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1. INTRODUCTION

A Labeled Transition System (LTS) is the basic
model of interacting processes. For this model, opera�
tions of the algebra of processes and, first of all, the
operation of parallel composition of LTSs have been
defined. Testing is understood as the interaction of an
implementation with a test system formalized as a par�
allel composition of an LTS implementation with an
LTS test. Originally, it was assumed that the only
observations over LTSs are external (observable)
actions, which label the transitions of LTSs. Unob�
servable internal activity is also admitted, which is rep�
resented in an LTS by transitions by internal (unob�
servable) actions, which only change the state of the
LTS. Since such actions are unobservable, they are
indistinguishable under testing and are denoted by the
same symbol τ. Such a model can be called an LTS of
actions, or an action transition system (ATS). The
result of testing is a sequence of observable actions—a
trace of actions. On the traces of actions, one can
define a composition of traces so that the testing and a
composition of LTSs turn out to be consistent: the set

of traces of a composition of LTSs coincides with the
set of all pairwise compositions of traces of LTS oper�
ands. This property can be called additivity of traces
with respect to composition.

Another formalization of testing (closely related to
the algebra of processes) is based on the so�called test�
ing machine [7–9], which fixes some capabilities of
the test system to control and observe the behavior of
implementation. It is assumed that, using a testing
machine, one can allow or forbid an implementation
to execute transitions by one or other external actions,
while τ activity is always allowed. It is clear that other
observations are possible under testing except for
actions. Anyway, all of them are related to the observa�
tion of stopping of an LTS implementation that arises
when a current state is stable (there is no τ activity, i.e.,
τ transitions, in this state), and one cannot execute
transitions by external actions that are defined in this
state, because all of them are forbidden at a given
instant of time by the testing machine. These observa�
tions include, in addition to the very fact of stopping,
a refusal set and a ready set. The refusal set is the set of
actions that are allowed by the testing machine, but
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there are no transitions by these actins at a current
state of implementation. If we observe the stopping of
a machine for one or other set of allowed external
actions, then we observe the corresponding refusal set.
The ready set is the set of all external actions by which
there are transitions at a current state of implementa�
tion. Such an observation is characteristic, for exam�
ple, of systems with graphic interface, when a menu of
possible actions is displayed on the screen and the sys�
tem waits for one or other choice made by the user.
Now the result of testing is an observation trace, which
may include not only external actions, but also other
observations. The collection of admissible actions and
observations formalizes the capabilities of the test sys�
tem and is defined by the interaction semantics. For
example, the well�known conformance relation ioco
(Input Output COnformance) [11,12], which is based on
the division of actions into stimuli (input) and reactions
(output), admits two types of test actions—sending a
stimulus or reception of all reactions, and the only type
of refusal—the absence of reactions (quiescence).

A drawback of this formalization is that all observa�
tions, except for external actions, are described by an
LTS model implicitly. Moreover, a test action actually
reduces to a set of external actions allowed by this test
action. All this, first, complicates the interpretation of
the model during testing, second, does not give free�
dom of considering new types of observations and test
actions for one or other interaction semantics, and,
third, does not allow one to explicitly define in the
model the test actions to which it reacts by some or
other explicitly defined observations.

In our previous paper [1], we tried to get rid of this
drawback and defined a new generalized model of an
LTS. In this model, transitions are labeled by observa�
tions or test actions, called buttons, rather than by
external actions. In addition to the freedom concern�
ing buttons and observations in an implementation,
this allowed us to uniformly simulate systems with pri�
orities, which are not described in terms of LTSs of
actions. This new model can be called an observation
transition system (OTS).

However, there remains another significant draw�
back of both LTSs of observations and LTSs of actions
when considering the traces of not only actions but
also of other observations. The point is that a transi�
tion from actions to observations leads to a mismatch
between testing and a composition of LTSs: on obser�
vation traces, it is impossible to define a composition
so that the property of additivity would hold. This is
associated with the fact that, in general, an observation
in a composition state is not calculated by observations
in the operand states. The only exception, besides an
external action, is the ready set.

In this paper, we propose an approach that elimi�
nates this drawback. The idea consists in labeling tran�
sitions of LTSs by symbols (called events) such that, on
the one hand, these symbols can be composed to guar�
antee the property of additivity, and, on the other

hand, they can be used to generate observations when
testing: a transition by an event gives rise to one or
other observation related to this event. The latter
property can be called generativity of event traces: all
observation traces of an implementation are calcu�
lated by these traces. This model can be called an event
transition system (ETS).

We define (1) a transformation of an ETS into an
OTS to comply with the concepts of our previous
paper [1]; (2) a composition of ETSs; (3) a composi�
tion of specifications that preserves conformance: a
composition of conformal implementations is confor�
mal to a composition of specifications; and (4) uni�
form simulation of ATSs in terms of ETSs that allows
one to consider an implementation in any interaction
semantics admissible for an ATS. Here we aim at guar�
anteeing the following important property of consis�
tency between a composition and simulation: a com�
position of ETS operands obtained as a result of simu�
lation of ATS operands is equivalent to an ETS
obtained as a result of simulation of a composition of
these ATS operands. Here equivalence is understood
as the equality of the sets of event traces.

2. AN LTS OF EVENTS AND GENERATION 
OF OBSERVATIONS BY EVENTS

By an LTS is meant a directed graph with non�
empty set of vertices, which are called states; one of
the states is distinguished as the initial state, and the
arcs are called transitions and labeled by symbols from
a certain universe of symbols L or by a special symbol
of an internal action τ ≠∈ L. We also introduce a spe�
cial additional symbol of destruction γ ∈ L that simu�
lates any behavior of an LTS that is undesirable when
interacting with this LTS [2, 3, 6]. An LTS S is defined
by a quadruple, S = Lts(VS, ES, s0), where VS is the set
of states, ES ⊆ VS × (L ∪ {τ}) is the set of transitions,

and s0 is the initial state. The expression a  a'
denotes that (a, x, a') ∈ ES. A trace of an LTS is a
sequence of labels on a path starting from the initial
state, the symbol τ being omitted. Denote the set of
traces of an LTS S by tr(S).

When defining an ATS (an LTS of actions), we
assume that a universe of external actions A ⊆ L is
defined. By a destruction is meant an external action
γ ∈ A. An ATS is an LTS S = Lts(VS, ES, s0) in which
each transition is labeled either by a symbol τ or by an
action from A, i.e., ES ⊆ VS × (A ∪ {τ}) × VS. We will
write S = Ats(VS, ES, s0). The traces of an ATS are
called traces of actions; they contain only actions.

To define an OTS (or an LTS of observations)
introduced in our previous paper [5], we assume that
two disjoint universes are defined: a universe of buttons
(test actions), B ⊆ L, and a universe of observations,
O ⊆ L, such that B ∩ O = ∅. By a destruction is meant an
observation γ ∈ O. An OTS is an LTS S = Lts(VS, ES, s0)
in which each transition is labeled either by a symbol

x
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τ, by a button from B, or by an observation from O; i.e.,
ES ⊆ VS × (B ∪ O ∪ {τ}) × VS. In addition, the absence
of a transition by a button in a state is interpreted as a
loop transition by this button. For an OTS S, we write
S = Ots(VS, ES, s0). The traces of an OTS are called
observation traces; they contain only observations and
buttons.

To define an ETS (an LTS of events), we will assume
that, in addition to the universe of buttons B ⊆ L, a uni�
verse of events E ⊆ L B ∩ E = ∅ is defined that is dis�
joint from the universe of buttons. By a destruction is
meant an event γ ∈ E. An ETS is an LTS S = Lts(VS,
ES, s0) in which each transition is labeled either by a
symbol τ, by a button from B, or by an event from E; i.e.,
ES ⊆ VS × (B ∪ E ∪ {τ}) × VS. In addition, the absence
of a transition by a button in a state is interpreted as a
loop transition by this button. For an ETS S, we write
S = Ets(VS, ES, s0). The traces of an ETS are called
event traces; they contain only events and buttons.

In [1], a pair B/O defines a testing machine such
that its “black box” contains an OTS, each test action
corresponds to a button from B on the keyboard of the
machine, and an observation from O is displayed on
the screen. If no button is pressed, then an implemen�
tation can execute any τ transition, a γ transition, or a
transition by an observation x ∈ O. In the latter case,
an observation x is displayed on the screen. A button
p ∈ B is displayed on the screen when it is pressed.
When a button p is pressed, an implementation can
execute a finite number of τ�transitions, after which it
executes either a γ transition or a p transition.

In this paper, we consider an implementation as an
ETS, rather than an OTS; therefore, we assume that
the black box of the testing machine contains an ETS,
rather than an OTS. A transition by a button in an ETS
corresponds to a transition by the same button in an
OTS, and a τ transition in an ETS corresponds to a τ
transition in an OTS. To a transition by an event in an
ETS, we assign a transition by one or other observation
in an OTS. We will assume that a mapping of events
into observations is defined by a universal partially
defined single�valued function f : E  O. Let us
require that the event of destruction be mapped into
the observation of destruction: γ ∈ Dom( f ) and f(γ) = γ.
An event a ∈ Dom( f) is called an observable event.

The operation of an ETS is determined not only by
its structure but also by the function f. When a button
p ∈ B is pressed, then an implementation can execute
a finite number of τ transitions, after which either a γ
transition or a p transition is executed. After a p transi�
tion (before pressing the next button), as well as at the
beginning of testing before pressing the first button,
the implementation can execute any τ transition or a
transition by an observable event a ∈ Dom( f); in the
latter case, we have an observation f(a). Notice that a
transition by destruction, just as a τ transition, can
always be executed; however, in contrast to a τ transi�
tion, which does not give observations, one observes γ
during a γ transition. We also note that transitions by

unobservable events (outside the domain of the func�
tion f) are not executed under testing. However, we
will need such transitions in order that the composi�
tion of an ETS and event traces be additive. Moreover,
a composition of two events one or each of which is
unobservable can be an observable event.

Note that ETSs with a single set of events can be
assumed equivalent because there are a sufficient
number of traces of events to calculate traces of obser�
vations and, in view of the additivity property (which
we demonstrate in the next section), they are sufficient
for a composition.

The function f defines a natural mapping of an ETS
into an OTS under which a transition by an event either
is replaced by a transition by the corresponding obser�
vation or is removed, if there is no such an observation.
We will denote such a mapping by f: ETS  OTS. For
an ETS S, this mapping is defined as follows. Every

transition s  t, where a ∈ Dom( f), is replaced by a

transition s  t, while every transition s  t,
where a ∈ E\Dom( f), is removed; transitions by but�
tons and τ transitions are preserved.

Testing an ETS implementation S is equivalent to
testing an OTS implementation f(S).

It is natural to extend the mapping f : E  O to the
traces of events f : (E ∪ B)*  (O ∪ B)* and to the
sets of traces such that f : 2(E ∪ B)*  2(O ∪ B)*. Let a
trace of events be given by σ = u1, u2, …, un, where ui ∈
E ∪ B. Then σ ∈ Dom( f) if, for every i = 1, …, n, either
ui ∈ B or ui ∈ Dom( f). In this case, f(σ) = v1, v2, …,
vn, where vi = ui if ui ∈ B and vi = f(ui) if ui ∈ E. For a

set  of event traces, f( ) is defined as the set of

appropriate observation traces: f( )  { f(σ)|σ ∈

Dom( f)}.
It is obvious that any ETS S satisfies the relation

tr( f(S)) = f(tr(S)).

3. PARALLEL COMPOSITION

We define a parallel composition of ETSs in the
spirit of communicating sequential processes (CSPs)
[10]. In CSPs, the result of composition of two ATSs is
an ATS whose states are given by pairs of states of
operands, the initial state is given by a pair of initial
states, and a transition is either asynchronous and cor�
responds to a transition in one of the operands (the
state of only this operand is changed), or synchronous
and corresponds to a pair of transitions by the same,
synchronous, action in both operands (the states of
both operands may be changed). In this case, the syn�
chronism or asynchronism of transitions is uniquely
defined by the actions by which these transitions are
labeled; i.e., all external actions are classified under
synchronous and asynchronous actions, whereas the
internal action τ is always assumed to be asynchro�
nous. We will also assume that destruction is always

a

f(a) a

∑ ∑

∑ =
Δ



272

PROGRAMMING AND COMPUTER SOFTWARE  Vol. 39  No. 6  2013

BOURDONOV, KOSSATCHEV

asynchronous. In either case, an action on the result�
ing transition coincides with an action on a single
operand transition (asynchronous case) or on both
operand transitions (synchronous case). After that,
some1 synchronous actions on transitions are “hid�
den” by the operator hide; i.e., they are replaced by the
symbol τ.

For a composition of ETSs, we will always assume
that buttons from B are synchronous, while an event γ
is asynchronous. Other events from E\{γ} may be
either synchronous or asynchronous, depending on the

alphabet of synchronous events U ⊆ E\{γ}. Moreover,
an event on a synchronous transition of the composi�
tion does not necessarily coincide with events on oper�
and transitions. We will assume that a partially defined
composition of synchronous events is defined, which
also results in a synchronous event |U | : U × U  U,
Dom(|U |) ⊆ U × U. This composition should be com�
mutative: if (a, b) ∈ Dom(|U |), then (b, a) ∈ Dom(|U |)
and a|U |b = b|U |a.

Let us formally define a composition of ETSs |U |:
ETS × ETS  ETS. For S = Ets(VS, ES, s0) and T =
Ets(VT, ET, t0), we have S|U |T = Ets(VS × VT, E, s0, t0),
where E is a minimum set of transitions that is generated
by the following inference rules: ∀s, t, s', t', a, b, p,

1.1: a ∈ (E\U) ∪ {τ}  & s–a  s' � st–a  s't;
1.2: b ∈ (E\U) ∪ {τ} & t–b  t' � st–b  st';
1.3: p ∈ B & s–p  s ' & t–p  t ' � st–p  s't ';
1.4: (a, b) ∈ Dom(|U |) & s–a  s' & t–b  t ' � st–ab  s't '.

On the basis of the composition of events, we define a composition of traces of events |U |: (B ∪ E)* × (B ∪
E)*  (B ∪ E)* as a minimum set of traces obtained by the following inference rules: ∀σ, σ1, σ2 ∈ (B ∪ E)*
and ∀a, b, p,
2.0:  � � ∈ �|U |�;
2.1: σ = σ1|U |σ2 & a ∈ E\U � σ ⋅ a ∈ (σ1 ⋅ a)|U |σ2;
2.2: σ = σ1|U |σ2 & a ∈ E\U  � σ ⋅ b ∈ σ1|U |(σ2 ⋅ b);
2.3: σ = σ1|U |σ2 & p ∈ B  � σ ⋅ p ∈ (σ1 ⋅ p)|U |(σ2 ⋅ p);
2.5: σ = σ1|U |σ2 & (a, b) ∈ Dom(|U |)  � σ ⋅ (a|U |b) ∈ (σ1 ⋅ a)|U |(σ2 ⋅ b).

If σ1|U |σ2 = ∅, we will say that these traces are not
composed. The composition of traces of events is nat�
urally extended to the composition of the sets of traces
of events, which is defined as a union of the sets of all
pairwise compositions:

This composition possesses the property of additiv�
ity: the relation tr(S |U |T) = tr(S)|U |tr(T) holds for any
two ETSs S and T.

The composition of ATSs and traces of actions is a
particular case of the composition of ETSs and traces
of events if we assume that A ⊆ E, U ⊆ A\{γ}, Dom(|U|) =
{(a, a)|a ∈ U} and, if a ∈ U, then |U |a = a.

After a composition, some transitions by synchro�
nous events are hidden by the operator hide, while
transitions by buttons are not hidden. Denote the set

of hidden symbols by H ⊆ U.2

For S = Ets(VS, E, s0), formally hide(S, H) =
Ets(VS, E, s0), where E is a minimum set generated by
the following inference rules: ∀s, s', and a,

3.1: a ∉ H & s – a  s' � s – a  s' and
3.2: a ∈ H & s – a  s'  � s – τ  s '.

For a trace of events σ ∈ E*, a trace hide(σ, H) is
defined that is obtained by the removal from σ of all
events belonging to H: ∀σ ∈ E* and ∀a ∈ E,
4.0:   � hide(�, H) = �,
4.1. a ∉ H � hide(σ ⋅ a, H) = hide(σ, H) ⋅ a,
4.2: a ∈ H � hide(σ ⋅ a, H) = hide(σ, H).

The hiding operator for traces is naturally extended to
the sets of traces: for H ⊆ U and the set of traces  ⊆ E*,

we have hide( , H)  {hide(σ, H)|σ ∈ }.

The hiding operator possesses the following impor�
tant property: the relation tr(hide(S, H)) = hide(tr(S),
H) holds for any ETS S and any H ⊆ U.

Along with the property of additivity of the composi�
tion of ETSs, we have hide(tr(S|U |T), H)) = tr(hide(S|U|T,
H)) = hide(∪(tr(S)|U |tr(T)), H).

It is obvious that the hiding operator for ATSs and
traces of actions is a particular case of the hiding oper�
ator for ETSs and traces of events.

4. COMPOSITION OF SPECIFICATIONS

In the general form, the problem of composition is
the problem of matching the specification of a compo�

1 The reason for which only a part of synchronous symbols can be
hidden is the possibility of simulation of broadcasting: a transi�
tion in the composition of several ATSs corresponds to transi�
tions in several (not necessarily two) operands.

2 Actually, the condition H ⊆ U for the hiding operator is redundant;
however, after a composition, the hiding of asynchronous events
hardly makes sense. Moreover, after a composition, it suffices to
hide only synchronous events from Im(|U|) ⊆ U, because other syn�
chronous events in the composition are certainly missing.

U  = ∪ σ1 U σ2 | σ1  & σ2∑ ∑∈ ∈{ }.
2∑1∑
Δ

∑

∑ =
Δ

∑
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sition system to the specifications of its components.
The specification of a system is said to be correct [3, 6]
if a composition of implementations conformal to the
specifications of the components is conformal to the
specification of the system. This property is called
preservation of conformance under composition [13,
14], or monotonicity of a composition [2, 3, 6, 15].
How can one check if a given specification of the sys�
tem is correct? It is clear that if a specification does not
impose any requirements on implementations, then
any implementation is conformal to this specification,
and, hence, this is a correct specification of any com�
position system. Therefore, of interest is to seek a cor�
rect specification of the system that would impose the
most stringent requirements on implementations
compared with all the other correct specifications of
the system. This the “maximum correct” specification
of the system is called a composition of specifications
of the components [3, 6]. Thus, the main problem of
composition is the construction of a composition of
specifications.

In [1], a specification in the B/O semantics was
defined as the set of finite traces of observations con�
sidered as errors (of the first kind). An implementation
is conformal if it does not contain errors. More rigor�
ously: an OTS implementation I is conformal to a
specification S if tr(I) ∩ S = ∅. Denote the set of OTS
implementations conformal to the specification S by

Oconf(S).3 Accordingly, an ETS implementation I is
conformal to the specification S if tr( f(I)) ∩ S = ∅.
Denote the set of ETS implementations that are con�
formal to the specification S by Econf(S). It is obvious
that f(Econf(S)) ⊆ Oconf(S).

For any LTS S (in particular, OTS and ETS), there
exists a prefix relation between its traces: a set of LTS
traces contains, together with each trace, all its pre�
fixes. In addition, for any OTS and ETS, there is a
transition by every button in each state, because the
absence of a transition by a button in a state is inter�
preted as the presence of a loop transition by this but�
ton. This gives an additional relation between traces: if
there is a trace σ, then there also exists a trace σ ⋅ p for
every button p. The presence of these two trivial rela�
tions defines, in addition to errors of the first kind,
which are directly defined by a specification, other
errors—nonconformal traces, i.e., traces that are not
encountered in conformal implementations. Errors
that are not errors of the first kind are called errors of
the second kind. Primary errors are errors all of whose
strict prefixes are conformal. This allows one to either
minimize or maximize specifications. The minimiza�
tion procedure4 constructs a set of primary errors: (1)
adds an error σ if an error is given by the trace σ ⋅ p,
where p is a button and (2) removes from the specifica�
tion every error some strict prefix of which is also an

3 In [1], where we considered only OTS implementations, we
wrote CS instead of O(S).

4 In [1], this procedure was called normalization.

error. After the systematic application of these two
rules to the specification S, one obtains a minimal
specification, which we denote by min(S). The maxi�
mization procedure constructs the set of all errors; it
also systematically applies two rules: a rule similar to 1
and the inverse rule 2; i.e., it adds every extension of
every error to the specification. For the specification
S, we denote a maximal specification by max(S).

Consider a composition system obtained as a result
of composition of two components. Suppose given the
specifications S1 ⊆ O* and S2 ⊆ O* of the components,
a synchronous alphabet U ⊆ E\{γ}, and a hiding set
H ⊆ U. A formal definition of the correctness of the
specification S ⊆ O* is as follows:

S is correct  ∀I1 ∈ Econf(S1)∀I2 ∈ Econf(S2)
hide(I1|U |I2, H) ∈ Econf(S).

If operand implementations are taken from fixed
subclasses of implementations I1 and I2, then this def�
inition is appropriately changed:

S is correct  ∀I1 ∈ Econf(S1) ∩ I1∀I2 ∈ Econf(S2) ∩
I2 hide(I1|U |I2, H) ∈ Econf(S).

A formal definition of a composition of specifica�
tions S1|U |S2 ⊆ O* is as follows:

S = S1|U |S2  S is correct &∀S ' (S ' is correct ⇒
max(S ') ⊆ max(S)).

Note that a specification of a system that is correct
on the classes of all implementations is obviously cor�
rect on any subclasses of implementations. However, a
specification of a system that is correct on subclasses
of implementations may be incorrect on the classes of
all implementations and, hence, may impose more
stringent requirements on the implementation of the
system than those imposed by the composition of
specifications on the classes of all implementations.

The following assertion is rather obvious: the set of
observation traces that are not generated by the traces
of events encountered in the compositions of confor�
mal implementations is a composition of specifica�
tions. This set of traces is a complement of (B ∪ O)* of
the set of observation traces that are generated by the
set of traces of events encountered in compositions of
conformal implementations. The last set of event
traces, as shown in Section 3, coincides with the set of
pairwise compositions of event traces that are encoun�
tered in conformal implementations of the first and
second operands, respectively. A trace of events is
encountered in conformal implementations of the ith
operand if and only if an observation trace generated
by this event trace is conformal with respect to the
specification Si. Such traces of events are obtained
from the set of conformal observation traces by using
the function f1, and this set of conformal observation
traces is a complement of (B ∪ O)* of the set of all
errors of max(Si).

These arguments (when read in reverse order) give
the following procedure for constructing a composi�

=
Δ

=
Δ

=
Δ
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tion of specifications on the class of all implementa�
tions.

1. Construct a set Ai of observation traces that are
not encountered in conformal OTS implementations
of the ith component: Ai = max(Si), where Si is the
specification of the ith component. Note that this set
is postfix�closed (it contains, along with each trace, all
its extensions).

2. Construct a set Bi of observation traces that are
encountered in conformal OTS implementations of
the ith component: Bi = (B ∪ O)*\Ai. Note that this set
is prefix�closed (it contains, along with each trace, all
its prefixes).

3. Construct a set Ci of traces of events that are
encountered in conformal ETS implementations of
the ith component: Ci = ∪{ f1(σ) |σ ∈ Bi}.

4. Construct a set D of pairwise compositions of
traces of events that are encountered in conformal
ETS implementations of the first and second oper�
ands: D = C1|U |C2.

5. Perform a hiding: E = hide(D, H).
6. Construct a set F of observation traces that are

generated by the traces of events encountered in com�
positions of conformal ETS implementations of oper�
ands: F = f(E). Note that this set is prefix�closed.

7. Construct a set G of observation traces that are
not generated by the traces of events encountered in
compositions of conformal implementations: G =
(B ∪ O)*\F. Note that this set is postfix�closed.

The set G is a maximal composition of specifica�
tions; i.e., G = max(S1|U |S2). Further, it can be mini�
mized in order that the required specification of the
system contain only primary errors: S = min(G).

Note that, if we consider subclasses of operand
implementations I1 and I2, then the maximization and
minimization procedures are changed, because they
should be based on a nontrivial relation between errors
that is available for these subclasses. This applies to item
1, where the maximization of a specification is per�
formed, and to the minimization of the composition of
specifications constructed. But even after this the com�
position of specifications may contain “redundant”
errors, i.e., traces that are not encountered in the com�
positions of implementations from the classes I1 and
I2. Of course, such errors do not affect the result of
testing; however, the elimination of these errors could
optimize the generation of tests: there is no need in the
tests that detect “redundant” errors. In order to do this
in the procedure of composition of specifications, one
should change only items 2 and 7, in which a comple�
ment of the set of traces is constructed. In item 2, the
set Ai should be completed to the set of observation
traces that are encountered in implementations from
Ii: ∪{tr( f(I))|I ∈ Ii}, rather than to the set of all obser�
vation traces (B ∪ O)*. In item 7, the set F should be
completed to the set of observation traces that are
encountered in the compositions of implementations
from I1 and I2: ∪{tr( f(hide(I1|U |I2, H))) |I1 ∈ I1 & I2 ∈

I2} = ∪{ f(hide(tr(I1)|U |(I2), H)) |I1 ∈ I1 & I2 ∈ I2},
rather than to the set of all observation traces (B ∪ O)*.

For practical application, the procedure described
has a drawback that some sets of traces obtained are
infinite. For example, if the specification Si of a com�
ponent is finite, then, after the maximization, the set
max(Si) is infinite (except for a degenerate case when
the universes of buttons and observations are empty).
At the same time, if the set of traces is regular, it can be
represented in a finite form as a finite generating
graph. Such a generating graph differs from the LTS
S = Lts(VS, ES, s0) only in that5 a subset of finite states
TS ⊆ VS is distinguished. We will denote this graph by
Sg, and the set of traces generated by this graph, by
tr(Sg). An LTS is a generating graph all of whose states
are finite.

It is known that any generating graph Sg can be
made into a deterministic graph preserving the set of
traces tr(Sg) generated by this graph. This is made by
the procedure of determinization, which constructs a
new deterministic generating graph d(Sg). The states of
this graph are given by all nonempty sets of the states
of the graph Sg, and the initial state is the set of states
that can be reached from the initial state of the graph
Sg by empty transitions. A set of states U is declared
finite if at least one of its elements u ∈ U is a finite state

of the graph Sg. A transition U  U ' is performed if
and only if there exists an u ∈ U such that there is a

transition u  u' in the graph Sg and U is the set of
ends u' of all such transitions.

Suppose that universes B, O, and E are finite. Let us
rewrite our procedure for the case when the specifications
of the components S1 and S2 are defined by finite generat�

ing graphs  and : tr( ) = S1 and tr( ) = S2.

1. Construct a graph  that generates a set Ai =
max(Si).

a. To this end, we declare that, in , the initial
state of each transition by a button that leads to a finite
state is also finite.

b. Add a new finite set ω.
c. In each finite state (including ω), execute a tran�

sition to the state ω by all buttons and observations.
Notice that this corresponds to the postfix�closedness
of the error set.

2. Construct a graph  that generates a set Bi =
(B ∪ O)*\Ai.

a. To this end, we first apply the procedure of deter�

minization; i.e., we construct a graph d( ).

5 Another difference is purely formal: in the generating graph, a τ
transition corresponds to an empty transition (an unlabeled arc
of the graph.
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b. Add a new finite state ω' to d( ), in which we exe�
cute loop transitions by all buttons and observations.

c. In each nonfinite state, we execute a transition to
the state ω' by all buttons and observations by which
there were no transitions from this state.

d. Remove all finite states together with the transi�
tions that lead to these states.

e. All the remaining states are declared finite. 
Notice that this corresponds to the prefix�closed�

ness of the set of conformal observation traces.

3. Construct a graph  that generates a set Ci =

∪{ f1(σ) |σ ∈ Bi}. To this end, in , we transform every
transition by observation x from state s into a set of mul�
tiple transitions by every event a such that x = f(a).
If there are no such events a, then we just remove a
transition by observation x.

4. Construct a graph Dg that generates a set D =
C1|U |C2. To this end, we apply the composition Dg =

|U |  described in Section 3.

5. Construct a graph Eg that generates a set E =
hide(D, H). To this end, we apply the hiding operation
Eg = hide(Dg, H) described in Section 3.

6. Construct a graph Fg that generates a set F = f(E).
To this end, in Eg, we transform every transition by
event a ∈ Dom( f) from the state s into a transition by
observation f(a). If a ≠∈ Dom( f), then we just remove
a transition by such an event.

7. Construct a graph Gg that generates a set G =
(B ∪ O)*\F.

a. To this end, we first apply the procedure of deter�
minization, i.e., construct a graph d(Fg).

b. Add a new state ω' to d(Fg), in which we execute
loop transitions by all buttons and observations. This
state, and only it, is declared finite.

c. In every state, we perform a transition to the state
ω' by all buttons and observations by which there were
no transitions from this state. Notice that this corre�
sponds to the postfix�closedness of the error set. Note
also that we can obtain states from which the state ω' is
not reachable. Such states can be removed.

The graph Gg generates a maximal composition of
specifications, i.e., tr(Gg) = max(S1|U |S2). This graph
can be minimized to obtain a graph Sg that generates a
minimal composition of specifications (the set of pri�
mary errors), i.e., tr(Sg) = min(S1|U |S2). To this end, we
systematically apply the following two rules: (1) if a
transition by button leads from a state s to a finite state
s', then the state s is declared finite, and (2) a transition
from a finite state is removed. At the end, one can
remove the isolated states obtained.

5. SIMULATION OF OTHER SEMANTICS

In [1], we considered various testing semantics
defined by appropriate testing machines and a simula�

Ai
g

Ci
g

Bi
g

C1
g C2

g

tion of each such semantics Ti in the B/O semantics,
that is defined as an implementation transformation
Mi: ATS  OTS corresponding to this semantics.
In the present paper, we simulate these semantics in
the B/E semantics; i.e., we consider a transformation
W: ATS  ETS, after which we can transform an
ETS into an OTS by defining an appropriate function
f, as described in Section 2.

In these semantics, an implementation is defined
by an ATS, that is, by an LTS in which transitions are
labeled by external actions from the universe A or by a
symbol τ. A test action allows the implementation to
execute external actions from a certain set of allowed
actions; a destruction γ and an internal τ action are
always allowed. A machine is said to be generative or
reactive depending on whether the implementation
can execute a sequence of allowed external actions or
only one such action, after which the execution of
external actions is blocked until the arrival of the next
(maybe, the same) test action. If there are no allowed
external actions and no τ activity in a current state of
implementation, the implementation stops. This stop
can be observed if a so�called green lamp is activated:
it is on while the implementation executes some
actions and is turned off when the implementation
stops. After the stop, the testing either ends or can be
continued by one or other test action. Finally, when
the machine stops, one can observe actions transitions
by which are defined at the current state of implemen�
tation. There are menu lamps corresponding to
actions for this purpose. If such a lamp is activated, it
is on at the time of stop if there is a transition by the
appropriate action in the implementation. All these
additional observations are classified in [8], and
semantics with constraints on the set of allowed
actions were considered in [2, 3, 6, 11, 12].

In this paper, we will consider all these possibilities
as attributes of a button. This allows us to consider a
wide class of semantics based on an ATS, including
“mixed” semantics, when, for example, the green
lamp is activated for some buttons and does not work
for other buttons. Formally, we will assume that a sub�
set of the universe of buttons P ⊆ B is fixed for which
the following functions are defined (which are defined
everywhere on P):

• acts: P  2A, allowed external actions except for
the always allowed destruction.

• reactive: P  Bool if true, the button is reactive;
i.e., the next button can be pressed only after the exe�
cution of an external action or after an observed stop
of the implementation; if false, the button is genera�
tive, which does not impose restrictions on pressing
the next button.

• green: B  Bool if true, then one can observe
the stop of implementation.

• continue: P  Bool if true, then one can con�
tinue testing after the stop.

• menu: P  2A, activated menu lamps.
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It is said that there are no priorities in the system if
the nondeterministic choice rule prescribes the imple�
mentation to choose any action a for execution (either
an external, a ∈ A, or an internal, a = τ, action) that is
defined in this implementation; in other words, there is
a transition by a in the current state, and this transition
is allowed by a pressed button p; i.e., a ∈ acts(p) ∪ {τ, γ}.
In [1], we also considered the systems with priorities
that were introduced in [4, 5], in which the feasibility
of an action a depends on a pressed button p ∈ P,
rather than only on the condition a ∈ acts(p) ∪ {τ, γ}.
Such systems are simulated by ATSs in which a transi�
tion is labeled by a pair (a, p), where p ∈ P and a ∈
acts(p) ∪ {τ, γ}, rather than by an action a. Such a
transition is executed with an observation of action a
only when a button p is pressed. It is clear that a system
without priorities can be understood as a special case
of the system with priorities if we replace each transi�
tion by an action a in this system by a set of multiple
transitions by pairs (a, p), where p runs over the set
{p ∈ P |a ∈ acts(p) ∪ {τ, γ}}. In what follows, we will
consider only systems with priorities. For such sys�
tems, the menu lamp should correspond to a pair
(action, button), rather than to an action. Now, the τ
activity is also controlled by buttons; i.e., instead of τ
transitions, we have (τ, p) transitions, where p ∈ P.
Therefore, one should speak not of stability, but of p�
stability of a state, which means the absence of transi�
tions labeled by a button p, i.e., by a pair of the form
(a, p), in the state. Accordingly, pairs of the form (τ, p)
also correspond to menu lamps. Therefore, we assume

that menu: P  .
The table presents the semantics considered in [1–3,

6, 8, 11, 12] together with the buttons admissible for
these semantics. We will consider all the actions from
A as events: A ⊆ E. In addition, we introduce events of

the form (r, p), where r ∈  is a ready set and
p ∈ P is a button. Denote the ready set in a state s by

r(s) = {(a, p)|s }. Thus, we introduce the set of

events A ∪ (  × P) ⊆ E.
To simulate these semantics in the B/E semantics,

we define an implementation transformation W:
ATS  ETS. Just as in the transformation M:
ATS  OTS, for every state s of the original ATS and
every button p ∈ P, a new state sp and a transition

s  sp are added. In every state sp, a transition by an
action a ∈ acts(p) ∪ {τ, γ} is defined if there was a tran�

sition s  t in the state s. If reactive(p) = true and
a ∈ acts(p), then the added transition also leads to the
state t. If reactive(p) = false or a ∈ (τ, γ), then the
added transition leads to the state tp. In every state sp

where reactive(p) = false, for every button q ∈ P, a

transition sp  sq is defined. For every state s and
every button p ∈ P, a transition from sp by event (r, p)
is added if s is p�stable, green(p) = true, and r = r(s),

2 A τ{ }∪( ) P×

2 A τ{ }∪( ) P×

a, p

2 A τ{ }∪( ) P×

p

a, p

a

where r(s) is calculated by the original ATS. The con�
dition of p�stability of the state s is as follows: (τ, p) ∉
r(s) & (τ, p) ∉ r(s). This transition leads either to the
state sp, if continue(p) = true and reactive(p) = false, or
to the state s, if continue(p) = true and reactive(p) =
true, or to some terminal state (if necessary, such a
state is added), if continue(p) = false. After that, all
(a, p) transitions are removed from the old states in
which a ∈ A and a ≠ γ, and (τ, ∅) and (γ, ∅) transitions
are replaced by τ and γ transitions, respectively. The
initial state remains the same; it is assumed that no
button was pressed at the beginning of testing (all
external actions except for destruction are prohibited),
and the green lamp is not activated.

Now, we define the function f for events from A ∪

(  × P). For actions, we assume that A ⊆
Dom( f) and f(a) = a for every a ∈ A. For the event

(r, p) ∈  × P, the observation condition, i.e.,
(r, p) ∈ Dom(f), is as follows: {(a, x) ∈ r |x = p} = ∅. This
is the condition of observable stopping of the machine
in a state with a ready set r under a pressed button p.
If (r, p) ∈ Dom( f), then f(r, p) = (r+, r–), where r+ =
menu(p) ∩ r and r– = (menu(p)\r) ∪ (acts(p) × {p}).
Here r+ is the set of pairs (a, p) for which menu lamps
are activated and turned on. Regarding every pair
(a, p) ∈ r+ at the stopping time of implementation, we
certainly know that there is a transition labeled by this
pair and this transition can be executed when a button
p is pressed. Accordingly, r– is the set of all pairs (a, p),
where p is a pressed button, as well as pairs (a, p) for
which the menu lamps are activated but are not turned
on. Regarding every pair (a, p) ∈ r– at the stopping
time of implementation, we certainly know that there
are no transitions labeled by this pair.

In the semantics that contain an event (r, p), an
observation (r+, r–) can be interpreted in one or other
way if the semantics (as a collection of buttons)
imposes constraints on the possible values of the sets r+

and r–. For example, in the failure trace (FT) seman�
tics, there are no menu lamps (they are not activated);
therefore, for an event (r, p), we always have r+ = ∅
and r– = acts(p), which is uniquely defined by the set
acts(p), which is called a refusal set at the stopping
time of implementation under a pressed button p. In a
semantics with finite sets of allowed actions and finite
sets of activated menu lamps (RT– and R–), the sets r+

and r– are finite. In the completed trace semantics T0,
only one type of refusal is possible, which arises in ter�
minal states. This observation is denoted as 0, which
coincides with a refusal set containing all external
actions. An observation S arises for any observable
stopping of implementation, i.e., precisely when an
empty refusal is observed. In the R/Q semantics,
observed refusals are elements of the set R, whereas, in
the input output conformance (ioco) semantics, there
is a single refusal, which is denoted by the symbol δ
and implies the absence of transitions (from the set Y)

2 A τ{ }∪( ) P×

2 A τ{ }∪( ) P×
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by reactions in the implementation at the time of stop�
ping.

For a specific semantics Ti, define a transformation
Di: ETS  ETS, which removes all transitions by
buttons that are not admissible in this semantics. Tak�
ing into account the above�described interpretation of
a general observation (r+, r–) in one or other semantics
Ti, we can easily see that the simulation Mi described
in [1] gives the same result as some general simulation
M: ATS  OTS, after which transitions by buttons
that are not admissible in the semantics Ai are
removed, i.e., the transformation Di is applied. This

universal transformation M differs from the transfor�
mation W only in that, instead of an event (r, p), a
transition is labeled by an observation f(r, p) = (r+, r–).
It is easily seen that observation traces are preserved
under simulation: in an ATS S, the set of observation
traces and buttons corresponding to the semantics Ti is
equal to tr( f(Di(W(S)))) = tr(Di(M(S))).

It remains to define a composition of the events we
have introduced. Only external actions can be asyn�
chronous; a destruction is always asynchronous, while
events of the form (r, p) are always synchronous. After
the composition, we will hide all synchronous transi�

Table

Semantics in
alphabet

A ⊆ A

Admissible buttons from P Full
observation

(r+, r–)

Interpretation 
of observation 
in semantics

reactive
=

acts
∈

green
=

menu
∈

continue
=

trace
T ×

(false) 2A false × ×

– –
T– ×

(false) {A} false × ×

failure trace FT ×
(false) 2A true {∅} true

r+ = ∅
r– = acts(p) × {p}

refusal
acts(p)

failure F ×
(false) 2A true {∅} false

failure trace FT– ×
(false) 2A– true {∅} true

failure F– ×
(false) 2A– true {∅} false

ready trace RT ×
(false) 2A true {(A ∪ {τ}) × P} true

r+ = r
r– = (A × P)\r

ready
r

readiness R ×
(false) 2A true {(A ∪ {τ}) × P} false

ready trace RT– ×
(false) 2A– true Fin((A ∪ {τ}) × P) true

r+, r– (r+, r–)
readiness R– ×

(false) 2A– true Fin((A ∪ {τ}) × P) false

completed
traces T0 ×

(false) {A} true {∅} × r+ = ∅
r– = A × {p}

refusal
0 = A = acts(p)

stability T0S ×
(false)

{A}
true {∅}

×

{∅} true r+ = ∅
r– = ∅ × {p} = ∅

refusal
S = ∅ = acts(p)

R ∩ Q = ∅ and
∪R ∪∪ Q = A R/Q ×

(true)
R true {∅} true r+ = ∅

r– = acts(p) × {p}
refusal
acts(p)

Q false × × – –

X ∩ Y = ∅,
X ∪ Y = A and
δ = Y

ioco ×
(true)

{δ} true {∅} true r+ = ∅
r– = δ × {p} = {(δ, p)}

refusal
δ = Y = acts(p)

{{x} |x ∈ X} false × × – –

Note: reactive = false in the generative machine of van Glabbeek, and reactive = true in the reactive R/Q machine and in the ioco
machine. For a set Z, Fin(Z) denotes a family of finite subsets of the set Z.
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tions by actions and only them. Thus, H ⊆ A\{γ} and

U = H ∪ (  × P).

The definition of a composition is based on the fol�
lowing basic properties of the ready set. If the states s and
t of two ATS operands are p�stable, then the composition
state st is p�stable if and only if there is no pair of synchro�
nous transitions, i.e., transitions by the same button q and
the same synchronous action a, in the states s and t a: {(a,
q) ∈ r1 ∩ r2|a ∈ H} = ∅. This yields the following defini�
tion of the domain of composition of events:

Dom(|U |) = {(a, a) | a ∈ A} ∪ {((r1, p), (r2, p)) | r1, r2 ∈

 & p ∈ P & {(a, q) ∈ r1 ∩ r2 |a ∈ H} = ∅}.

If a composition state st is p�stable, then its ready
set is calculated by the ready sets of the operand states;
namely, it contains a pair (a, q) if and only if this pair
is contained in the ready set of at least one of the oper�
and states and the action a is asynchronous: r(st) = {(a,
q) ∈ r(s) ∪ r(t)|a ∈ H}. This yields the following defi�
nition of the value of a composition of events:

∀(a, a) ∈ Dom(|U |)  a|U |a = a,

∀((r1, p), (r2, p)) ∈ Dom(|U |) (r1, p)|U |(r2, p) = ({(a, q) ∈ r1 ∪ r2 |a ∉ H}, p).

Now, based on the definitions of a composition of
an ATS and an ETS, we can easily see that the property
of agreement between composition and simulation W:
ATS  ETS is satisfied: for any ATSs S and T, the set
of event traces of an ETS that simulates a composition
of these ATSs coincides with the set of event traces of
the composition of ETSs that simulate these ATSs:
tr(W(S|U |T)) = tr(W(S)|U |W(T)).
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