
Igor Burdonov, Alexander Kossatchev, Nina Yevtushenko.
Deriving complete finite tests based on state machines.
Proceedings of IEEE East-West Design & Test Symposium (EWDTS 2014). Kiev, Ukraine, 2014. P. 190-194.
5 стр.

1

Deriving complete finite tests based on state machines

Igor Burdonov1, Alexander Kossatchev1, Nina Yevtushenko2

1Institute for System Programming of the RAS, Moscow, Russia,
igor@ispras.ru, kos@ispras.ru.

2Tomsk State University, Tomsk, Russia
yevtushenko@sibmail.com

Abstract

Many state machine based strategies return complete
but infinite test suites. A usual approach to guarantee
the fault coverage with respect to some kind of faults is
to limit the number of faults, i.e., to consider a finite
fault domain. In this paper, we summarize some results
on deriving complete test suites w.r.t. infinite faults
domains but w.r.t. special types of the specification
machine.
Many state machine based strategies return complete
but infinite test suites. One solution for getting
complete finite tests is to limit the number of faults,
i.e., to consider a finite fault domain. In this paper, we
summarize some results on deriving complete test
suites w.r.t. infinite fault domains against proper types
of the specification machines.

1. Introduction

State Models (State Machines) are widely used for
deriving tests with the guaranteed fault coverage in
various application domains [1-4]. Input sequences are
applied to an Implementation Under Test (IUT) during
testing and based on observed outputs the verdict ‘fail’
is drawn when there is some discrepancy between an
expected output and the output produced by the IUT.
Correspondingly, when talking about tests with the
guaranteed fault coverage, the notion of a fault model
is introduced that is a triple <Spec, ∼, FD> [5] where
Spec describes the reference behavior, FD is the fault
domain that contains each machine that describes the
behavior of a possibly faulty implementation system
and ∼ is a conformance relation. The behavior of an
Implementation Under Test (IUT) is usually described
by the same state model as the specification. A test
suite is complete (w.r.t. to the given fault model) when
for each conforming IUT there is the verdict ‘pass’

while for each non-conforming IUT there is the verdict
‘fail’.

In order to derive a complete finite test suite w.r.t. a
given set of faults, i.e., w.r.t. a fault domain, test
engineers/researchers limit the fault domain to be finite
[see, for example, 6]. In this case, a distinguishing test
case can be derived for each pair ‘specification_IUT’
and a test suite contains all necessary test cases. In this
paper, we show that there exist special classes of state
machines for which a complete finite test suite can be
derived without limiting the infiniteness of the fault
domain, i.e., an IUT can be any machine that has no
cycles labeled by actions which cannot be externally
observed. We discuss two such specifications and
corresponding conformance relations for state models;
namely, for a finite automaton where each transition is
labeled by an input, an output or by a unobservable
action and for a Finite State Machine where each
transition is labeled with the input-output pair.

The rest of the paper is organized as follows. In
Section 2, it is shown that for special kinds of
Input/Output automata, there exist finite complete test
suites under minimal limitations for possible
implementations. Section 3 is devoted for deriving
finite complete test suites for Finite State Machines,
and Section 4 concludes the paper.

2. Deriving finite test suites for
Input/Output automata

 An Input/Output Automaton (IOA) S is a 5-tuple
(S, s0, I, O, hS), where S is a finite set of states with the
initial state s0; I and O are finite non-empty disjoint
sets of inputs and outputs, respectively; hS is a
transition relation hS ⊆ S × (I ∪ O ∪ {τ}) × S, where a
3-tuple (s, z, s′) ∈ hS is a transition. If z ∈ I, a
transition (s, z, s′) is an input-transition, if z ∈ O, a

Igor Burdonov, Alexander Kossatchev, Nina Yevtushenko.
Deriving complete finite tests based on state machines.
Proceedings of IEEE East-West Design & Test Symposium (EWDTS 2014). Kiev, Ukraine, 2014. P. 190-194.
5 стр.

2

transition (s, z, s′) is an output-transition; these
transitions are observable. A transition (s, τ, s′) is
unobservable.

IOA S is strongly convergent if it does not have an
infinite sequence of τ-transitions, completely specified
(a complete IOA) if for each pair (s, i) ∈ S × I there
exists s′ ∈ S such that (s, i, s′) ∈ hS.

A trace of S at state s is a string of inputs and
outputs, which label observable transitions in a finite
sequence of transitions starting at state s; the empty
trace is denoted by ε. We use the notation µ ≤ σ if the
trace µ is a prefix of the trace σ, and µ < σ when µ is a
proper prefix of σ. The set s-after-σ is the set of all
final states for the trace σ started at state s. The set
Tr(S) is the set of traces of S at the initial state s0. The
IOA S is deterministic if there are no unobservable
transitions and ∀ σ ∈ Tr(S) it holds that |s0-after σ| = 1
[6].

A test case is a trace over alphabets I and O where
the tail symbol is an output. Given a test case σ and an
IUT over the same alphabets, the testing is performed
as follows. Let µ⋅z ≤ σ, and at some step, the tester
observes the trace µ in the IUT (at the initial step
µ = ε). If z ∈ I then this input is applied to the IUT; if
z ∈ O then the tester gets an output for checking. The
verdict after observing a produced IUT output can be
drawn in an arbitrary way. When we are concerned
about deriving complete test suites, the verdict should
correspond to a considered conformance relation. For
example, when detecting a wrong output z after a trace
µ there is the verdict fail if the produced output is z. If
the produced output is different from z then the testing
is continued.

Given an IUT B, a test case is safe (w.r.t. the IUT B)
if when executing the test case against B, each time
when the tester is waiting for an output, some output
will be produced after finite number of time ticks. The
latter is not always possible; for example, it can be
impossible due to the IUT divergence or to the absence
of output- and τ-transitions at the current IUT state.

A test suite is a set of test cases. A test suite T is
safe w.r.t. the IUT B if each test case t ∈ T is safe.

The interaction between a tester and an IUT is
specified by the following rules. 1) If the tester does
not submit an input then the IUT can execute only
output- and τ-transitions and the tester checks
produced outputs. 2) If the tester submits an input i ∈ I
to the IUT then the IUT can execute only one
transition labeled by i; however, there can exist τ-
transitions before and after this input but the tester
observes only a trace “i”.

Given a strongly convergent IOA S = (S, s0, I, O, hS)
and a strongly convergent complete IOA
B = (B, b0, I, O, hB), IOA B is safely testable against S, if
for each σ ∈ Tr(S) ∩ Tr(B), o ∈ O, it holds that
σ⋅o ∈ Tr(S) implies ∀ b ∈ b0-after-σ ∃ o' ∈ O such that
b-after-o' ≠ ∅. In the following, we consider a set of
implementation IOAs such that each IUT is safely
testable against S (a safety assumption).
Correspondingly, IOA B is a safely conforming
implementation of to S, if B safely testable against S and
for each σ ∈ Tr(S) ∩ Tr(B), o ∈ O, it holds that
σ⋅o ∈ Tr(B) implies σ⋅o ∈ Tr(S).

Given the IOA specification S, a trace σ⋅o ∉ Tr(S),
s.t. σ ∈ Tr(S) and o ∈ O, is a test trace; Tt(S) is the set
of all test traces of S. By definition, if IUT B is safely
testable against S then each test trace is safe for B.

Theorem 1. Given IOA specification S, the set
Tt(S) is a complete safe test suite.

Proof. The completeness of the test suite Tt(S) is
implied by the definitions of the safe conformance, test
trace and test case execution. The safety of Tt(S) is
implied by the safety of each test trace. �

Determinize the given specification S by the use of
subset construction [6] and denote
Sdet = (Sdet, {s0}, I, O,

detSh) the obtained deterministic

IOA. The largest subset A ⊆ Sdet such that for each
s ∈ A and for each (s, z, s′) ∈

detSh it holds that s′ ∈ A

and (z ∈ O ⇒ ∀ o ∈ O ∃ (s, o, s′ ′) ∈
detSh)) is the set

of chaotic states. Delete from Sdet all the chaotic states
and transitions taking Sdet to chaotic states and obtain
the IOA Sdet

*.
Theorem 2. If the set Tr(Sdet

*) is finite then the set
Tt(Sdet

*) is a finite complete safe test suite.
Proof. The test suite is finite since the sets Tr(Sdet

*)
and O are finite. By definition of chaotic states, each
test trace does not traverse a chaotic state. Thus, the
test suite has necessary features according to Theorem
1. �

In other words, Theorem 2 shows a way how to
derive finite complete test suites w.r.t. the fault model
where specification and implementation systems are
IOAs, the conformance relation is the safe
conformance and an implementation IOA is any
strongly convergent complete IOA over the input and
output alphabets of the specification. Therefore, the
fault domain is infinite and contains each IOA that is
safely testable w.r.t. the specification IOA. Similar to
this, another fault models can be considered which use

Igor Burdonov, Alexander Kossatchev, Nina Yevtushenko.
Deriving complete finite tests based on state machines.
Proceedings of IEEE East-West Design & Test Symposium (EWDTS 2014). Kiev, Ukraine, 2014. P. 190-194.
5 стр.

3

the same interaction rules between the tester and IUT,
safety assumption and safe conformance. Trace
semantics, completed traces, failure semantics, failure
trace semantics, ready trace semantics, readiness
semantics, ioco-semantics can be considered [4]. For
deriving complete test suites, inputs and outputs of the
specification and implementation IOAs should be
correspondingly defined and the conformance relation
has to be correspondingly modified [4]. In particular, a
refusal set for the failure trace semantics and the
quiescence for the ioco-semantics become outputs and
label corresponding transitions. The fault domain, i.e.,
the set of all IUTs, becomes a subset of such set in the
above IOA-semantics after appropriate
transformations. Since each finite test suite Tt(Sdet

*) is
complete and safe for all IUTs, the test suite has the
same features for each subset of IUTs. For this reason,
Theorems 1 and 2 hold for all fault models described
in [4].

We illustrate the case for Finite State Machines
when considering the quasi-reduction relation as the
conformance relation. An FSM is a special case of an
IOA where each input is followed by an output and
thus, at any state, an output is produced if and only if
an input is applied

3. Deriving finite test suites for Finite State
Machines

A Finite State Machine (FSM) S is a 5-tuple
(S, s0, I, O, hS), where S is a finite set of states with the
initial state s0; I and O are finite non-empty disjoint
sets of inputs and outputs, respectively; hS is a
transition relation hS ⊆ S × I × O × S, where a 4-tuple
(s, i, o, s′) ∈ hS is a transition. The main difference
between FSM and IOA is that each transition of an
FSM is labeled with an input-output pair and thus, the
next input can be only applied after getting an output to
the previous input. Moreover, an FSM has no
unobservable transitions. i.e., an FSM corresponds to a
strongly convergent IOA after unfolding transitions
into input- and output-transitions. A state s of the FSM
is output-complete if for each input i ∈ Ι such that
there is a transition (s, i, o, s′) ∈ hS, there exists a
transition (s, i, o′ , s′ ′) ∈ hS for each o′ ∈ Ο . Input
sequence α ∈ I* is a defined input sequence at state s
of S if it labels a sequence of transitions starting at
state s. A trace of S at state s is a string of inputs and
outputs which label a sequence of transitions starting at
state s. Let Tr(S) or TrS denote the set of traces of S at
the initial state. Given a sequence β ∈ (IO)*, the input

(output) projection of β, denoted β↓I (β↓O), is a
sequence obtained from β by erasing symbols in O (I).

FSM S is completely specified (a complete FSM) if
for each pair (s, i) ∈ S × I there exists (o, s′) ∈ O × S
such that (s, i, o, s′) ∈ hS, otherwise, the FSM is
partial. The FSM is deterministic if for each pair
(s , i) ∈ S × I there exists at most one transition
(s, i, o, s′) ∈ hS; otherwise, the FSM is
nondeterministic. Nondeterministic FSM is observable
if for each two transitions (s, i, o, s1), (s, i, o, s2) ∈ hS it
holds that s1 = s2. An FSM is single-input if at each
state, there is at most one defined input; output-
complete if for each pair (s , i) ∈ S × I such that the
input i is defined at the state s, there exists a transition
from s with i for every output; acyclic if TrS is finite.
Given an input sequence α defined at state s, we use
the notation outS(s, α) in order to denote the set of
output sequences which can be produced by S in
response to α when is applied at state s, that is
outS(s, α) = {β↓O | β ∈ Tr(S/s) and β↓I = α}. If an input
sequence is not defined at state s then outS(s, α) is
empty. Similar to IOA, the largest subset A ⊆ S of
output-complete states such that for each s ∈ A and for
each (s, i, o, s′) ∈ hS it holds that s′ ∈ A, is the set of
chaotic states.

In this paper, we consider possibly partial initially
connected observable specification machines; one
could use a standard procedure for automata
determinization to convert a given FSM into
observable one. Since an FSM has no unobservable
transitions, each FSM implementation is safely testable
again the FSM specification, i.e., the safety assumption
automatically holds for FSM based fault models. We
define in terms of traces the quasi-reduction relation
between FSMs. Given an FSM S and a complete FSM
B, FSM B is a quasi-reduction of S, if
{β ∈ Tr(B) | β↓I = α} ⊆ {β ∈ Tr(S) | β↓I = α} for each
input sequence α that is defined at the initial state of
the FSM S. In fact, the quasi-reduction relation
between FSMs is very close to the ioco-relation
between IOAs when the quiescence is observable. If
the specification FSM is complete then the quasi-
reduction is reduced to the reduction relation (trace
inclusion relation), i.e., for each input sequence α it
holds that outB(b0, α) ⊆ outS(s0, α). In the following,
FSM S represents the specification that can be partial
while FSM B describes the behavior of an IUT that is
assumed to be complete, as usual.

Testing deterministic FSMs it is sufficient to use
input sequences as test cases [5]. Dealing with
nondeterministic machines, we may need to consider

Igor Burdonov, Alexander Kossatchev, Nina Yevtushenko.
Deriving complete finite tests based on state machines.
Proceedings of IEEE East-West Design & Test Symposium (EWDTS 2014). Kiev, Ukraine, 2014. P. 190-194.
5 стр.

4

adaptive testing, when the next input depends on a
produced output or there are no more inputs to
execute. An unexpected output triggers in the test case
a transition to the state fail and the test execution is
over. A test case over input alphabet I and output
alphabet O is an acyclic single-input output-complete
FSM that can have a designated deadlock state fail [7].
A test suite is a finite set of test cases. A test case is
preset if all input projections of its pass traces
coincide. A test suite is preset if it has only preset test
cases.

In this paper, we assume that the fault domain
contains each complete FSM over the input and output
alphabets of the specification FSM S.
Correspondingly, a test suite is complete for the
specification FSM S if for each implementation FSM
B that is not a quasi-reduction of S, there exists a test
case that is taken to the fail state by some trace of the
FSM B. Given a defined input sequence α of the FSM
S, let TC(α) denote a test case where traces to the pass
state are all possible traces of S with the input
projection that is a prefix of α. All other outputs at
each state take the test case TC(α) to the fail state [7].

Given the specification FSM S, delete all the
chaotic states and denote S* the obtained FSM. Let the
set Tr(S*) of traces be finite and TS be the test suite that
contains a test case TC(α) for each longest defined
input sequence α of S*, i.e., each such sequence α is
not a proper prefix of another defined input sequence.

Theorem 3. The test suite TS is complete for the
specification FSM S.

In fact, let an IUT have the expected behavior for
each test case of the set TS. According to the definition
of S*, the behavior of the IUT to any prolongation of
each defined input sequence can have arbitrary
outputs. On the other hand, since the set Tr(S*) is finite
there always exists a finite set of test cases which
cover each trace of FSM S*. �

In some cases, when traces of the FSM are
harmonized [3], i.e., given a defined input sequence α
of S* and two traces β1, β2 ∈ Tr(S*), β1↓I = β2↓I = α, the
sets of defined inputs at states of S* after traces β1 and
β2 coincide. In this case, the above theorem can be
reformulated for preset test cases.

Corollary. If the set Tr(S*) is finite and S* has only
harmonized traces than TS = {β↓I | β ∈ Tr(S*)} is a
complete preset test suite.

According to Theorem 3, for a special class of
specification FSMs a complete test suite can be finite
despite of the fact that the set of all possibly faulty
implementations is infinite.

If an IUT can be non-deterministic then as usual, we
assume that an expected behavior (if such a behavior
exists) can be observed after applying each test case at
most k times (‘all-weather-conditions’ assumption). In
other words, in order to conclude that a given
implementation FSM B passes a test case, the test case
has to be applied to B a sufficient number of times
ensuring that no further application will produce an
unexpected output.

4. Concluding remarks

In this paper we consider limitations over specification
machines such that a complete finite test suite can be
derived when an Implementation Under Test can be a
machine over corresponding input and output alphabets
with no restrictions on the set of its observable
transitions, i.e., the fault domain in infinite. Moreover,
the IOA-semantics described in the paper requires the
priority of a submitted signal (an input) over an
observed symbol (an output), i.e., the above theory can
be applied for testing systems with priorities.
Additional investigation is needed how the
specification can be restricted for deriving shorter test
suites which still are complete w.r.t. infinite fault
domains.

5. References

1. Nachmanson, M. Veanes, W. Schulte, N. Tillmann, W.
Grieskamp. Optimal Strategies for Testing
Nondeterministic Systems, Software Eng. Notes, ACM,
29, 2004, pp. 55–64.

2. A. Petrenko, N. Yevtushenko. Conformance Tests as
Checking Experiments for Partial Nondeterministic
FSM. LNCS 3997, 2005, pp. 118-133.

3. I.B. Burdonov, A.S. Kossatchev. Interaction Semantics
with Refusals, Divergence, and Destruction,
Programming and Computer Software, Vol. 36, No. 5,
2010, pp. 247-263.

4. I.B. Burdonov, A.S. Kossatchev. Formalization of a Test
Experiment-II, Programming and Computer Software,
Vol. 39, No. 4, 2013, pp. 163-181.

5. A. Petrenko, N. Yevtushenko, G. von Bochmann. Fault
Models for Testing in Context, Formal Techniques for
Networked and Distributed Systems, 1996. pp 163-178.

6. A. Petrenko, N. Yevtushenko. Adaptive Testing of
Nondeterministic Systems with FSM. Proc. of Intern
Conf. HASE 2014, pp 224-228.

7. J.E. Hopcroft. R. Motvani, J.D. Ullman. Introduction to
Automata Theory, Languages, and Computation. 2nd
edition. Addison-Wesley, 2007. 535 p.

http://www.informatik.uni-trier.de/~ley/pers/hd/p/Petrenko:Alexandre.html
http://www.informatik.uni-trier.de/~ley/db/conf/hase/hase2014.html#PetrenkoY14

	1. Introduction
	2. Deriving finite test suites for Input/Output automata
	3. Deriving finite test suites for Finite State Machines
	4. Concluding remarks
	5. References

