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Abstract 
 
Many state machine based strategies return complete 
but infinite test suites. A usual approach to guarantee 
the fault coverage with respect to some kind of faults is 
to limit the number of faults, i.e., to consider a finite 
fault domain. In this paper, we summarize some results 
on deriving complete test suites w.r.t. infinite faults 
domains but w.r.t. special types of the specification 
machine. 
Many state machine based strategies return complete 
but infinite test suites. One solution for getting 
complete finite tests is to limit the number of faults, 
i.e., to consider a finite fault domain. In this paper, we 
summarize some results on deriving complete test 
suites w.r.t. infinite fault domains against proper types 
of the specification machines. 
 
1. Introduction 
 

State Models (State Machines) are widely used for 
deriving tests with the guaranteed fault coverage in 
various application domains [1-4]. Input sequences are 
applied to an Implementation Under Test (IUT) during 
testing and based on observed outputs the verdict ‘fail’ 
is drawn when there is some discrepancy between an 
expected output and the output produced by the IUT. 
Correspondingly, when talking about tests with the 
guaranteed fault coverage, the notion of a fault model 
is introduced that is a triple <Spec, ∼, FD> [5] where 
Spec describes the reference behavior, FD is the fault 
domain that contains each machine that describes the 
behavior of a possibly faulty implementation system 
and ∼ is a conformance relation. The behavior of an 
Implementation Under Test (IUT) is usually described 
by the same state model as the specification. A test 
suite is complete (w.r.t. to the given fault model) when 
for each conforming IUT there is the verdict ‘pass’ 

while for each non-conforming IUT there is the verdict 
‘fail’.  

In order to derive a complete finite test suite w.r.t. a 
given set of faults, i.e., w.r.t. a fault domain, test 
engineers/researchers limit the fault domain to be finite 
[see, for example, 6]. In this case, a distinguishing test 
case can be derived for each pair ‘specification_IUT’ 
and a test suite contains all necessary test cases. In this 
paper, we show that there exist special classes of state 
machines for which a complete finite test suite can be 
derived without limiting the infiniteness of the fault 
domain, i.e., an IUT can be any machine that has no 
cycles labeled by actions which cannot be externally 
observed. We discuss two such specifications and 
corresponding conformance relations for state models; 
namely, for a finite automaton where each transition is 
labeled by an input, an output or by a unobservable 
action and for a Finite State Machine where each 
transition is labeled with the input-output pair.  

The rest of the paper is organized as follows. In 
Section 2, it is shown that for special kinds of 
Input/Output automata, there exist finite complete test 
suites under minimal limitations for possible 
implementations. Section 3 is devoted for deriving 
finite complete test suites for Finite State Machines, 
and Section 4 concludes the paper. 
 
2. Deriving finite test suites for 
Input/Output automata  
 
 An Input/Output Automaton (IOA) S is a 5-tuple 
(S, s0, I, O, hS), where S is a finite set of states with the 
initial state s0; I and O are finite non-empty disjoint 
sets of inputs and outputs, respectively; hS is a 
transition relation hS ⊆ S × (I ∪ O ∪ {τ}) × S, where a 
3-tuple (s, z, s′ ) ∈  hS is a transition. If z ∈ I, a 
transition (s, z, s′ ) is an input-transition, if z ∈ O, a 
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transition (s, z, s′ ) is an output-transition; these 
transitions are observable. A transition (s, τ, s′ ) is 
unobservable.  

IOA S is strongly convergent if it does not have an 
infinite sequence of τ-transitions, completely specified 
(a complete IOA) if for each pair (s, i) ∈  S  ×  I  there 
exists s′  ∈  S  such that (s, i, s′ ) ∈  hS. 

A trace of S at state s is a string of inputs and 
outputs, which label observable transitions in a finite 
sequence of transitions starting at state s; the empty 
trace is denoted by ε. We use the notation µ ≤ σ if the 
trace µ is a prefix of the trace σ, and µ < σ when µ is a 
proper prefix of σ. The set s-after-σ is the set of all 
final states for the trace σ started at state s. The set 
Tr(S) is the set of traces of S at the initial state s0. The 
IOA S is deterministic if there are no unobservable 
transitions and ∀ σ ∈ Tr(S) it holds that |s0-after σ| = 1 
[6].  

A test case is a trace over alphabets I and O where 
the tail symbol is an output. Given a test case σ and an 
IUT over the same alphabets, the testing is performed 
as follows. Let µ⋅z ≤  σ, and at some step, the tester 
observes the trace µ in the IUT (at the initial step 
µ = ε). If z ∈ I then this input is applied to the IUT; if 
z ∈ O then the tester gets an output for checking. The 
verdict after observing a produced IUT output can be 
drawn in an arbitrary way. When we are concerned 
about deriving complete test suites, the verdict should 
correspond to a considered conformance relation. For 
example, when detecting a wrong output z after a trace 
µ there is the verdict fail if the produced output is z. If 
the produced output is different from z then the testing 
is continued.  

Given an IUT B, a test case is safe (w.r.t. the IUT B) 
if when executing the test case against B, each time 
when the tester is waiting for an output, some output 
will be produced after finite number of time ticks. The 
latter is not always possible; for example, it can be 
impossible due to the IUT divergence or to the absence 
of output- and τ-transitions at the current IUT state.  

A test suite is a set of test cases. A test suite T is 
safe w.r.t. the IUT B if each test case t ∈ T is safe. 

The interaction between a tester and an IUT is 
specified by the following rules. 1) If the tester does 
not submit an input then the IUT can execute only 
output- and τ-transitions and the tester checks 
produced outputs. 2) If the tester submits an input i ∈ I 
to the IUT then the IUT can execute only one 
transition labeled by i; however, there can exist τ-
transitions before and after this input but the tester 
observes only a trace “i”. 

Given a strongly convergent IOA S = (S, s0, I, O, hS) 
and a strongly convergent complete  IOA 
B = (B, b0, I, O, hB),  IOA B is safely testable against S, if 
for each σ ∈ Tr(S) ∩ Tr(B), o ∈ O, it holds that 
σ⋅o ∈ Tr(S) implies ∀ b ∈ b0-after-σ ∃ o' ∈ O such that 
b-after-o'  ≠ ∅. In the following, we consider a set of 
implementation IOAs such that each IUT is safely 
testable against S (a safety assumption). 
Correspondingly, IOA B is a safely conforming 
implementation of to S, if B safely testable against S and 
for each σ ∈ Tr(S) ∩ Tr(B), o ∈ O, it holds that 
σ⋅o ∈ Tr(B) implies σ⋅o ∈ Tr(S).  

Given the IOA specification S, a trace σ⋅o ∉ Tr(S), 
s.t. σ ∈ Tr(S) and o ∈ O, is a test trace; Tt(S) is the set 
of all test traces of S. By definition, if IUT B is safely 
testable against S then each test trace is safe for B. 

Theorem 1. Given IOA specification S, the set 
Tt(S) is a complete safe test suite. 

Proof. The completeness of the test suite Tt(S) is 
implied by the definitions of the safe conformance, test 
trace and test case execution. The safety of Tt(S) is 
implied by the safety of each test trace. � 

Determinize the given specification S by the use of 
subset construction [6] and denote 
Sdet = (Sdet, {s0}, I, O, 

detSh ) the obtained deterministic 

IOA. The largest subset A ⊆ Sdet such that for each 
s ∈ A and for each (s, z, s′ ) ∈ 

detSh it holds that s′  ∈ A 

and (z ∈ O ⇒ ∀ o ∈ O ∃ (s, o, s′ ′ ) ∈ 
detSh )) is the set 

of chaotic states. Delete from Sdet all the chaotic states 
and transitions taking Sdet to chaotic states and obtain 
the IOA Sdet

*. 
Theorem 2. If the set Tr(Sdet

*) is finite then the set 
Tt(Sdet

*) is a finite complete safe test suite. 
Proof. The test suite is finite since the sets Tr(Sdet

*) 
and O are finite. By definition of chaotic states, each 
test trace does not traverse a chaotic state. Thus, the 
test suite has necessary features according to Theorem 
1. � 

In other words, Theorem 2 shows a way how to 
derive finite complete test suites w.r.t. the fault model 
where specification and implementation systems are 
IOAs, the conformance relation is the safe 
conformance and an implementation IOA is any 
strongly convergent complete IOA over the input and 
output alphabets of the specification. Therefore, the 
fault domain is infinite and contains each IOA that is 
safely testable w.r.t. the specification IOA. Similar to 
this, another fault models can be considered which use 
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the same interaction rules between the tester and IUT, 
safety assumption and safe conformance. Trace 
semantics, completed traces, failure semantics, failure 
trace semantics, ready trace semantics, readiness 
semantics, ioco-semantics can be considered [4]. For 
deriving complete test suites, inputs and outputs of the 
specification and implementation IOAs should be 
correspondingly defined and the conformance relation 
has to be correspondingly modified [4]. In particular, a 
refusal set for the failure trace semantics and the 
quiescence for the ioco-semantics become outputs and 
label corresponding transitions. The fault domain, i.e., 
the set of all IUTs, becomes a subset of such set in the 
above IOA-semantics after appropriate 
transformations. Since each finite test suite Tt(Sdet

*) is 
complete and safe for all IUTs, the test suite has the 
same features for each subset of IUTs. For this reason, 
Theorems 1 and 2 hold for all fault models described 
in [4].  

We illustrate the case for Finite State Machines 
when considering the quasi-reduction relation as the 
conformance relation. An FSM is a special case of an 
IOA where each input is followed by an output and 
thus, at any state, an output is produced if and only if 
an input is applied 
 
3. Deriving finite test suites for Finite State 
Machines  
 

A Finite State Machine (FSM) S is a 5-tuple 
(S, s0, I, O, hS), where S is a finite set of states with the 
initial state s0; I and O are finite non-empty disjoint 
sets of inputs and outputs, respectively; hS is a 
transition relation hS ⊆ S × I × O × S, where a 4-tuple 
(s, i, o, s′ ) ∈  hS is a transition. The main difference 
between FSM and IOA is that each transition of an 
FSM is labeled with an input-output pair and thus, the 
next input can be only applied after getting an output to 
the previous input. Moreover, an FSM has no 
unobservable transitions. i.e., an FSM corresponds to a 
strongly convergent IOA after unfolding transitions 
into input- and output-transitions. A state s of the FSM 
is output-complete if for each input i ∈  Ι  such that 
there is a transition (s, i, o, s′ ) ∈  hS, there exists a 
transition (s, i, o′ , s′ ′ ) ∈  hS for each o′  ∈  Ο . Input 
sequence α ∈ I* is a defined input sequence at state s 
of S if it labels a sequence of transitions starting at 
state s. A trace of S at state s is a string of inputs and 
outputs which label a sequence of transitions starting at 
state s. Let Tr(S) or TrS denote the set of traces of S at 
the initial state. Given a sequence β ∈ (IO)*, the input 

(output) projection of β, denoted β↓I (β↓O), is a 
sequence obtained from β by erasing symbols in O (I). 

FSM S is completely specified (a complete FSM) if 
for each pair (s, i) ∈  S  ×  I  there exists (o, s′ ) ∈  O  ×  S  
such that (s, i, o, s′ ) ∈  hS, otherwise, the FSM is 
partial. The FSM is deterministic if for each pair 
(s ,  i)  ∈  S  ×  I  there exists at most one transition 
(s, i, o, s′ ) ∈  hS; otherwise, the FSM is 
nondeterministic. Nondeterministic FSM is observable 
if for each two transitions (s, i, o, s1), (s, i, o, s2) ∈  hS it 
holds that s1 = s2. An FSM is single-input if at each 
state, there is at most one defined input; output-
complete if for each pair (s ,  i)  ∈  S  ×  I  such that the 
input i is defined at the state s, there exists a transition 
from s with i for every output; acyclic if TrS is finite. 
Given an input sequence α defined at state s, we use 
the notation outS(s, α) in order to denote the set of 
output sequences which can be produced by S in 
response to α when is applied at state s, that is 
outS(s, α) = {β↓O | β ∈ Tr(S/s) and β↓I = α}. If an input 
sequence is not defined at state s then outS(s, α) is 
empty. Similar to IOA, the largest subset A ⊆ S of 
output-complete states such that for each s ∈ A and for 
each (s, i, o, s′ ) ∈ hS it holds that s′  ∈ A, is the set of 
chaotic states.   

In this paper, we consider possibly partial initially 
connected observable specification machines; one 
could use a standard procedure for automata 
determinization to convert a given FSM into 
observable one. Since an FSM has no unobservable 
transitions, each FSM implementation is safely testable 
again the FSM specification, i.e., the safety assumption 
automatically holds for FSM based fault models. We 
define in terms of traces the quasi-reduction relation 
between FSMs. Given an FSM S and a complete FSM 
B,  FSM B is a quasi-reduction of S, if 
{β ∈ Tr(B) | β↓I = α} ⊆ {β ∈ Tr(S) | β↓I = α} for each 
input sequence α that is defined at the initial state of 
the FSM S. In fact, the quasi-reduction relation 
between FSMs is very close to the ioco-relation 
between IOAs when the quiescence is observable. If 
the specification FSM is complete then the quasi-
reduction is reduced to the reduction relation (trace 
inclusion relation), i.e., for each input sequence α it 
holds that outB(b0, α) ⊆ outS(s0, α). In the following, 
FSM S represents the specification that can be partial 
while FSM B describes the behavior of an IUT that is 
assumed to be complete, as usual. 

Testing deterministic FSMs it is sufficient to use 
input sequences as test cases [5]. Dealing with 
nondeterministic machines, we may need to consider 
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adaptive testing, when the next input depends on a 
produced output or there are no more inputs to 
execute. An unexpected output triggers in the test case 
a transition to the state fail and the test execution is 
over. A test case over input alphabet I and output 
alphabet O is an acyclic single-input output-complete 
FSM that can have a designated deadlock state fail [7]. 
A test suite is a finite set of test cases. A test case is 
preset if all input projections of its pass traces 
coincide. A test suite is preset if it has only preset test 
cases. 

In this paper, we assume that the fault domain 
contains each complete FSM over the input and output 
alphabets of the specification FSM S. 
Correspondingly, a test suite is complete for the 
specification FSM S if for each implementation FSM 
B that is not a quasi-reduction of S, there exists a test 
case that is taken to the fail state by some trace of the 
FSM B. Given a defined input sequence α of the FSM 
S, let TC(α) denote a test case where traces to the pass 
state are all possible traces of S with the input 
projection that is a prefix of α. All other outputs at 
each state take the test case TC(α) to the fail state [7].  

Given the specification FSM S, delete all the 
chaotic states and denote S* the obtained FSM. Let the 
set Tr(S*) of traces be finite and TS be the test suite that 
contains a test case TC(α) for each longest defined 
input sequence α of S*, i.e., each such sequence α is 
not a proper prefix of another defined input sequence. 

Theorem 3. The test suite TS is complete for the 
specification FSM S. 

In fact, let an IUT have the expected behavior for 
each test case of the set TS. According to the definition 
of S*, the behavior of the IUT to any prolongation of 
each defined input sequence can have arbitrary 
outputs. On the other hand, since the set Tr(S*) is finite 
there always exists a finite set of test cases which 
cover each trace of FSM S*. �   

In some cases, when traces of the FSM are 
harmonized [3], i.e., given a defined input sequence α  
of S* and two traces β1, β2 ∈ Tr(S*), β1↓I = β2↓I = α, the 
sets of defined inputs at states of S* after traces β1 and 
β2 coincide. In this case, the above theorem can be 
reformulated for preset test cases. 

Corollary. If the set Tr(S*) is finite and S* has only 
harmonized traces than TS = {β↓I | β ∈ Tr(S*)} is a 
complete preset test suite. 

According to Theorem 3, for a special class of 
specification FSMs a complete test suite can be finite 
despite of the fact that the set of all possibly faulty 
implementations is infinite.  

If an IUT can be non-deterministic then as usual, we 
assume that an expected behavior (if such a behavior 
exists) can be observed after applying each test case at 
most k times (‘all-weather-conditions’ assumption). In 
other words, in order to conclude that a given 
implementation FSM B passes a test case, the test case 
has to be applied to B a sufficient number of times 
ensuring that no further application will produce an 
unexpected output.  

 
4. Concluding remarks 
 
In this paper we consider limitations over specification 
machines such that a complete finite test suite can be 
derived when an Implementation Under Test can be a 
machine over corresponding input and output alphabets 
with no restrictions on the set of its observable 
transitions, i.e., the fault domain in infinite. Moreover, 
the IOA-semantics described in the paper requires the 
priority of a submitted signal (an input) over an 
observed symbol (an output), i.e., the above theory can 
be applied for testing systems with priorities. 
Additional investigation is needed how the 
specification can be restricted for deriving shorter test 
suites which still are complete w.r.t. infinite fault 
domains. 
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