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Abstract. The paper provides a review of distributed graph algorithms research conducted by 

authors. We consider an asynchronous distributed system model represented by a strongly 

connected directed rooted graph with bounded edge capacity (in a sense that only a bounded 

number of messages can be sent through an edge in a given time interval). A graph can be 

static or dynamic, i.e. changing. For a static graph we propose a spanning (in- and out-) tree 

construction algorithm of time complexity O(n / k + d), requiring O(n d log +) message size 

and the same size of memory of each computing agent located in graph vertex, where n is the 

number of vertices of the graph, k is the capacity of an edge, d is the maximum length of 

simple path in the graph, + is the maximum outdegree of the vertices. The spanning trees 

constructed can be used in distributed computation of a function of the multiset of values 

assigned to graph vertices in a time not greater than 3d. In a dynamic graph we suppose that 

k = 1 and an edge can appear, disappear, or change its end. We propose a dynamic graph 

monitoring algorithm than delivers information on any change to the root of the graph in O(n) 

or O(d) after the changes are stopped. We also propose graph exploration and marking 

algorithm with time complexity O(n). The marking provided by it is used in distributed 

computation of a function of the multiset of values assigned to dynamic graph vertices, which 

can be performed in time O(n2) with messages of size O(log n) or in time O(n) with messages 

of size O(n log n). 
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1. Introduction 

This paper considers distributed graph algorithms. To treat them formally, we must 

use a formal computation model, and the choice of such a model critically 

influences the complexity of possible algorithms. In this work we use the following 

model: a set of computing agents located in the vertices of the graph under 

consideration (an algorithm is intended to compute some information about this 

graph) and interacting by passing messages through graph arcs [1–3].  

Such computing agents are called in various ways in the literature: tasks [1], 

processors [2], processes [3], or state machines [4] (if they are actually state 

machines, maybe not finite ones). We suppose that the agents can interact only in a 

peer-to-peer way. A round of agent’s operation can include message reception, 

changing the agent’s state, and sending another message. In [1] such an agent is 

called reactive entity or message-driven entity. To be able to send a message 

through some arc, an agent should refer to this arc. To make this possible, all arcs 

incident to one vertex are supposed to be enumerated, so an agent just use the arc’s 

number. In case of directed graph, this enumeration includes only arcs outgoing 

from the vertex. We also suppose that am agent has no information on other vertices 

– it knows only the number of outgoing arcs in its vertex, and the vertex identifier if 

the graph is enumerated.  

Here and in [1] computations on directed graph are considered, although 

computations on undirected graph are more usual, see [2, 3]. Note, that algorithms 

solving the same tasks on directed graphs are considerably more complex. An 

example is provided by the task of graph traversal by a single message, with agents 

in the vertices being finite state machines. For undirected graphs it is solved by 

well-known Tarry algorithm [2, 22] with time complexity O(m), where m is the 

number of graph arcs. This complexity is minimal, because it coincides with lower 

time bound for any algorithm for this task. For directed graphs lower time bound for 

the same task is O(nm), where n is the number of graph vertices, and the best known 

algorithm has time complexity O(nm + n2 log log n) [16]. It is still unknown 

whether the gap between lower bound estimate and actual algorithm complexity can 

be reduced for directed graphs.  

Synchrony or asynchrony of computation agents is also an important aspect of the 

model. In synchronous models the agents work in lockstep mode, i.e., all the agents 

make one computation step simultaneously, so the main complexity is related with 

number of communication acts [18, 19]. In asynchronous model, the time of 

message transport can differ for different arcs and different messages. Usually the 

time of message transport through one arc is assumed to be bounded by some 



Бурдонов И.Б., Косачев А.С., Кулямин В.В., Томилин А.Н., Шнитман В.З. Асинхронные распределенные 

алгоритмы на статических и динамических ориентированных корневых графах. Труды ИСП РАН, том 30, вып. 1, 

2018 г., стр. 69-88 

71 

constant, which can be taken as 1 tic. The algorithm time complexity in 

asynchronous model is the worst case time of its operation. Also in asynchronous 

model, an arc becomes a buffer of messages sent by one arc end and not yet 

accepted by the other, usually organized as a queue. This queue can be unbounded 

or can has some maximum number of messages that can be stored, called an arc 

capacity. It is so an important characteristic of a model [1]. In this work, we 

consider a model with bounded arc capacity.  

We also assume that graphs can have multiple arcs leading from one vertex to 

another one, and can have loops leading from a vertex to itself (some authors called 

such graphs pseudographs or multigraphs). In opposite to our approach, most works 

on distributed computations consider graphs that cannot have multiple arcs or loops.  

For distributed asynchronous algorithms, the memory used is an important 

characteristic. It is true both for the inner memory of a computation agent (which 

can be regarded as a logarithm of the number of its states) and for the size of 

messages used in communication. Therefore, further we estimate the inner memory 

of agents and the size of messages used in an algorithm as functions of the graph 

complexity.  

In synchronous models all the agents start their operation simultaneously and the 

end of operation is often not specified explicitly. In asynchronous models the 

algorithm operation is initiated by an external Start message, which is accepted by 

an agent in some graph vertex, which than starts sending messages to other vertices, 

agents in which start their operation after accepting them [3]. We assume that a 

starting vertex is fixed, it is called the root of a graph.  

The other problem with distributed computation is termination detection [2] – how 

to notice the end of algorithm operation. We assume that the algorithm is finished 

when the root agent sends to the environment special Finish message, possibly 

containing some result data. A procedure helping the root agent to learn that the 

algorithm work is finished is nontrivial in asynchronous models.  

One of important tasks of distributed computations is computation of a global 

function on a graph [3]. In this work, we consider a task of computing a function of 

a multiset of values assigned to graph vertices. An agent located in a vertex knows 

the value assigned to it. To compute the global function value we use the notion of 

aggregate function, which global value can be computed from values for 

nonintersecting subsets of vertices, and minimal aggregate extension, which exists 

for any function [11, 12, 14, 21].  

Such computation tasks are usually solved with the help of broadcast and 

convergecast operations. The broadcast problem is a problem of communication 

organization from one vertex to all other vertices. The convergecast problem is a 

problem of communication organization from all vertices to some single vertex. To 

solve broadcast and convergecast problems a spanning tree of the graph is used. In a 

directed graph broadcast is performed as query message passing along forward or 

spanning out-tree, which has the root coinciding with the root of the graph and arcs 
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leading from an ancestor vertex to its descendants. Convergecast is performed as 

answer message passing along backward or spanning in-tree, with arcs leading from 

descendant vertices to their ancestor, and finally to the root. To use spanning in-tree 

for correct convergecast an agent in a vertex should know the number of incoming 

backward arcs, because it can send its answer only after accepting all the answers of 

agents located in the descendants.  

Algorithm of spanning tree construction for undirected graph uses information 

propagation with feedback [3]. It is performed by broadcast with the help of 

flooding (sending messages along all arcs that are not used before), and then 

convergecast is performed to mark out the spanning tree arcs and assign the number 

of descendants to each vertex. This algorithm uses the possibility to send a message 

along an arc, which is used to transfer a previously accepted message. Directed 

graph has no such a possibility. Instead, one can use for the same task a path from 

the arc’s end to the root and a path from the root to the arc’s start. To construct these 

paths, broadcast messages should accumulate the description of the path passed as a 

sequence of arc numbers. In addition, convergecast also uses flooding, but takes into 

account that several floodings initiated by different vertices are working in parallel 

on the graph.  

In many applications of distributed computations on graphs, including 

communication networks, VLSI design, assembly planning, the base graph can be 

slightly changed from time to time, that is, its vertices or arcs can be inserted or 

deleted. In the last decade, there is a growing interest to algorithms solving certain 

tasks on such dynamic graphs. If one allows only arc insertion or deletion, keeping 

the set of vertices stable, such a graph is described by dynamic connectivity 

structure, a data structure that dynamically maintains information about the 

connected vertices. Some works consider a case when the set of vertices can be also 

changed [20].  

The following problems are often considered on dynamic graphs: connectivity 

determination, computation of the shortest path between the given vertices, 

spanning tree construction, etc. The usual goal of dynamic graph algorithms is to 

update efficiently the solution of a problem after changes, rather than having to re-

compute it from scratch each time. Such algorithms provide incremental updates for 

the previous solution. Our approach is different; we consider possibility to solve 

some task without any previously gathered data on a graph, which is still changing. 

We treat directed dynamic graphs with stable vertices set and changing arcs, an arc 

can disappear, appear, or change its end. We also consider a problem of graph 

monitoring: how to gather actual information on graph structure in its root agent. Of 

course, this information gathering have sense if changes are not too quick. We give 

an estimate of time needed for graph structure information update in the root agent, 

so if no changes occur on this interval, one can trust the data gathered.  

Another problem on dynamic graphs considered here is computation of a function 

on a multiset of values assigned to graph vertices. In this case, we cannot use 
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spanning trees because of possible changes in graph structure. In such a setting one 

can send queries to all vertices from the root and then gather the answers, but 

answers from different vertices should be distinguished. There are different ways to 

distinguish them. One technique uses static enumeration of vertices and their 

identifiers, in this case computation complexity is O(n) and message size is 

O(n log n). Another technique uses linear order on vertices and sending answers 

according to this order, in this situation message size can be O(log n), but total 

computation time becomes O(n2). These methods can be generalized, namely, one 

can construct virtual spanning tree of the graph with the help of additional virtual 

arcs and use it to gather answers from vertices. If such a spanning tree has w leaf 

vertices, then messages used can be of size O(w log n) and total computation time is 

O(n2 / w).  

Below in Section 2 we consider static graphs, their marking out algorithm, and 

parallel computation on static graph. Section 3 presents the dynamic graphs, 

monitoring algorithm, and parallel computation on dynamic graph. The conclusion 

summarizes the paper. 

2. Static Graphs 

In this section we suppose that distributed computation is performed by agents 

located in vertices of a directed graph and interacting by passing messages through 

graph arcs, along their direction. The graph is static, i.e., stays unchanged during the 

computation. An agent has no information on graph structure, it knows only the 

number of arcs outgoing from its vertex. Outgoing arcs are numbered, so an agent 

can send a message along an arc using its number.  

Agents operation is asynchronous. On single step of its operation, an agent can 

accept all messages sent to it through incoming arcs, perform some internal 

computations, and send several messages through some outgoing arcs. An arc is a 

buffer with capacity k, i.e., in one time not more than k messages can be sent along 

this arc and not yet accepted. If an arc already has k unaccepted messages, an agent 

located in its starting vertex cannot send new messages along it. We suppose that 

message size is bounded, so arc capacity put a bound on the size of stored data. This 

can be implemented in two ways: one can has k messages of some constant size on 

an arc or one message of a size that is k time bigger. The difference is that in the 

first case it is possible to send more messages, if the number of unaccepted 

messages on an arc is less than k. We consider here algorithms using the first option, 

they can send several messages of bounded size along one arc, but not greater than k 

in a time.  

A message can be sent along only one arc, along all outgoing arcs, or along some 

subset of outgoing arcs. Nevertheless, we assume that a message waits until all 

outgoing arcs are capable to transport it. This assumption can increase the total 

computation time, but make unnecessary separate signals about ability of arcs to 
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carry a message, a single signal concerning all arcs (that a message can be sent 

along any of them) is sufficient.  

To estimate time complexity of computation we count time of internal operation of 

an agent negligible. We also assume that a message is transported through an arc in 

one tic, i.e., not later than one tic after sending it is accepted on the end of the arc.  

We also use the following notation: n is the number of graph vertices, m is the 

number of graph arcs, d is the maximum length of a simple path (passing each 

vertex not more than once), Δ+ is the maximum number of arcs outgoing from one 

vertex, Δ– is the maximum number of arcs incoming to one vertex. 

2.1 Marking out a graph  

We consider in this subsection a problem of graph exploration. The solution of this 

problem should be an algorithm that starts by accepting an external Start message in 

the root agent, performs marking out of the graph by computing and storing in 

agents’ internal memory some data that provides a local information on graph 

structure, and finishes by sending Finish message from the root agent as an answer 

to the Start one.  

The graph marking out includes the following.  

Spanning out-tree, directed from the root. We call its arcs forward arcs. An agent 

located in each vertex should store all the outgoing forward arcs. Other outgoing 

arcs are called chords.  

Spanning in-tree, directed to the root. Its arcs are called backward arcs. A vertex can 

have not greater than one outgoing backward arc (the root has no one). An agent 

located in the vertex (except for the root) should store the number (id) of the 

backward arc.  

An agent located in the vertex should store the number of backward arcs incoming 

to it. This number is necessary to gather correctly information along the in-tree, the 

messages accepted along backward arcs are counted until the counter reaches this 

number that means that all the data from the preceding part of in-tree are already 

collected.  

This marking out can be considered as a result of graph exploration, sufficient to 

perform further exploration of the graph or distributed computations on it in an 

efficient way.  

The algorithm of marking out is described in details and with proofs in [10, 11]. 

Here we provide only the general description of it and give complexity estimates 

without proofs. The algorithm has three phases: construction of spanning out-and 

in-trees, construction termination detection, and setting counters of incoming 

backward arcs.  
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2.1.1 Construction of spanning out-and in-trees  

This step uses 4 message types: Start is used to initiate the operation in the root and 

to set vertex identifies, Search is used to find paths from any vertex to the root, 

Forward marks out the spanning out-tree, Backward marks out the spanning in-tree.  

The root agent accepts Start message from the environment and this initiates the 

graph marking out. Start message is sent further with flooding pattern: an agent 

accepts the first Start message, sends it along all outgoing arcs, and ignores all other 

incoming Start messages (accepts them and does nothing in addition). A message of 

this kind accumulates a vector – the sequence of arc numbers used along its way 

(each agent before sending the message further appends the sequence in it with the 

number of the arc it uses to send it). The vector of the first Start message accepted in 

the vertex becomes the identifier of this vertex. The root identifier is an empty 

vector.  

A Search message looks for a path from a vertex to the root. An agent that accepts 

the first Start message creates and sends Search messages along all outgoing arcs. 

Such a message contains an initiator vector (the identifier of the vertex where it is 

created) and accumulates backward vector – the sequence of arc numbers it passes. 

An agent stores internally the set of identifiers of initiators of Search messages it 

already processed. After accepting Search message, a non-root agent looks for its 

initiator identifier in this set. If the initiator is already processed, the message is 

ignored. Else, the initiator identifier is stored and the agent sends Search messages 

along all outgoing arcs with their backward vectors appended by numbers of 

corresponding arcs.  

The root agent accepting Search message creates Forward message putting the 

initiator vector and backward vector in it. Forward message is moved along the path 

described by the initiator vector. To make this possible, each agent before sending 

the message along the first arc of the vector marks this arc as a forward one and 

removes its number from the vector in the message. If an agent accepts the Forward 

message with empty initiator vector, then it is the initiator. It creates Backward 

message, put backward vector from the Search message in it, and sends it along 

backward path.  

Backward message moves along backward path in the same way – each agent 

accepting it before sending it along the first arc of the backward vector, marks this 

arc as a backward one (stores its number in a special memory slot), and removes its 

number from the backward vector in the message. Backward arc number can be 

already stored in a vertex agent; in this case, the agent rewrites it. This guarantees 

that no cycles along backward arcs appears in the end.  

2.1.2 Construction termination detection  

Construction termination detection is based on counting of arc starts and ends, when 

this numbers become equal all the arcs are explored and so the construction step is 

complete. To implement this idea the root agent stores the value of known arc starts 
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minus known arc ends. After the operation start, the counter equals to the number of 

outgoing arcs from the root.  

To count arc starts every Search message has an additional field storing the number 

of arcs outgoing from the message initiator. After accepting such a message, the 

root agent adds this field value to the counter.  

To count arc ends we add two special message types, Finish and Minus. All agents 

have the counter of incoming arcs. When Forward message is accepted by its goal 

agent (the initiator), it sends Finish messages along all outgoing arcs. The root agent 

does this just after sending Start messages. When Finish message is accepted, the 

agent increments the counter of incoming arcs. Minus message is created and sent to 

the root agent along the backward arc just after the backward arcs is set in the vertex 

for the first time. The first Minus message contains the value of the counter of 

incoming arcs. If a Finish message is accepted after sending the first Minus 

message, additional Minus message with value 1 is created and sent to the root 

agent. When the root agent accepts Minus message, it decreases its counter of arc 

starts on the value of the message field. When this counter becomes 0, the 

construction step is finished.  

2.1.3 Setting counters of incoming backward arcs  

After the construction of in-tree is finished, it becomes possible to set the counters 

of incoming backward arcs. For this purpose two additional message kinds, Begin 

and End are used. Begin messages are created by the root agent and broadcasted 

along the out-tree – each agent after accepting such a message creates its copies and 

send them along all outgoing forward arcs. It also creates and sends along the 

backward arc End message with initial flag set to true.  

After accepting End message with raised initial flag, an agent increments its 

incoming backward arcs counter, sets the flag to false, and sends the message along 

backward arc (if it isn’t the root agent). End messages with dropped initial flag are 

just sent along backward arcs. The root agent counts accepted End messages. When 

their number reaches the number of registered initiators, the counter setting and so 

the whole algorithm operation are finished.  

2.1.4 Algorithm complexity  

The time complexity of the algorithm is O(n / k + d). The size of internal agent 

memory used is O(nd log Δ+). The maximum size of message used is O(d log Δ+). 

Note, that here d means the maximum length of non-intersecting path, not the graph 

diameter. This is a consequence of asynchrony; the forward path from the root to 

some vertex may appear to be the maximal non-intersecting path, not a path of 

minimum possible length between these two vertices.  
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2.2 Parallel computations and aggregate functions  

In this subsection we consider the problem of parallel computation of a value of a 

function on graph. We suppose that each graph vertex has some value assigned to it 

(vertex agent has special operation providing this value) and we need to compute 

the value of some function on this multiset of values.  

Let X denote a set, from which values assigned to graph vertices are taken. X# is a 

set of all finite multisets of elements from X. Multisets are considered, because 

different graph vertices may have equal values assigned.  

A function g : X# → Y is called aggregate when e : Y → Y a, b  X# 

g(a  b) = e(g(a), g(b)). That is, g value on a multiset can be computed by parts. In 

this situation e is called an aggregator of g.  

Examples of aggregate functions are the following: sum 

 : {a1,...,an} → a1 +...+ an has e : (a, b) → a + b, mimimum 

min : {a1,...,an} → min(a1,...,an) has e : (a, b) → min(a, b), sum of squares 

Q : {a1,...,an} → a12 +...+an2 has e : (a, b) → a + b.  

Not all the functions are aggregate, for example, arithmetical mean is not an 

aggregate function. But one can expand function f : X# → Y as a composition 

f = hg, where g : X# → Z is aggregate and h : Z → Y is just some function. In this 

case g is called an aggregate extension of f. An aggregate extension can help to 

compute f by parts, by computing g by parts and then computing h once in the end. 

Some extensions aren’t helpful actually, e.g., one can take an identity function on 

X# as g and f itself as h. To prevent this situation, we use minimal aggregate 

extension. Intuitively, minimal aggregate extension keeps minimum information to 

make possible further computation of f. Formally, g : X# → B is a minimal 

aggregate extension of f : X# → Y, if g is its aggregate extension and for each g': 

X# → B', which is an aggregate extension of f there is j : B' → B, such that g = jg'. 

Minimal aggregate extension exists for every function on multisets and is unique up 

to isomorphism.  

Examples of minimal aggregate extension are the following: for arithmetical mean 

function f : {a1,...,an} → (a1 + ... + an) / n the minimal aggregate extension is 

provided by function g : {a1,...,an} → ((a1 + ... + an), n) and corresponding 

h : (a, n) → a / n, for root mean square f : {a1,...,an} → ((a12 +...+an2) / n)1/2 the 

minimal aggregate extension is provided by function h : (a, n) → (a / n)1/2. 

Aggregate functions theory is a modification of theory of inductive functions on 

finite sequences, see [21]. Detailed proofs can be found in [11].  

2.3 Parallel computations on static graph  

In this subsection we describe an algorithm for computation of a function of values 

assigned to graph vertices (details can be found in‘[11, 12]). This algorithm uses the 

marking out provided by the algorithm described above: spanning in-and out-trees 



Burdonov I.B., Kossatchev A.S., Kuliamin V.V., Tomilin A.N., Shnitman V.Z Asynchronous Distributed Algorithms 

for Static and Dynamic Directed Rooted Graphs. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 69-88 
 

78 

and counters of incoming backward arcs. Note, that this marking out can be 

constructed once and further used for many computations.  

Computation is started when the root agent accepts an external Start message with 

specification of three functions h, g, e. One need to compute the value of f = hg on 

the multiset of values from X assigned to graph vertices. g is a minimal aggregate 

extension of f, and e is an aggregator function of g. Specification of a function can 

be actually a program to compute it.  

The computation is based on broadcast along spanning out-tree and convergecast 

along spanning in-tree of the graph. Request messages containing specifications of 

g and e are transferred along forward arcs. Response messages are transferred along 

backward arcs and contain value of g on a subset of values assigned to vertices of a 

subtree of in-tree.  

When an agent of a leaf vertex of in-tree (it has incoming backward arcs counter 

equal to zero) accepts Request, it computes the function g of the value assigned to 

its vertex, and sends the computed value in the field of Response message along the 

backward arc. Agent of a non-leaf vertex also computes the value of g, but doesn’t 

send it until getting Response messages from all incoming backward arcs, using the 

counter to detect this situation. When it gets all the responses, it can compute the 

complete value of g for the subtree having the corresponding vertex as its root, and 

then sends the result with Response message along its backward arc. When the root 

agent get all the responses, it can compute the value of f by applying h to the value 

of g, and sends the final value to the environment.  

The total computation time of this algorithm is O(3d), ignoring the computation 

complexity of g, h, e, the memory size of an agent is bounded by O(Δ
+
 + log Δ

–

 + x + y), message size is O(x + y), where x is the size of specification of g and e, 

and y is the size of g values.  

3. Dynamic graphs  

In this section we consider computations on dynamic graphs, i.e., graphs, which arcs 

can change while the set of vertices doesn’t change. There are three possible 

changes of arcs.  

 An arc can appear. This event produces a special signal to arc start agent; the 

appearance signal contains the number of new arc.  

 An arc can disappear. We assume that if there is a message being transported 

along the arc, the arc start agent gets a signal with the number of disappeared 

arc, and all the messages sent along it and not yet accepted also disappear. If 

there are no such messages, then no signal is generated. However, in case the 

agent tries to send a message along the disappeared arc, it also gets a 

disappearance signal.  

 An arc can change its end vertex. No signal is generated on this event.  
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This model requires minimal number of additional signals to provide agents with 

data on arc changes. We assume that a special release signal is sent to an agent in 

the arcs starting vertex when a message of the arc is accepted and new message can 

be sent along it. We also suppose that arc capacity is 1 – only single message can be 

transported at a time.  

If an arc changes are too frequent, two unprocessed signals can emerge, and in this 

case we assume that one of them is lost. The second signal can be only an 

appearance signal, so the rules of signal collapse are as follows.  

 From two appearance signals only the last one is retained.  

 From disappearance and appearance signals only the appearance one is 

retained.  

 From release and appearance signals any one can be retained.  

We ignore the time of agent’s internal operation and consider the time of one 

message transport through an arc as bounded by one tic. Too frequent changes can 

make impossible message transport along an arc; to prevent this we suppose that 

some arcs are long-living. A long-living arc always transfers at least one message 

while it is in a stable state. So, long-living arcs are changed not more frequent than 

once in a tic. We also suppose that changes preserve strong connectedness of the 

graph. More precisely, the subgraph made of long-living arcs is always strongly 

connected and contains all the vertices of the graph.  

The algorithms presented below are operating when graph is changing, so they use 

the following heuristics. All the data an agent need to send another agent should be 

put in a single message, because only a single message is guaranteed to be 

transported along an arc. Also, a message should be sent each time it becomes 

possible, that is, the necessary arc appears or is released. Otherwise, the message 

data may not reach other agents because the arc may change its end several times 

without any signals to the sender.  

3.1 Dynamic graph monitoring  

We assume that the graph is enumerated, its vertices has numbers from 1 to n, and 

each agent knows the corresponding vertex number.  

We consider the problem of graph monitoring: to collect complete information on 

graph structure in the root agent (this information is also gathered in all other vertex 

agents). Due to permanent changes, one cannot guarantee the correctness of this 

information, but we can require that the information on arc change becomes known 

to all agents not later than in some finite time T0. So, if in time T0 an arc doesn’t 

change, the agents has correct information about it.  

The algorithm is described in details and with proofs in [13], here we provide only 

the general description and complexity estimates without proofs.  
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3.1.1 Arc description and messages  

The algorithm works as follows. Each agent has an internal storage of arc 

descriptions. An arc description is a triple of the number of start vertex, the arc 

number in its start, and the number of the end vertex (if it is known, else it is 

replaced with 0). Each message also contains a set of arc descriptions. Each time an 

agent accepts a message, it compares his internal arc descriptions with the ones in 

the message, copies to its internal memory the descriptions of arcs it doesn’t know, 

and replaces the descriptions, which are more recent in the message. After that, it 

sends its internal set of descriptions in messages along all outgoing arcs.  

In case an arc appears, the start vertex agent creates the new arc description with 

zero end number. The start vertex agent is also the first one who learns about arc 

disappearance. In case of arc end change the end agent can discover this, if it 

accepts a message with another end number (or zero) in arc description. To make 

this noticeable, the message contains the identifier of the arc used to transfer it.  

3.1.2 Arc rank  

Since an arc can change several times, an agent should determine whether it has 

more recent arc description than the one in a message or not. For this purpose, we 

use a number field in arc description called rank and showing “a version number” of 

the description. When the rank is greater, the corresponding description is more 

recent and should replace an older one. When an agent learns about a new arc or arc 

change and creates or modifies an arc description, it should increase the rank in it.  

To be sure that in every other description the rank is smaller, it isn’t always enough 

to increase it in a new description by 1. Several arc end changes can lead to the 

situation when different end agents assign to a new description rank value greater by 

1 than the old one. To resolve this, the arc start agent accepting a message with 

newer arc description always adds additional 1 to updated arc description in its 

storage. Accordingly, accepting an appearance or disappearance signal the arc start 

agent increases the arc description rank by 2.  

3.1.3 Estimates  

The estimate of time needed to an agent to learn about arc change is T0 = O(n). The 

estimate of time needed to transport information on all changes after they stop is 

T1 = O(d). The size of agent’s internal memory and the message size are both 

O( m log Δ
+
nν), where ν is the maximum number of changes of one arc. This is 

caused by the fact the each agent actually stores the full description of graph 

structure and the same full description is contained in a message. The multiplier v is 

caused by the arc rank field in messages.  

In case when all arc are long-living, we can eliminate v multiplier. In such a 

situation, the number of arc changes is not greater than total time of operation, 

which is O(n). So, one can count ranks modulo some number of the value O(n), and 

the estimate of message size becomes O(m log Δ
+
n).  
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3.2 Parallel computations on a dynamic graph  

For parallel computation on dynamic graph, we need to mark it out, which is not 

performed by monitoring algorithm. Moreover, one cannot use the same method 

with broadcast of Request and convergecast of Response messages, because 

changes in arcs of in-or out-trees may require modifications in spanning trees. Also, 

successful message transport along arcs is not guaranteed.  

However, as one can see on monitoring algorithm example, assumption on arcs 

long-liveness can guarantee that information from any vertex can be delivered to 

any other vertex. To do this, vertex agents should send all gathered information 

along any arc any time the arc is able to transfer it.  

This approach is sufficient to deliver Request messages to all vertices. One can 

gather responses in the same way in the root and perform all the computations by 

the root agent, but this requires very large messages that should contain all the data 

from all known vertices. Use of spanning in-tree and backward arc counters helps to 

minimize the size of Response messages; along backward arcs one can send only 

the summary information on the subtree, having the start vertex as its root.  

In case of dynamic graph the idea is to use a virtual spanning in-tree, constructed 

using additional virtual arcs connecting arbitrary vertices. In addition, we can 

choose the form of the virtual in-tree, since its height h (the maximum length of a 

path from its leaf to the root) determines the computation time (the computations 

can be performed in parallel on different paths only, on one path to the root they are 

performed sequentially) and its width w (the number of leafs) determines the 

maximum message size.  

For the given n and w one can construct the tree of minimum height with n vertices 

and w leafs. It is a fan-like tree homeomorphic to star graph with w rays (branches), 

each ray contains h or h – 1 vertices, where h = (n – 1) / w. The vertices on such a 

tree (besides the root) can be enumerated by two-component index, the ray number 

from 1 to w and the number of the vertex on the ray from 1 to h, smaller numbers 

are closer to the root. The backward arc counter in such a tree is necessary only in 

the root (and it has value w). Other agents should know only the status of its vertex 

whether it is a leaf (counter value is 0) or not (counter value is 1).  

Below we present a general description of the algorithm and its complexity 

estimates. Details and proofs can be found in [14].  

3.2.1 Marking out a dynamic graph  

Marking is performed in two phases; at the first phase the root agent gathers data on 

all vertices using Forward messages, at the second one the root constructs the 

virtual spanning in-tree and sends it to all the vertices using Backward messages.  

The root agent after accepting the Start message from the environment creates 

Forward message, which further circulates on the graph accumulating the arc 

descriptions (with the same fields as in monitoring algorithm). Any agent accepting 

this message updates its internal storage with its data, updates the message with the 
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descriptions, which are more recent in its storage, and sends the updated message 

along all outgoing arcs.  

We need additional assumptions to guarantee that the root agent learns about all the 

vertices. First, we assume that in the clash of release and appearance signals the 

release signal is retained. This helps to guarantee the successful transport of a 

message, since release signal cannot be lost now. Second, we need more stable 

initial arcs. Initial arc is stable from the start of algorithm work until the first 

message is transported along it. We also assume that all the vertices are reachable 

from the root along initial arcs.  

Using this assumptions an agent can register only arcs appearing until it accepts the 

first message (and ignore arc appearing signals after this). This helps to register all 

the initial arcs, and hence all the vertices becomes known to the root agent after 

some time. The root agent can check the condition that it knows ends of all known 

arcs, and due to assumptions, this condition is sufficient to conclude that it knows all 

vertices.  

When the root agent learns about all vertices, the second phase starts. The root agent 

creates the description of virtual fan-like tree, which is sent in Backward message. 

The tree description consists of descriptions of vertices. Each vertex description 

includes the vertex number, its index in the tree, and the flag stating whether it is a 

leaf vertex or not. Each agent accepting Backward message first time, stores the 

description of its vertex, removes it from the tree description, stores the modified 

description, and sends it with Backward message along all outgoing arcs. It also 

stops resending of Forward messages. Accepting Backward message second time 

or further, it constructs and stores the intersection of sets of vertex descriptions 

stored internally and in the message, and stores and sends this intersection. After 

some time the description of virtual tree in Backward messages becomes empty, 

and then this description in the root agent becomes empty. This is the end of the 

marking of the graph.  

3.2.2 Function computation  

To compute a function of a multiset of values assigned to graph vertices we use 

request-response scheme, as for static graph. But in case of dynamic graph, all the 

information should be sent in one message along all the arcs that can transport it 

(that is, each time just after appearance or release signals). Therefore, each request 

message should also contain a partial response. One response value for each tree 

branch can be contained in a message, and it is accompanied by the index of the 

agent, which computed this response. The response value is at first set by the agents 

located in the leafs of virtual trees, then it is modified by the agents of the next 

virtual tree vertices in the direction to the root, until the root agent gathers responses 

from all the root neighbors in the virtual tree. Accepting Request message, an agent 

also stops to send Forward and Backward messages.  
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After the end of computation, Request messages can still move along the arcs. 

Their movement can be stopped by next computation, to do this the root agent can 

enumerate computation tasks requested by the environment and put the number of 

task in Request message. So, Request message contains the number of task, the 

specification of g and e functions, the set of pairs (the value of g for i-th branch, the 

index of response creator).  

3.2.3 Estimates  

The time of graph marking out is O(n), the time of function computation is 

O(n
2
 / w). The size of agent internal memory and the size of a message is 

O(m log nΔ
+
) on the marking out phase and O(x + log N + wy + w log n), where N is 

the maximum number of tasks, x is the size of specification of g and e, and y is the 

size of g values. For w = 1 one have total computation time O(n
2
) and message size 

O(x + log N + y + log n), for w = n one have minimal total computation time O(n) 

and maximal message size O(x + log N + ny + n log n). To remove dependence on 

N, one can use the same modification as in monitoring algorithm if all arcs are long-

living, task number can be countered modulo some number of value O(n
2
 / w).  

4. Conclusion  

The paper presents algorithms for distributed computation of functions on directed 

graphs, which is performed by agents assigned to graph vertices, communicating by 

message passing along directed arcs, and knowing only the number of arcs outgoing 

from the corresponding vertex.  

At first we consider static graph, and describe an algorithm that performs the 

marking out of the graph preparing it for further computations. The marking 

includes marks of forward arcs, making up a spanning out-tree, along which all the 

vertices can be reached from the root, marks of backward arcs, making up a 

spanning in-tree, along which responses from all the vertices can be gathered in the 

root, and incoming backward arcs counters, which are used to collect responses 

correctly. The time complexity of the marking algorithm is O(n / k + d). The size of 

internal agent memory and message size used are O(nd log Δ
+
). The computation 

algorithm for a function of multiset of values assigned to graph vertices uses the 

marking constructed to complete computations in O(d). Here n is the number of 

vertices, d is the length of maximal non-self-intersecting path, Δ
+ 

is maximum 

outdegree, k is the arc capacity, the maximum number of messages that can be sent 

along an arc and not yet accepted.  

Next we concern parallel computations on a dynamic graph that can change its 

structure during computation. We present a graph monitoring algorithm providing 

information about most recent changes to all the vertex agents in O(n). We also 

describe a parameterized algorithm for parallel computation of a function on a 

dynamic graph. The algorithm parameter w can be chosen from the interval from 1 

to n and helps to balance computation time and the size of messages used. The time 



Burdonov I.B., Kossatchev A.S., Kuliamin V.V., Tomilin A.N., Shnitman V.Z Asynchronous Distributed Algorithms 

for Static and Dynamic Directed Rooted Graphs. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 69-88 
 

84 

of computation is O(n
2
 / w) and the message size and agent memory size used is 

O(w log n) (ignoring memory for function specification and result storage).  
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Аннотация. Эта статья представляет собой обзор серии работ авторов, посвящённых 

исследованию распределенных систем. Рассматривается асинхронная модель 

распределённой системы, представленную сильно связанным ориентированным 

корневым графом, с ограниченной емкостью дуги (в том смысле, что только 

ограниченное количество сообщений может быть отправлено по дуге за определенный 

интервал времени). Граф может быть статическим или динамическим, т.е. 

меняющимся во времени. Для статического графа предлагается алгоритм построения 
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прямого и обратного остовных деревьев с оценкой времени O(n / k + d), размером 

памяти в вершине и сообщения O(n d log +), где n – число вершин графа, k – емкость 

дуги, d – длина максимального пути, + – максимальная полустепень исхода вершин. 

Построенные кушниренко используются в распределенном алгоритме вычисления 

функции от мультимножества значений, приписанных вершинам графа, за время не 

более 3d. В динамическом графе предполагается, что k = 1, дуга может появляться, 

исчезать или менять свой конец. Предлагается алгоритм мониторинга динамического 

графа, который доставляет в корень информацию о каждом изменении в графе за время 

O(n) или O(d) после прекращения изменений. Также предлагается алгоритм сбора 

информации о вершинах графа и разметки графа за время O(n). Эта разметка 

используется в алгоритме вычисления функции от мультимножества на динамическом 

графе за время O(n2) с размером сообщения O(log n) или за время O(n) с размером 

сообщения O(n log n). 

Ключевые слова: распределенные алгоритмы; асинхронные системы; 

ориентированный граф; корневой граф; динамический граф; параллельные вычисления  

DOI: 10.15514/ISPRAS-2018-30(1)-5 

Для цитирования: Бурдонов И.Б., Косачев А.С., Кулямин В.В., Томилин А.Н., 

Шнитман В.З. Асинхронные распределенные алгоритмы на статических и 

динамических ориентированных корневых графах. Труды ИСП РАН, том 30, вып. 1, 

2018 г., стр. 69-88. DOI: 10.15514/ISPRAS-2018-30(1)-5 

Список литературы 

[1]. Valmir C. Barbosa. An introduction to distributed algorithms. // MIT Press, Cambridge, 

MA, USA, 1996 

[2]. A.D. Kshemkalyani, M. Singhal. Distributed Computing: Principles, Algorithms, and 

Systems. Cambridge University Press, March 2011. 756 pages 

[3]. Michel Raynal. Distributed Algorithms for Message-Passing Systems. Springer 

Publishing Company, Incorporated, 2013. 500 pages 

[4]. Fred B. Schneider. The State Machine Approach. A Tutorial. Fault-Tolerant Distributed 

Computing. LNCS 448, 1990, pp. 18-41 

[5]. Бурдонов И.Б., Косачев А.С. Тестирование системы автоматов. Труды ИСП РАН, 

том 28, вып. 1, 2016 г., стр. 103-130. DOI: 10.15514/ISPRAS2016-28(1)-7 

[6]. Бурдонов И.Б., Косачев А.С. Система автоматов: композиция по графу связей. 

Труды ИСП РАН, том 28, вып. 1, 2016 г., стр. 131-150. DOI: 10.15514/ISPRAS-

2016-28(1)-8 

[7]. Бурдонов И.Б., Косачев А.С. Система автоматов: условия детерминизма и 

тестирование. Труды ИСП РАН, том 28, вып. 1, 2016 г., стр. 151-184. DOI: 

10.15514/ISPRAS-2016-28(1)-9 

[8]. Бурдонов И.Б., Косачев А.С. Тестирование системы автоматов. Вестник Томского 

государственного университета. Управление, вычислительная техника и 

информатика, №1, 2017 г., стр. 67-75. 

[9]. Бурдонов И.Б., Косачев А.С. Обобщенная модель системы автоматов. Вестник 

Томского государственного университета. Управление, вычислительная техника и 

информатика, №4(37), 2016 г., стр. 89-97. 



Бурдонов И.Б., Косачев А.С., Кулямин В.В., Томилин А.Н., Шнитман В.З. Асинхронные распределенные 

алгоритмы на статических и динамических ориентированных корневых графах. Труды ИСП РАН, том 30, вып. 1, 

2018 г., стр. 69-88 

87 

[10]. Burdonov I.B., Kossatchev A.S. Buidling direct and back spanning trees by automata on 

a graph. Trudy ISP RAN/Proc. ISP RAS, vol. 26, issue 6, 2014 г., pp. 57-62. DOI: 

10.15514/ISPRAS-2014-26(6)-4 

[11]. Бурдонов И.Б., Косачев А.С., В.В. Кулямин. Параллельные вычисления на графе. 

Программирование, том 41, № 1, 2015 г., стр. 3-20. 

[12]. Burdonov I.B., Kossatchev A.S., Kuliamin V.V. Parallel calculations by automata on 

direct and back spanning trees of a graph. Trudy ISP RAN/Proc. ISP RAS, vol. 26, issue 

6, 2014 г., pp 63-66. DOI: 10.15514/ISPRAS-2014-26(6)-5 

[13]. Бурдонов И.Б., Косачев А.С. Мониторинг динамически меняющегося графа. 

Труды ИСП РАН, том 27, вып. 1, 2015 г., стр. 69-96. DOI: 10.15514/ISPRAS2015-

27(1)-5 

[14]. Бурдонов И.Б., Косачев А.С. Параллельные вычисления на динамически 

меняющемся графе. Труды ИСП РАН, том 27, вып. 2, 2015 г., стр. 189-220. DOI: 

10.15514/ISPRAS-2015-27(2)-12 

[15]. Бурдонов И.Б., Косачев А.С. Исследование ориентированного графа коллективом 

неподвижных автоматов. Программная инженерия, том 8, № 1, 2017 г., стр. 16-25 

[16]. Бурдонов И.Б. Обход неизвестного ориентированного графа конечным роботом. 

Программирование, том 30, №4, 2004 г., стр.11-34. 

[17]. Бурдонов И.Б. Проблема отката по дереву при обходе неизвестного 

ориентированного графа конечным роботом. Программирование, том 30, №6, 

2004, стр.6-29. 

[18]. Lynch, Nancy A.: Distributed algorithms. The Morgan Kaufmann Series in Data 

Management Systems. Kaufmann, San Francisco, Calif., 1996, pp. 904. ISBN 1-55860-

348-4. 

[19]. David Peleg. Distributed computing — A Locality-sensitive approach. SIAM 

Monographs on Discrete Mathematics and Applications. 2000, 359 pp. 

[20]. Camil Demetrescu, Irene Finocchi, and Giuseppe F. Italiano. Dynamic Graphs. In 

Handbook of Data Structures and Applications. Oct 2004, 36-1 -36-20. ISBN: 978-1-

58488-435-4. 

[21]. Кушниренко А.Г., Лебедев Г.В. Программирование для математиков, Наука, 

Главная редакция физико-математической литературы, Москва, 1988. 

[22]. Tary G. Le probl`eme des labyrinthes. Nouv Ann Math 14, 1895.  

  



Burdonov I.B., Kossatchev A.S., Kuliamin V.V., Tomilin A.N., Shnitman V.Z Asynchronous Distributed Algorithms 

for Static and Dynamic Directed Rooted Graphs. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 69-88 
 

88 

 


	Применение AVX512-векторизации для увеличения производительности генератора псевдослучайных чисел
	1. Введение
	2. Технология SIMD
	3. Генератор псевдослучайных чисел LFSR113
	4. AVX512-реализация параллельной генерации четырех выходных последовательностей псевдослучайных чисел для алгоритма LFSR113
	5. Скорость генерации
	Список литературы
	Applying AVX512 vectorization to improve the performance of a random number generator
	References


