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Contemporary commodity operating systems are too big and do not inspire trust in their security and reliability. 
Still they are used for processing sensitive data due to vast amount of legacy software and good support for 
virtually all hardware devices. Common approaches used to ensure sensitive data protection are either too strict 
or not reliable. 

In this article we propose virtualization-based approach for preventing sensitive data leaks from a computer 
running untrusted commodity OS without sacrificing public network connectivity, computer usability and 
performance. It’s based on separating privileges between two virtual machines: public VM that has unlimited 
network access and private (isolated) VM that is used for processing sensitive data. Virtual machine monitor 
uses public VM to provide transparent access to public resources for selected trusted applications running inside 
private VM on a system call level. 

Proposed security architecture allows using one and the same untrusted OS on both virtual machines without 
need to encrypt any data. However is poses a challenge of enforcing dynamic protection over trusted appli-
cations running in potentially compromised OS. We investigate this problem and provide our solution for it. 
 
Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection; K.6.5 [Management 
of Computing and Information Systems]: Security and Protection 
General Terms: Design, Security 
Additional Key Words and Phrases: security architecture, data leak prevention, memory protection, 
disaggregation, virtualization, virtual machine monitor, VMM, hypervisor 
________________________________________________________________________ 
 
1. INTRODUCTION 

Computer and internet technologies constantly evolve their spread into various parts of 

human life improving accessibility and efficiency of services. The downside of online 

banking, shopping, e-government and other similar services is that personal data and 

other private information are exposed to the computer used to access or provide the 

service. This poses the question of how much we can trust potentially compromised 

system software in preserving confidential data privacy and integrity. Commodity 

operating systems are rather big and not sufficiently reliable and secure due to monolithic 

kernel architecture [Tanenbaum et al. 2006] meaning that exploiting one kernel 

vulnerability may provide malware with unrestricted access to system resources. 
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Computer physical isolation from public network (Internet) or even complete network 

disconnection does help to protect sensitive data leaks but such drastic approach is not 

always possible and usually not convenient. Typically controlled network access is 

achieved with the help of personal (application) firewalls that may be used to block 

network access for all but limited set of trusted applications. However firewalls operate 

on the same hardware privilege level as OS kernel and malware infecting kernel may 

bypass them [Tereshkin 2006]. 

Reliability of privacy-preserving system may be improved if implementing it on a 

higher privilege level than OS kernel. Thanks to virtualization technology such solution 

may be realized for legacy OS. Hardware virtualization support in modern x86 processors 

allows realization of relatively tiny hypervisor (eg. Xen [Barham et al. 2003] size is about 

200 KLOC) comparing to the kernel size of contemporary consumer OS. This makes 

hypervisor a perfect place for security systems since removing kernel from application 

trusted computing base (TCB) and substituting it with hypervisor would dramatically 

reduce TCB size. 

We present novel approach for protecting privacy of confidential data based on the 

separation of privileges between two virtual machines (VM): private and public, - both 

running commodity untrusted OS. All sensitive data and applications that work with it are 

located inside private VM. OS in private VM has unrestricted access to these data but 

cannot transmit it outside because private VM is physically isolated from public network, 

in fact it may not have network interface at all. In turn public VM has unlimited access to 

public resources and may be connected to Internet. However OS in public VM may not 

access sensitive data located in private VM due to isolation of virtual machines enforced 

by hypervisor. Figure 1 provides architectural view on our approach. 
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Figure 1. Security architecture based on privilege separation between two VM 

Hypervisor maintains secure channel between virtual machines and grants access to it 

to selected applications running in private VM. This channel provides trusted applications 

a way to access public (Internet) resources which normally are not visible from inside 

private VM. Hypervisor intercepts system calls executed by trusted processes in private 

VM and forwards calls related to public resources for servicing to public VM. All other 

system calls including process and memory management are serviced locally in private 

VM. The channel may be implemented by sharing memory pages between virtual 

machines (eg. using Xen grant tables) and restricting writes to these pages from untrusted 

contexts in private VM, although the particular implementation of such channel is outside 

the scope of this article. 

The advantage of our approach is that sensitive data may be stored in private VM in 

non-encrypted form and processed by legacy software without performance loss caused 

by on-the-fly encryption. However the only obstacle that blocks kernel-level malware 

from communicating stolen sensitive data to remote computer is lack of access to inter-

VM channel that is the only path to outer world. Access to the channel is granted to 
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trusted processes only so it’s vital to protect execution of trusted process from attacks 

performed by kernel malware. 

In this article we describe hypervisor-based mechanism for protecting process 

execution in untrusted environment. It watches over process memory and registers and 

detects attempts to execute malicious code in the context of guarded process before even 

the first byte of the code will be executed. The presented mechanism is based on the 

hardware virtualization extensions available in modern x86 family processors. We 

assume that private VM runs under Linux, however we believe that our approach may be 

adapted for Windows. 

2. GUARDED PROGRAM EXECUTION 

Hypervisor realizes protection mechanisms basing on guarded program execution model. 

In this model program P is considered as an active entity that transforms its states. State S 

is a snapshot of process virtual memory (containing code, stack, heap, etc) and registers. 

Program execution is interrupted regularly transferring control to OS kernel to serve 

interrupt or other system event from the finite set of events E so the overall program 

execution is comprised of ordered set of non-interruptible slices of execution. The 

number of slices N varies between program executions due to asynchrony of external 

interrupts. Program state at the interruption point is called output state )(OS while 

program state at the moment when it resumes execution is called input state )( IS . Then 

particular execution of program P may be described by a mapping 

Ν≤≤0 ,→ kESS k
O

k ),( )((I)
k  where k denotes the index of execution slice. The initial 

input state )(
0

IS  is constructed by OS program loader while final output state )(O
NS

corresponds to the state in which process calls exit() system call or in which process 

receives signal terminating its execution. 

OS kernel behavior may be described by mapping )(
1

(O)
k ),( I

kk SES +→  meaning that 

kernel services event kE and constructs new input state for the interrupted program. 
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Assuming interrupt is serviced properly relations between current output state )(O
kS  and 

new input state )(
1

I
kS +  produced by kernel are well defined and typically depend on the 

event kind only. The pair of output state and event is used to construct constraint on the 

next input state. For example if kE  is caused by read() system call then differences 

between )(O
kS  and )(

1
I

kS +  are allowed only within the provided buffer and contents of eax 

register. Some events like registration of signal handler that adds new valid return (from 

interrupt) point influence constraints for all subsequent input states. Constraint for the 

initial input state is constructed from executable file contents basing on loaded segments 

and starting execution address and externally provided addresses and sizes of heap and 

stack. 

Hypervisor guards process integrity by intercepting interrupt event kE , analyzing 

program output state )(O
kS  and constructing constraint 1+kC  for the next input state )(

1
I

kS +

. Constraints are stored in the hypervisor private memory area. Whenever OS kernel 

finishes servicing interrupt and transfers control back to the program, hypervisor 

intercepts this event and validates actual program state against the constraint. Failing this 

check means that process memory or registers (eg. return address) have been corrupted 

while it was de-scheduled and program may not be considered as trusted any longer. 

Hypervisor rejects all subsequent attempts to access public resources (through the 

channel) made from the context of this process. 

The implementation of guarded program execution model poses several challenges. 

First, hypervisor should be able to intercept all events in the VM that interrupt program 

execution and intercept control transfers from OS kernel to process after interrupt has 

been serviced. Second, it should provide efficient mechanism for evaluating and 

validating constraints. Finally, it should have means of identifying current context inside 

VM in which public resource is accessed. In next sections we will describe our solution 

for all these tasks and provide efficient approach for lazy evaluation and validation of 

constraints. 



I.Burdonov, A. Kosachev, P.Iakovenko. 
Virtualization-based separation of privilege: working with sensitive data in untrusted 
environment. 
Proceedings of the 1st EuroSys Workshop on Virtualization Technology for Dependable 
Systems,2009, pp.1-6. 
6 стр. 
_____________________________________________________ 

 6 

3. INTERCEPTING EVENTS INSIDE VIRTUAL MACHINE 

Three groups of events are of interest to the hypervisor: process interruptions, control 

transfers from kernel to process and memory accesses both to particular virtual and 

physical pages. Hypervisor uses hardware virtualization to intercept and process these 

events. 

Process execution is interrupted whenever event that requires attention from OS 

happens inside VM. It may be hardware or software interrupt, exception or system call. 

All of these events including system calls that are executed using software interrupts may 

be trapped by properly filling bit mask describing intercepted events in virtual machine 

control block (VMCB). VMCB describes VM state and must be provided to CPU upon 

starting or resuming VM execution. Event is intercepted before process enters kernel 

mode so hypervisor may immediately take snapshot of memory and registers contents. 

Hypervisor restricts using fast system call mechanism by intercepting and emulating 

cpuid, wrmsr and rdmsr instructions. 

Hypervisor maps VM physical memory addresses to actual machine addresses using 

virtual TLB algorithm [Intel 2008]. There exist two copies of pages tables in computer 

memory – guest OS page tables and shadow page tables maintained by hypervisor. Guest 

OS freely modifies its page tables but attempt to load them into cr3 register is intercepted 

by hypervisor and it loads shadow page tables instead. Whenever hypervisor intercepts 

page fault exception it decides whether deliver it to OS (if there is no valid translation in 

OS page tables) or update translation in shadow tables. 

Hypervisor uses shadow tables to solve several distinct tasks: trap access to specific 

virtual page, physical page and control transfer from kernel to user code. Trapping 

memory accesses is required for memory integrity preserving algorithm described below. 

Whenever process is interrupted hypervisor clears U/S and R/W flags in page directory 

entries of shadow tables and sets fresh new TLB tag (ASID in AMD’s terminology) in 

VMCB structure. In contrast hypervisor employs one and the same TLB tag for VM 

execution in user mode. Such way of using TLB tags provides selective flushing of TLB 

entries that correspond to kernel accesses. This assures trapping kernel memory accesses 

to every page while minimizing performance impact caused by memory guarding 
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mechanism. Clearing R/W flag is another optimization that helps trapping memory write 

operations only. U/S flag is cleared to trap execution return to user mode.  

4. CONTEXT IDENTIFICATION 

The way hypervisor identifies current context depends on whether intercepted event 

causes or is caused by switching current privilege level (CPL). This leaves us with three 

cases: CPL switches to user level, CPL switches to kernel level and CPL stays at kernel 

level. 

If CPL switches to user level then hypervisor identifies context in which intercepted 

event has happened and binds it to certain process inside VM basing on the overall state 

of VM resources namely virtual memory and registers (particularly eip register). 

Whenever process is scheduled for execution hypervisor iterates through available 

constraints on input states and validates them against current VM state until it finds a 

match. If match is found then hypervisor associates currently scheduled process with the 

trusted process that owns matched constraint and stores trusted context identifier in own 

memory. Mismatching all constraints means that scheduled process may not be trusted. 

Stored context identifier is used to distinguish events happened in trusted context 

(interruption of trusted process) from untrusted ones. Whenever event happens that 

switches CPL to kernel level hypervisor queries this identifier and decides on context 

trustworthiness. Finally event that keeps CPL on kernel level by definition happens in 

untrusted context. 

Hypervisor implements Linux-specific optimization that speedups context 

identification. When process is scheduled it validates only registers’ values and virtual 

page containing currently executing instruction. Checking other virtual pages is deferred 

until that pages are accessed by the process. Such reduced check may result in locating 

several matching constraints. To overcome this issue hypervisor lookups Linux kernel 

task_struct structure, extracts process identifier and uses it as a key into set of constraints. 

Additionally such help from Linux kernel saves hypervisor from iterating through all 

available constraints. 

Certainly process identifier provided by malicious kernel may not be trusted however 

hypervisor uses it only as a hint to lookup constraint. If kernel intentionally provides 
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wrong identifier then it will result either in immediate or deferred constraint mismatch. 

Deferred mismatch may happen if state of scheduled malicious process equals the state of 

trusted process (whose identifier OS uses to cheat hypervisor) in the part that is validated 

during reduced check. In this case memory corruption will be detected later on access to 

page containing malicious code. In any way guarded memory execution mechanism will 

not be compromised. 

5. MEMORY INTEGRITY 

Hypervisor preserves memory integrity by detecting illegal changes made to process 

working memory areas while it was de-scheduled. Working areas are comprised of 

virtual memory pages that are accessed during program execution. In the majority of 

cases contents of a virtual page in some input state must be exactly the same as in 

previous output state; we will describe below cases that legally violate this rule. 

Constraints that are enforced at initial virtual page access depend on memory area kind. 

Contents of a page containing code and static data are validated at first access against 

hash codes calculated beforehand on a separate trusted computer. We require that 

executable file doesn’t contain relocatable symbols so its contents are not patched by the 

loader. In contrast hypervisor allows heap and stack virtual pages to have arbitrary 

contents at first access. Although initial stack contents (command line arguments, 

environment variables, auxiliary vectors) are prepared by the loader which is not trusted 

we assume that guarded process follows safety programming rules and checks validity of 

the input data.  

Hypervisor maintains two data structures for efficient memory integrity checking: 

memory integrity table MIT : VA (HASH,PA) and access protection table 

APT : PA  (ID,VA). MIT represents process view on its virtual memory. Whenever 

process accesses guarded virtual page it must find it in the same form at it left it during 

previous access. This rule may be fulfilled by assuring any of following two conditions. 

Either translation of virtual page VA points to the same physical page PA while there 

were no external writes to PA since last access. Or VA page contains expected contents 

validated by evaluating page hash and comparing it with stored HASH value. Initially 

MIT table is filled with hash entries for code and static data pages. Hashing of pages 
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modified during process execution is deferred until kernel decides to swap out the page. 

Lazy hashing is implemented with the help of APT table which stores modified guarded 

pages. Whenever hypervisor detects a write operation on physical page PA that is present 

in APT table it lookups identifier ID of the owning process and updates hash value for the 

virtual page VA in the corresponding MIT table. Figure 2 shows flowchart for the 

memory integrity preserving algorithm. State ERROR corresponds to the detection of 

memory corruption. 

EXISTS(APT[PA])

No

THIS == APT[PA]

Yes

No

TLBOS[VA].RW ==1

Yes

Yes
MIT[VA].PA == PA No Yes
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EXISTS(MITTHIS[VA]) No

MITTHIS[VA].HASH == HASH(PA)
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HASH(MITTHIS[VA].PA)  == HASH(PA)
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MITTHIS[VA] := (PA, NULL)

APT[PA] := (THIS, VA)

DELETE(APT[MITTHIS[VA].PA])
MITTHIS[VA] := (PA, NULL)

APT[PA] := (THIS, VA)

(ID, VAID) := APT[PA]
MITID[VAID].HASH := HASH(PA)

DELETE(APT[PA])

 
Figure 2. Flowchart for memory integrity preserving mechanism. 



I.Burdonov, A. Kosachev, P.Iakovenko. 
Virtualization-based separation of privilege: working with sensitive data in untrusted 
environment. 
Proceedings of the 1st EuroSys Workshop on Virtualization Technology for Dependable 
Systems,2009, pp.1-6. 
6 стр. 
_____________________________________________________ 

 10 

The described algorithm protects memory integrity at page granularity. This is too 

strict for the cases when kernel legally writes to the user space buffers (eg. passed in 

read() system call) or when kernel invokes process-registered signal handlers which 

implies saving signal frame on user-space stack. To work around such issues hypervisor 

provides support for byte-granularity memory protection. Instead of hashing page 

contents virtual pages that require fine-granular memory protection are guarded by saving 

exact copies of byte sequences that should stay unchanged within the page. For read() 

system call these are the data blocks between page start and buffer start and between 

buffer end and page end. 

6. RELATED WORKS 

Protecting process execution in the commodity potentially compromised OS has been 

studied in [Chen et al. 2008] and [Yang and Shin 2008]. Both systems maintain two 

views for trusted process virtual memory: opened and encrypted. Depending on the 

context in which memory is accessed they present page contents either in original (for the 

owner) or encrypted (for the kernel) form. 

Chen et al. [2008] and Yang and Shin [2008] also provide mechanisms for reliable 

guest OS process identification and control transfer. Other approaches include tracking 

changes of hardware virtual address translations [Jones et al. 2006] or accessing guest OS 

kernel structures that are known to be present at fixed addresses [Onoue et al. 2008]  

The idea of improving reliability and security by disaggregating resources between 

separate address spaces is a keynote of microkernel architecture and it gained new wave 

of attention with virtualization technology spread. Murray et al. [2008] report on reducing 

TCB size in Xen by moving domain bootstrap code from Dom0 to separate DomB 

domain and providing RPC-based communication between them. LeVasseur et al. [2004] 

restrict driver access to kernel address space by moving driver execution into separate 

virtual machines. Ta-Min et al. [2006] present Proxos system that isolates application 

from OS on system call level by executing application code in separate VM which is 

controlled by trusted OS. 

Recent efforts in preventing execution of malicious code include Manitou [Litty and 

Lie 2006] and NICKLE [Riley et al. 2008] systems. Manitou restricts executing code 
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from unauthenticated memory pages. Before executing instruction from a page it 

evaluates its hash and compares it against known hashes for this page. Page is considered 

corrupted if no match is found. NICKLE prevents execution of malicious code in kernel 

mode by copying authenticated kernel code to shadow memory located inside hypervisor 

memory area. Every guest OS kernel instruction fetch is transparently redirected to 

shadow memory which contains authenticated code only. 

7. CONCLUSION 

We have presented novel approach for preventing leaks of sensitive data based on 

virtualization technology. Our approach differs from the existing solutions in the reduced 

set of requirements. We allow computer to be connected to Internet and run commodity 

untrusted OS while sensitive data may stay unencrypted both on persistent storage and in 

memory. This allows using legacy applications without performance loss imposed by on-

the-fly memory encryption. The implementation challenge posed by this approach is to 

protect memory and control transfer integrity of the trusted process granted with access  

to public network. OS controls process execution and may inject malicious code into its 

address space that will transmit sensitive data to remote computer. We have thoroughly 

described our solution to this problem optimized for Linux and x86 hardware 

virtualization. 
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