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Introduction 
A task of graph exploration with a goal to uncover a structure of unknown graph by moving along its arcs 
can be met in many domains. In this paper we regard as possible applications exploration of networks and 
exploration of Web-application structure. In many cases such an exploration can be considered as being 
performed by agents working in graph vertices and sending each other messages along graph arcs. 
 
Graph exploration starts from some specified vertex, called root vertex. Directed graph exploration isn’t a 
trivial task. In the worst case it takes time of an order O(mn), where n — the number of graph vertices, m — 
the number of graph arcs. This holds for various algorithms of graph exploration based on breadth-first or 
depth-first traversal [1,2,3]. 
 
In 1966 M. O. Rabin posed the problem of directed graph exploration with a finite automaton [4]. 
Automaton on a graph is an analogue of the Turing machine — tape cells correspond to graph vertices, 
where the automaton can store some data, and moves along the tape correspond to moves along graph arcs. 
This system can be considered also as an aggregate of finite automatons located in graph vertices and 
interacting by message sending. Each automaton changes its state according to the data stored in the 
corresponding vertex, and moves along graph arcs are replaced with messages sent by the automaton of the 
arc’s starting vertex to the one of the ending vertex. 
 
Messages are both input and output symbols of vertex automata. If message size and number of each 
automaton states are bounded globally, all automata are just finite state machines. Usual graph exploration 
corresponds to possibility for a single message to have a size linear on the number of vertices. The most 
efficient known algorithm of graph exploration with a single finite automaton is suggested in [5] and has 
worst case working time O(nm+n2loglogn). If the traversal is repeated by message interchange between 
automata located in vertices known after the first exploration worst case working time becomes 
O(nm+n2l(n)), where l(n) is the number of times logarithm calculation is repeated until 1≤log(log...(n)...)<2 
holds [6].  
 
In this paper we consider parallel exploration of a graph — many messages can walk through its arcs in 
parallel. Working time estimation in this case depends on the capacity of an arc k, which means the 
maximum number of messages that can be transmitted through a single arc simultaneously. 
 
The suggested parallel graph exploration algorithm has worst case working time bound O(n/k+D), where n 
is the number of vertices, and D is the graph diameter, the maximum length of simple path (non-self 
intersecting path). As a result the algorithm builds two spanning trees of the graph: the direct spanning tree, 
which has the root vertex as its tree root and is directed from the root, and the back spanning tree, directed 
to the root. The detailed description and proofs of all statements can be found in [7]. 

Spanning trees building algorithm 
Sending a message an automaton working in some vertex should specify the arc, by which this message 
should be delivered. We count that arcs starting in some vertex are numbered and an arc is specified by its 
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number. We also suppose that operation time of an automaton is negligibly small and the time of message 
transport through an arc is bounded by some constant.  
 
Let us denote s the maximum number of arcs starting in the same vertex of the graph, then m≤ns. We 
suggest the algorithm of spanning trees  building with the following features: 
• vertex automaton memory is bounded by O(nDlog s), 
• message size is bounded by O(Dlog s), 
• arc capacity is k, 
• algorithm worst case working time is O(n/k + D). 
 
Below we call direct arcs the arcs belonging to the direct spanning tree constructed by the algorithm, chords 
— all other arcs, back arcs — arcs belonging to the back spanning tree. A back arc can be a chord or a direct 
arc. Path vector is the list of arc numbers along the path. Vertex vector is the vector of the simple path. 
leading to this vertex from the root along the direct spanning tree. The root has empty vertex vector ε. The 
size of simple path vector or vector of a simple cycle is O(Dlogs). A message in the algorithm below 
consists of a constant number of simple path vectors, or O(Dlogs) bits. 
 
The algorithm is partitioned in four parts. The first part describes  building of the back spanning tree, the 
second part performs the check that back spanning tree is completely constructed, the third part depicts 
classification of arcs starting in one vertex, the fourth one describes maintenance of incoming back arc 
counters in vertices. 
 
The first part uses messages of four kinds: Start, Root search, Direct, and Back. Start message is sent by 
the root automaton to automata of all other vertices, it contains the vertex vector and initiates vertex 
automaton operation, which is started by sending Root search messages. Root search messages are sent 
through all outgoing arcs in such a way that they pass some simple path to the root vertex and report the root 
automaton the vector of this simple path. In response root vertex automaton sends Direct message, which 
reaches the Root search initiator and reports it the back simple path vector, computed by root search. The 
initiator then sends Back message, which sets some tags along the back simple path.  
 
The second part has the task to determine that the back spanning tree is completely constructed. It uses arc 
counting — when the arc counter in the root vertex becomes zero, the tree  building is complete. For each 
arc a→b the root automaton gets first the message from a, where “+1” is set for the arc a→b, and then it 
gets the message from b, where “-1” is set for a→b. The second message comes from b later than messages 
from the same b, setting “+1” for all arcs starting in b. For this goal the modified Root search and two 
additional message kinds — Finish and Minus — are used. Root search contains the number of arcs 
starting from its initiator. When the root automaton gets Root search message, it adds this number to the 
global counter of outgoing arcs. Finish message is sent from a vertex after getting Direct message. After 
sending Finish message and setting back arc in the vertex, the Minus message is send. The root automaton 
decreases its arc counter by 1 after getting Minus message. 
 
During the third part of the algorithm the outgoing arcs from each vertex are marked as either direct arcs or 
chords. At first they all are considered as chords. Then each arc, along which Direct message is sent, is 
marked as a direct arc.  
 
During the fourth part the incoming back arc counters are set in all vertices. Two message kinds — 
Start counting and End counting — are used for that. Start counting messages move from the root along 
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direct arcs to all other vertices, End counting message move from each vertex along back arcs and each 
vertex counts such messages created in the start vertices of back arcs ending in this vertex. 

Conclusion 
At the end of algorithm work each vertex automaton stores type of each outgoing arc and the number of 
incoming back arcs. These data can further be used for parallel computation of some functions of values 
stored in graph vertices. 
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