectural support for programming languages and operating
systems, Seattle, WA, USA, 2-13.

[6] YANG, J., AND SHIN, K. 2008. Using Hypervisor to Provide Data Secrecy for
User Applications on a Per-Page Basis. In Proceedings of the 4th ACM
SIGPLAN/SIGOPS international conference on Virtual execution environments.
Seattle, WA, USA, 71-80.

I.Burdonov, A. Kosachev, P.Iakovenko.
Virtualization-based separation of privilege: working with sensitive data in untrusted
environment.
Proceedings of the 1st EuroSys Workshop on Virtualization Technology for Dependable
Systems,2009, pp.1-6.
6 стр.

 12

[7] MURRAY, D., MILOS, G., AND HAND, S. 2008. Improving Xen Security
through Disaggregation. In Proceedings of the 4th ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments. Seattle, WA, USA,
151-160.

[8] LEVASSEUR, J., UHLIG, V., STOESS, J., AND GOTZ, S. 2004. Unmodified
Device Driver Reuse and Improved System Dependability via Virtual Machines.
In Proceedings of the 6th conference on Symposium on Operating Systems Design
& Implementation, San Francisco, CA, USA, 2-2.

[9] TA-MIN, R., LITTY, L., AND LIE D. 2006. Splitting Interfaces: Making Trust
Between Applications and Operating Systems Configurable. In Proceedings of the
7th symposium on Operating systems design and implementation. Seattle, WA,
USA, 279-292.

[10] LITTY, L., AND LIE, D. 2006. Manitou: A Layer Below Approach to Fighting
Malware. In Proceedings of the 1st workshop on Architectural and system support
for improving software dependability. San Jose, CA, USA, 6-11.

[11] RILEY, R., JIANG, X., AND XU, D. 2008. Guest-Transparent Prevention of
Kernel Rootkits with VMM-based Memory Shadowing. In Proceedings of the 11th
international symposium on Recent Advances in Intrusion Detection, Cambridge,
MA, USA, 1-20.

[12] JONES, S., ARPACI-DUSSEAU, A., AND ARPACI-DUSSEAU, R. 2006.
Antfarm: Tracking Processes in a Virtual Machine Environment. In Proceedings of
the annual conference on USENIX '06 Annual Technical Conference. Boston, MA,
USA, 1-1.

[13] ONOUE, K., OYAMA, Y., AND Yonezawa, A. 2008. Control of System Calls
from Outside of Virtual Machines. Proceedings of the 2008 ACM symposium on
Applied computing. Fortaleza, Ceara, Brazil, 2116-1221.

[14] JIANG, X., WANG, X., AND XU, D. 2007. Stealthy Malware Detection Through
VMM-Based “Out-of-the-Box” Semantic View Reconstruction. In Proceedings of
the 14th ACM conference on Computer and communications security. Alexandria,
Virginia, USA, 128-138.

	Virtualization-based separation of privilege: working with sensitive data in untrusted environment

