ISSN 0146-4116, Automatic Control and Computer Sciences, 2011, Vol. 45, No. 7, pp. 380—389. © Allerton Press, Inc., 2011.
Original Russian Text © I.B. Burdonov, A.S. Kosachev, 2010, published in Modelirovanie i Analiz Informatsionnykh Sistem, 2010, No. 4, pp. 27—40.

Safe Simulation Testing of Systems
with Refusals and Destructions
1. B. Burdonov and A. S. Kosachev

Institute for System Programming, Russian Academy of Sciences, Moscow, 109004 Russia
e-mail: igor@ispras.ru, kos@ispras.ru
Received October 13, 2010

Abstract—This paper deals with conformance testing based on formal specifications. The concept of
safe testing was earlier proposed by the authors for trace based conformance. This concept is propa-
gated for the case of (weak) simulation based on a relation between the specification and implemen-
tation states. The theory of the safe simulation of systems with refusals and destructions is proposed.
The problems of complete testing and sufficient conditions for the existence of a complete test suite
are discussed. A practical algorithm of complete testing for restricted classes of specifications and
implementations is described.

Keywords: formal model, model based testing, complete testing, simulation, system with refusals and
destructions

DOI: 10.3103/S0146411611070042

1. INTRODUCTION

Conformity testing is an experimental test of the conformity of the implementation of the require-
ments given in the form of specification. This correspondence is determined by the semantics of the test
interaction, which describes the possible test actions and observations of the possible response behavior
implementation.

If the response to test impacts can be observed only as (external) actions performed by the implemen-
tation or lack of action (failure), the conformity is determined by observing the tracks—sequences of
actions and failures. The specification describes the tracks that are allowed in implementation.

Testing that has a guaranteed finite waiting time of observation after the test’s impact is called safe.
There are two possible reasons for an infinite wait: divergence and unobservable failures. Divergence is
infinite execution by implementation of internal (unobservable) actions. Unobserved failure is a lack of

1
external actions carried out by implementation, which the test can not determine in a finite time. Inboth
cases, a test cannot continue testing or finish it, as it is unknown whether it should wait for observations
or waiting is unavailing.

We also introduce a special nonadjustable test by the stimuli effect of implementation, which is called
destruction. It models any undesirable behavior of a system, including its actual destruction. Testing in
which there is no divergence, unobserved failures, and destruction is called safe.

A specification describes situations when the test impact should be safe to implement. Accordingly,
conformity is based only on safe behavior of the implementation. The general theory of such conformity
is developed by the authors of [1—3].

The literature also deals with conformities based on the correlation of the implementation and speci-
fication states (for a review, see [5]); such conformities are called simulations. Simulation requires cor-
rectness not only of the observed external behavior of the implementation but also correctness of its state
changes. All the simulations discussed in the literature either do not take safety into account, while assum-
ing there is no divergence and unobserved failures, or are designed for direct observation of the divergence
and all failures. Also, they do not consider the possibility of destruction.

! For example, if the time interval between a rest input and a response is limited by a time-out condition, then reaching this time
out when waiting for external actions means an observance of a refusal. When there are no such conditions, the refusal is unob-
servable.

380

SAFE SIMULATION TESTING OF SYSTEMS 381

The aim of this paper is to extend the general approach, including failures and destruction, to simula-
tions. The specification defines not only the class of its conformal implementations but also a wider class
of implementations that can be safely tested for conformance checking (the safety hypothesis).

The choice of the simulation is the most natural for conformity when the implementation states are
available for observation. Testing, in which at any given time the current state of the implementation can
be obtained, is called testing with an open state. The task of testing is the detection of errors in the imple-
mentation, which is understood as a mismatch between its behavior and the specification requirements.
The testing is called complete if it allows one to detect any actual error while getting no “false” errors. This
article considers complete testing with an open state of safe simulation.

This consideration is conducted both in general theoretical and practical terms. A theoretical full test-
ing should detect any error in finite time, but in the absence of errors it can continue indefinitely. Endless
testing causes are the infiniteness of the implementation and/or specifications, as well as unlimited non-
determinism of the implementation behavior. Under certain restrictions, it is possible to construct a com-
plete test completing its work within a finite time. Such tests may be used in practice.

Sections 2—4 of the manuscript contain the basic propositions of the theory of conformity: the seman-
tics of interaction and safe testing, the mathematical model of implementation and specification, the def-
inition of simulation, and the hypothesis of safety and identification of safe simulation. The 5th section
discusses the connection between safe simulation and trace conformity. The 6th section examines the
completeness of the testing. The 7th chapter considers theoretical and the 8th section practical tests. Lim-
itations on the implementation and specification enabling a full test in a finite time and an algorithm for
such testing are defined. Section 9 provides an example of the verification of the simulation.

2. SEMANTICS OF SAFE COMMUNICATION

The semantics of interaction are formalized in terms of external actions and butfons. An action is a behav-
ior of an implementation observed in response to external stimuli. A set of actions is called the action alpha-
bet and is denoted by L. The button is a subset P < L; pressing P simulates the impact of implementation,
which reduces to the permission to perform any action from P. We can observe either action a € P or (for
some keys) the absence of such action, which called the failure R. The semantics of the interaction are given
by an alphabet L and two sets of buttons: one corresponding to the observation of failure, a family R < 2%,
and without such observations, a family Q < 2% It is assumed that R " Q = & and (UR) U (UQ) = L.

In the general case, it is unknown whether after pressing the Q € Q button we should wait for observa-
tion a € Q or there will be no observation because of an unobserved failure Q. In the case of the proper
interaction, such a button is pressed only if there is no failure in the implementation.

In addition to the external actions, an implementation can make internal (unobservable) actions
denoted by t. Such actions are always allowed. It is assumed that any finite sequence of any actions takes
place within a finite time and an infinite sequence within an infinite time. An infinite sequence of t actions
(“looping™) is called divergence and is denoted by A. Divergence is not dangerous by itself, but when
implementation tries to exit it (by pressing any button) it is unknown whether we should wait for an obser-
vation or T actions will take place infinitely. Therefore, at the correct interaction, buttons are pressed only
if there is no divergence in the implementation.

We also introduce a special action not adjustable by buttons called destruction and denoted by y. It sim-
ulates any undesirable behavior of a system, including its actual destruction. The semantics of destruction
assumes that correct interaction should avoid it.

A correct interaction, in which there is no unobserved failures, attempts to exit from the divergence and
destruction and is called safe.

3. LTS MODEL
The LTS (Labeled Transition System) model is used as a model of implementation and specification.
It is defined as S = LTS(Vs, L, Eg, sy), where Vg is a nonempty set of states, L is an alphabet of external
actions, Eg < Vg x (LU {t, y}) x Vgis a set of transitions, and s, € Vg is the initial state. A transition from
state s to state s’ by the action of z is denoted as s — s'. A trace is a chain of adjacent transitions: the first
transition begins in the initial state, and every other starts at the end of the previous transition.

A state is divergent if it is an initial state for an infinite T route. A condition is stable if there does not
emerge T and y transitions. Fault P € R U Q is generated by a stable state from which there are no transi-
tions for the actions of P.

AUTOMATIC CONTROL AND COMPUTER SCIENCES VWl. 45 No.7 2011

382 BURDONOYVY, KOSACHEV

1 2 3
S o= O=pos’ s 5" So=pe I-pe—>pos' S c=pe I—pe—>pos'
je=0C=poi' i »o ' [o—Z—pd ' | je=peT—pe—>po |’
cel ze L

Fig. 1. Three definitions of weak simulation.

In order to determine the LTS, traces S (with failures from R U Q) to each of its stable states are added

virtual loops s Lo generated by marked failures and A loops in divergent states s —2+ 5. We then con-
sider the routes that are not continued after the y and A transitions; a trace is a sequence of markings on
passages of the route with the omission of t characters. Let us denote fors, s' € Vg, u € LORU QU {y, A},
c={u,..,u,ye (LURUQU{y, Ah*:

A
SDSVZstvVHSI,“.’Sns:SIL>S2L>S’1:S,

(u) v A u f
s =5 =ds,855=>85 —5, =7,

G, 4 A (up) () '
S=>8 =35, .y 8,15 = 8] => 8§5...8, —=> S, =S,
A Al i}
s 235 s>,
A ' '
s=ocp =h s>y,

s after 6 2 {5'|s > 5'}.

4. WEAK SIMULATION

Simulation requires that each observation u possible in an implementation state i/ with a poststate ;' is
possible in each corresponding specification state s and that the specifications for s and # contain the post-
state s' corresponding to i'. Simulations differ from each other mostly by the relation to the observability
of the internal actions (7). In this article, we proceed from the basic assumption about the fundamental
unobservability of T actions: at the interaction, it is impossible to distinguish the presence and absence of
T actions, both before and after the external action. This corresponds to weak simulation, which is also
known as observation simulation. Let us give three equivalent definitions of weak simulation (the first two
belong to Milner [6, 7]):

I S&m S23Rc Vi x Vs(ip, 89) € R& Y(i,s) € RVo € L*Vi'

(i =3I>5&(,s)eR)

(Fig. 1, left).

1<, S23Rc Vyx Vs(ip 5) € R& V(i,s) € RVu € LY’
(i—~i=>3ss=s5&(,s)eR)
&(i4>i=3s's>s &(i',s) € R)

(Fig. 1, center).

1<), S23Rc Vyx Vy(ip, s,) € R& V(i,s) € RVu € LVi'
(i % i'=3s's %s’ & (i',s') € R)
(Fig. 1, right).

The correspondence R, for which the conditions of weak simulation are satisfied, is called a conformal
correspondence.

AUTOMATIC CONTROL AND COMPUTER SCIENCES VWl. 45 No.7 2011

SAFE SIMULATION TESTING OF SYSTEMS 383

Failures. If by observation not only the external actions of L but also the observable failures of R are

meant, the definition of weak simulation should be modified (changes as compared to vas are under-
lined):

1< S & 3R Vyx Vs(iy, 5,) € R& V(i,s) € RYu € LURV/

O RO W
(i = = Js's =5 & (i',s') € R)
In the class of implementations without observable failures, these correspondences match: S3WS = vas.
Safety. The state s is called safe if from this state there does not emerge a y track: s =y . In safe inter-

actions, only safe states of implementation are passed. The button P € R U Q is called safe in a safe state
s if it can be pressed at a safe interaction:

Psafes2s = () &s = (A) P

&(PeQ=s=(P)H)&VzePs = (g7 P

The observation is called safe if it is allowed by a safe button. The condition is called safely achievable
ifit is accessible from the initial state by a sequence of pressings of safe buttons. The modification of a weak
simulation with failures and safety is as follows (changes as compared to <! are underlined):

—ws

1<, SL3IRCV;x Vs(s=(y) 2 = (i, 5) € R)

& V(i,s) € RV Psafe iVYue PU {P}Vi

(Psafes&i Ny = 3s's Yes & (i',s") € R).

In the class of implementations and specifications in which all failures are observable, there is no diver-
gence and destruction; these correspondences are the same: vas = vas.

Safety hypothesis. Since a specification is given, it is possible to check the condition P safe s. The con-
dition P safe i can be checked if the implementation is also known. Otherwise (in testing), we can judge
the safety of the buttons in the implementation states only on the basis of some safety hypothesis. This
hypothesis is based on the correspondence H — V; x Vg of the states of the implementation and specifica-
tion, and it is called the H Aypothesis. It assumes (1) the safety of the initial state i, of the implementation
if the initial state s, of the specification is safe, and (2) the safety of a button in the implementation state
if it is safe at least in one corresponding by H specification state.

Let us define the correspondence H recursively. If the initial states are safe, then they, as well as any two
states that are reachable from the initial states by a blank trace, correspond to each other. The states i’ and
s' correspond to each other if they are reachable from states i and s, corresponding, to each other by an
observation u allowed by button P, which is safe in both states i and s. The correspondence H is a minimal
correspondence generated by the following inference rules:

Vi,i e V|Vs, s € V{VPe RuQVu e PU {P}

so= (NP &iy= (NP &iy=i&sy=>s |-(i,s)eH,
(i,s) € H& P safe i & P safe s

&i %i‘&s%s’|—(i‘,s')eH.

Button Pis called H safe in an implementation state i if it is safe in at least one corresponding to i spec-
ification state s:

P H-safe i £ 3s(i,s) € H& P safe s.
We now give a formal definition of the A hypothesis:
1 H-safe S £ (s = (N7 & iy = (N7
& Vie VP e RUQ(P H-safe i = P safe i).
Secure simulation. By merging weak simulation and the A hypothesis on safety, we get safe simulation,

which is denoted by ss (changes as compared to < are underlined):

—WwWs

AUTOMATIC CONTROL AND COMPUTER SCIENCES VWl. 45 No.7 2011

384 BURDONOYVY, KOSACHEV

IssS21 H-safe S & AR Vyx Vg(s = (v)F> = (iy, 8,) € R)

& V(i,s) € RVP safe i Vu € L U RV/

(P safe s & i YAy Ly g (i',s") € R).

The relation ss is also transitive in the class of specifications that satisfy their own H hypothesis and
reflexively, and thus it is a preorder.

If the implementation is given explicitly, we can analytically check both the H hypothesis and safe sim-
ulation. When the implementation is unknown, testing is required, and the H hypothesis becomes the pre-
condition of the test’s safety. If s, %, then H = J and safe testing is not possible, but is also not necessary,
since any implementation is conformal (for any R). If s, = (y) 7, the testing is essentially a verification of
the fest condition (the two bottom lines in the ss definition). Every button P H safe i is pressed, and the
received observation u and poststate i are checked for the specification compliance: the observation u

should be in every state of the specification s, which correspond to the state i by R, where Pis a safe button,
and among the poststates s’ at least one must correspond to i' by R.

For the class of specifications without unobservable faults, divergence, and destruction, we have H safe N
Sis =ss, and, in the safe implementations subdomain, < =g

—ws

For a conformal by ss correspondence R, the correspondence R N H is also conformal. We can refor-
mulate the definition of safe simulation as follows:
IssS21 H-safe S & AR H(s = (y)= = (iy, 5y) € R)

& V(i,s) € RVPsafes Yue PU {P}Vi

(i %i’ = ds's %s’ & (i',s') € R).

We can restrict to such correspondences R that are included in A. The union of conformal by ss corre-
spondences is conformal, which gives two natural conformal correspondences: R;, the union of all con-
formal correspondences, and R, = R, N H.

5. RELATION OF SIMULATION AND TRACE CONFORMITY

In the trace theory of conformity, the safety hypothesis is based on traces of implementation and spec-
ification [1—3] and does not require state correspondence. We reproduce here the basic definitions of this
theory. For LTS, the set S of its traces with faults of R U Q is denoted by T(S). For implementation I, a
relation safe of the button P € R n Q after the trace 6 € T(I) is determined:

P safein 1 after c 2 (P < Rv ce(P) ¢ T(I)

& Vze Poe(zy) ¢ T(I) & ce(A) ¢ T(I).

Obviously, if the button is safe by safe in the trace (P safe in 1 after), then it is safe in each state after
this trace: Vi € (I after o) P safe i.

For an implementation, the relation safe by of the buttons safety after traces is ambiguous: it is any rela-
tion satisfying three requirements: Vo € T(S)VR e R; Vz e L; VO € Q
(1) Psafeby S after c <> Vu e Roe(u,y) ¢ T(S) & ce(A) ¢ T(S);
2)oe(2)eT(S)& TeRUQze T&Vue Toelu,y)y ¢ T(S)

& ce{(A)gT(S)=3IPcRuUQze P& Psafeby S after c;
(3) O safeby S after c © 3Ive Q ce{v) € T(S)
& VYue Qaceluy) ¢ T(S) & ce(A) ¢ T(S).

We assume that, along with a specification, the relation safe by is given, and it complies with these three
requirements.

The trace o of a specification S is called safe if the specification does not contain a trace (y), and the
route ¢ does not end with divergence and destruction, and each symbol u occurring in it is an external
action or an R refusal allowed by a button that is safe after immediately preceding this character trace pre-
fix. Let us denote the set of safe paths:

AUTOMATIC CONTROL AND COMPUTER SCIENCES VWl. 45 No.7 2011

SAFE SIMULATION TESTING OF SYSTEMS 385

SafeBy(S) 2 {c e T(S)|(y) ¢ T(S) & Vu e LUR
(c=pe(u)ysA=>3IPc RUQ Psafeby S after L & uc PU {P})}.

For the buttons R € R, the relations safe by and safe in are the same. Therefore, if a button R € Ris
safe by safe by after some trace o (R safe by S after), then it is safe in every state after this route: Vs € (S after
o) R safe s. However, a button Q € Q that is safe by safe after the trace can be unsafe in some (but not all)
states s € (S after G).

The trace hypothesis of safety is defined as follows:

Isafefor S 2 ({y) & T(S) = (y) ¢ T(I)
& Vo € SafeBy(S) nT(I)VPe RUQ
(P safe by S after c = P safe in 1 after o).

The trace conformity is defined as

Isaco S 2 1 safe for S & Vo € SafeBy(S) N T(I)
Y P safe by S after c Vi € (1 after 6)Vu € PU { P}
(i Y S 3s5e (S after o)s %).

Stimulation can be considered with a trace hypothesis of safety, which is defined as follows (the
changes as compared to ss are underlined):

Isst S 2 I(safefor S & IR Vi x Vs(sy = (V)P = (ig, 5) € R)
& V(i,s) € RVo € SafeBy(S) N T(1)V P safe by S after c
Yue PU{P}VI
(Psafes & ic (lafteroc) & i Yo =ags Yy (7',s') € R).

Simulation with an H hypothesis of safety imposes stronger requirements on the implementation than
the simulation with the hypothesis of trace safety. The simulation with the hypothesis of trace safety, in
turn, imposes stronger requirements on the implementation than the trace conformity with the same
hypothesis about safety.

As a result, we have the following relations of trace conformity and safe simulations with different
hypotheses about safety: ss — sst — saco. Strengthening the requirements for the implementation starts as
an imposition of additional requirements for compliance of states of implementation and the specification
while maintaining the same trace safety hypothesis sst — saco. Since the safety hypothesis is the same, the
number of safe button pressings and, thus, the number of tests is the same. The only difference is the
amount of analytical checkups after the tests. This is followed by the strengthening the hypothesis of safety
with ss < sst, which leads to an increase in the safe button pressings and, thus, to a greater number of
checkups.

6. TEST COMPLETENESS

For testing, it is considered that the system under investigation is unknown, but it is assumed that it has
a model (of a given class, in the article it is LTS), which, when being interacted with, behaves just like the
real system. In the literature, this is called a fest hypothesis [4]. Therefore, the real system satisfies the
requirements formalizable in the specification if and only if its model (implementation) is conformal with
the specification.

For simulation, the operation of an implementation state request is used: in the beginning of the test
and after each observation (open state testing).

A test is an instruction where each item describes either a required restart of the system2 or atest action
(button) and, depending on the received observations and poststate, the next item or a verdict (pass or
fail). The implementation passes the test if the testing always (for any manifestation of nondeterminism)
does not end with the verdict fail. A test is significant if each of its conformal implementations passes,

2 A test including a restart is equivalent to a set of tests, which is usually considered.

AUTOMATIC CONTROL AND COMPUTER SCIENCES VWl. 45 No.7 2011

386 BURDONOYVY, KOSACHEV

exhaustive if each of its nonconforming implementations does not pass, and complete if it is significant
and exhaustive.

The aim is to generate complete test specifications, which clearly would determine conformity or non-
conformity of any implementation (which may be of a certain class).

In order to be complete, the simulation test ss is required for every state reachable in the safe testing of an
implementation state / and every H-safe button Pto verify each implementation observation u € P\ {P} and
poststate i'. It is assumed that any pair (u, i') can be reached in a finite number of pressings of P from the

state i. It is also assumed that any state iy, € I, = (i, after {)) can be reached in a finite number of restarts.
This is called the global testing hypothesis.

7. THEORETICAL TESTING
2

If s, ==, then all the implementations are conformal and testing is not required. If 5, = (y) %, we
define a minimal set N of nonconformal state pairs (i, s) generated by the following inference rules:
V(i,s) € HVP H-safeiVu e P {P}:

1.i Y & Psafes & s = (y#> |- (i,5) € N;

2. %f & Psafes & {i'} x (s after {u)) = N |- (i,s) € N.
The conformity I ss S is equivalent to the condition (4, s,) € N. Inference rules define the output graph,

whose points are the pairs (i, s) € N obtained using the first (1-point) or second (2-point) rule of inference.
(u,

The labeled arc (i, 5) &, (i', ") corresponds to inference rule 2 for s' € (s after {u)).

In the output graph, there is a tree of routes (perhaps not unique), which we call an output tree. Each
route of the tree begins in (i, s;), the root of the tree is an empty route, and the leaves are routes ending in
1-points. The route of the tree ending in a 2-point in the tree is continued by those and only those arcs
that are labeled by the same label (u, i'), which corresponds to the second rule of inference.

If (iy, 5y) € Nbut all the output trees are infinite, then no test can determine nonconformity in a finite
time. Therefore, upon the class of all H-safe implementations, there may exist only meaningful tests. One
such test is complete for the subclass of implementations in which there is either no inference tree (the
implementation is conformal) or a finite inference tree (the implementation is nonconformal). In addi-
tion to the global test, the enumerability of a set .S, = (s, after ()) is required; the set of buttons P(s) =
{P € RU Q| Psafe s}, which is safely achievable in each state s; and the set of poststates S(s, u) = (s after (u))
for each safe in s observation u.

An inference tree is finite if and only if it has finite branching, which is equivalent to the finiteness of
each s after (u). It is sufficient that, in every safely achievable state s, the specifications of the following are
finite:

(1) the number of transitions for each safe action, and

(2) the set s after ().

8. PRACTICAL TESTING

In practice, it is necessary that the test comes to an end after a finite time. A full test detects an error in
a finite time, but, in the absence of errors, can run indefinitely if we do not imply special restrictions. The
following restrictions are enough. (1) The number of buttons is finife and each button is resolvable with
respect to the alphabet of actions. (2) The specification is finife: it has a finite number of states and tran-
sitions. (3) “Part” I' of the implementation I, which is “passed” in a safe test, is finite and -nondeter-
mined: all the possible pairs (observation, poststate) can be obtained not only in a finite number of button
pressings in this state, as in the global testing, but in not more than 7 pressings. At t = 1, the implementation
is determined.

The finiteness conditions allow one to check the implementation I first, that is, to build I' and then to

conduct the verification. The transition i — i' is added to I' when, after a survey of the state 7, the Pbut-
ton is pressed; the observation u is obtained; and the poststate, which is now the state /', is queried again.

This button P will be called the control button and denoted by P(i — i'). Note that we add not only the
transitions by external actions but also the virtual transitions from the observable failures. If Pis an R but-

ton and u = P, then the added transition / —2+ [means that the implementation includes a virtual loop

AUTOMATIC CONTROL AND COMPUTER SCIENCES VWl. 45 No.7 2011

SAFE SIMULATION TESTING OF SYSTEMS 387
The current state no I includes an no Endofthe LTS
is incomplete? incomplete state? I' construction
Transition to the
incomplete state

Data correction

Impact + observation

Nno |A new transition | Y€S

is obtained

Fig. 2. Scheme of the algorithm of the implementation investigation.

on the failure i — jifi= i', or the implementation has a t path from i to /' and a virtual loop on the failure
o P o

For each passed state i, there is stored a set of H(i), which is the set of specification states corresponding
to it by H that will grow and the set of safe buttons P(i) = \U{P(s) | s € H (i)}. For each button P € P(i) there
is a counter C(i, P), which stores the number of pressings of Pin the state i. The button P € P(i) is complete
in the state i if C(i, P) = ¢. The state i is complete only if all the buttons of P(i) are complete.

In the beginning of the test after the state query i, € I, we have
H(iy) =Sy, P(iy) = V{P(s) | s € Sy}, C(iy, P) =0 for each button P € P(iy).

First we check the completeness of the current state / from I' (Fig. 2). If the state is incomplete, then
there is an incomplete button P € P(i). Then, we press the button P and get a transition i — 7', and the
poststate i' becomes the new current state. The counter gets incremented: c(P, i) := c(p, i)+1. If the tran-
sition i — i" is new, we add it to I', remember the button P as control P(i — i'), and update H(i') :=
H(i") v S(s, i) for each s € H(i) if P safe s is true.

When a new state s is added to the H(i), we adjust P(i) := P(i) U P(s) and update H(i') := H(i") W S(s, u)
for the previous transition i — /' provided that P(i —— i) safe s while marking the newly added states.

This recursive procedure is repeated as long as possible. The finiteness conditions guarantee that the pro-
cedure ends after a finite number of steps.

If the current state / is complete, then we move to any incomplete state (if there are no such states, the
construction of I' is finished). To do this, select from LTS I' a forest of trees covering all the states and ori-
ented towards their roots, which are all incomplete states. With every transition i — 7' of the forest, we
associate a control button A(i) = P(i — i'). We move by pressing the button A(/) in each current state i.

Because of nondeterminism, we may move not to /' but to a different state /", where we press the button
A(i"). The transition to an incomplete state is guaranteed by the # nondeterminism of the implementation.

The checkup of the implementation ends in a finite time. The number of test inputs is equal to O(bt")
for 1> 1, O(bn?) for t = 1, and the amount of computations is O(bnt") + O(bn™) + O(mk) for t> 1. For t = 1,
the first compound is replaced by O(bn?), where b is the number of buttons, # is the number of implemen-
tation states, m = O(bnf) is the number of implementation transitions, and k is the number of specification
states.

The verification of the simulation after the construction of LTS I' tries to build a conformal correspon-
dence R,, while giving the verdict pass if such correspondence exists and is built or the verdict fail if such
correspondence is impossible. First, a bipartite graph is constructed. Vertices of type 1 are pairs (i, s),

where i is a state from I', and s € H(i) is a state from S. Vertices of type 2 are pairs (i — ', 5), where
i — i'is a transition from I', and s € H(i). At each vertex of type 2 is an arc of type 1 (i,) — (i —= 1, 5).

AUTOMATIC CONTROL AND COMPUTER SCIENCES VWl. 45 No.7 2011

388 BURDONOYVY, KOSACHEV

IR = {{x}}, Q = (v}

I X y
O—XD 2
y
Ii X y
Oy, 2)
VR
R2 H
R
0,0/0,0

2,424

»3—Ix} —3,3
Sss S I ssS
Ry ={00, 01, 02, 04, R =100, 01, 02, 04,
10, 11, 12, 14, 12, 13, 14,
20, 21, 22, 23, 24, 20, 21, 22, 23, 24}
32, 33, 34,

40, 41, 42, 43, 44)

I x x
y XA
y
L X X
y A
y
H
\
0,0z -- -2 0—p—1,0
1,1 i‘;’::{ 0—x—1 ,0

1,3&‘&

IyssS

Fig. 3. Example of simulation verification.

An arc of type 2 (i — ', 5) — (i', 8') is built if s' € S(s, u). At the same time, a list of terminal nodes of

type 2 is built.

After constructing a bipartite graph, each terminal node v, of type 2 is removed along with an arc
v, — v, the initial vertex v, of the arc, and each ark that ends in it vj — v;,. At the same time, for v, =

(i, 5), the state s is removed from the set H(i). These operations are repeated until a vertex of type 1 (i,),
where i, € [j, gets removed or until all the terminal nodes of the second type are removed. In the first
case, the algorithm terminates with the verdict fail, since (i, s,) € N implies that (i,, s,) € NV; in the second

case, the verdict is pass. In the second case, the correspondence R, = {(i, s) | i € V| &, € H(i)} gets built.
If at the construction of a bipartite graph each H(i) is replaced by the set of all states of the specification,

the algorithm will build the largest conformal correspondence R;.

The amount of calculations for the verification is O(mk?).

9. EXAMPLE OF VERIFICATION FOR SAFE SIMULATION

Figure 3 shows an example of a simulation verification. The semantics contain both R and Q buttons.
The S specification includes all the hazards: unobserved failure {y} (in state 3), divergence (in state 4), and
destruction (in state 5). The only manifestation of nondeterminism in the specification are two transitions

AUTOMATIC CONTROL AND COMPUTER SCIENCES Vol. 45

SAFE SIMULATION TESTING OF SYSTEMS 389

0 —~ 1 and 0 -2~ 3. However, in these states, the same buttons ({x}) are safe, and the specification sat-
isfies its H hypothesis. Since the relation ss is reflexive on the class of specifications that meet their H
hypotheses, the specification S is conformal to itself.

In addition to the conformal implementation S, there are given examples of another conformal imple-
mentation I; and a nonconformal implementation I,. After investigating the implementations, LTS S, I,

and I, will be built. They are distinguished by the presence of explicit (as opposed to virtual) transitions

loops by the refusal {x}. In addition, in S', there are no transitions, which are unsafe in the specification
S; respectively, state 5 is unreachable in S', since it is unreachable in S by safe routes.

For each of these three implementations, below are bipartite graphs to verify the compliance R, with
the corresponding H. The state specifications are given in bold. As an example, let us consider the construc-
tion of a bipartite graph for the implementation I;. Since the initial states of the implementation and the
specification always H match, (0, 0) € H, and the pair (0, 0) is the vertex of type 1. Since in implementation
transitions 0 —— 1 and 0 —— 1 were observed, the arcs (0, 0) — (0 — 1, 0) (0, 0) — (0 — 1, 0) are
added to a bipartite graph. Since the implementation state 0 has two transitions 0 —= 1 and 0 -~ 3,
arca (0 = 1, 0) —= (1, 1) and (0 — 1, 0) —= (1, 3) are added to the bipartite graph. Similarly, since
the specification state 0 has the transition 0 — 2, the arc (0 — 1, 0) — (1, 2) is added to the bipartite
graph. Since the implementation has a transition from refusal 1 M 1, the arc (1, 1) — (1 i 1,1)is
added to the bipartite graph. And so on.

After constructing the bipartite graph, we anal}(lze the terminal nodes of type 2 (marked in gray). There
is one such vertex in the implementation I;: (1 LN 1, 1). Itis terminal, as in the specification there is no
corresponding (for the refusal x) transition from state 1. Consequently, the pair of states (1, 1) can not
belong to a conformal correspondence. However, to build R, < H, we need to remove the (unique) incom-
ingarc (1,1) — (1 LN 1, 1) of a bipartite graph, the vertex of type 1 (1, 1), and all its incoming arcs (in
this case, one arc (0 —— 1, 0) — (1, 1). Arcs that are subjected to removal are marked by dotted lines.
The set of vertices of type 1 left after the completion of the removal process form the conformal correspon-
dence R, if it includes a mandatory pair of initial states (0, 0). This is the case for implementations S' and
I, but not for implementation I.

For conformal realizations, the S' and I} correspondences R, are given without the bipartite graphs,
which are constructed similarly but at the initial stage, while the vertices of type 1 are all pairs of states of
implementation and specifications.

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research, project no. 10-07-00147-a.

REFERENCES

1. Burdonoy, I.B., Kosachev, A.S., and Kulyamin, V.V., Formalization of Test Experiments, Program. Comput.
Software 2007, vol. 33, no. 5, pp. 239—260.

2. Burdonov, I.B., Theory of Conformity for Functional Testing of Programming Systems Based on Formal Models,
Doctoral (Phys.—Math.) Dissertation, Moscow, 2008, Available from: http://www.ispras.ru/redverst/publications/
tr-01-2007.pdf

4. Bernot, G., Testing against Formal Specifications: A Theoretical View, Proc.4th Int. Joint Conf. on Theory and
Practice of Software Development (TAPSOFT’91), Abramsky, S. and Maibaum, T.S.E., Eds., Brighton, 1991,
vol. 2, pp. 99—119; Lect. Notes Comput. Sci., 1991, vol. 494, pp. 99—119.

5. van Glabbeek, R.J., The Linear Time—Branching Time Spectrum II. The Semantics of Sequential Processes
with Silent Moves, Proc. 4th Int. Conf. on Concurrency Theory, (CONCUR’93), Best, E., Ed., Hildesheim, Ger-
many, 1993; Lect. Notes Compt. Sci., 1993, vol. 715, pp. 66—81.

6. Milner, R., Lectures on a Calculus for Communicating Systems, Proc. Semin. on Concurrency, Lect. Notes
Compt. Sci., 1986, vol. 197, pp. 197—220.

7. Milner, R., Communication and Concurrency, New York: Prentice-Hall, 1989.

AUTOMATIC CONTROL AND COMPUTER SCIENCES VWl. 45 No.7 2011

