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Abstract---The paper considers the problems of checking the existence and synthesis of synchronizing and homing sequences for finite input/output automata. The relevant sequences can be used when identifying the condition of the checked system after supplying the proper input sequence. In the model considered in the study, the actions are divided into input and output, however, there are no explicitly specified sets of initial and final states. The article defines the concepts of synchronization and installation sequences and suggests methods for their synthesis for a special class of input/output automata, which have transitions in each state on either input or output actions; in addition, there are no cycles in output symbols in the corresponding transition graph. The necessary and sufficient conditions of existence of synchronizing and homing sequences are specified, and the length of such sequences is estimated for the described class of input/output automata. The subclasses of automata are specified, for which the worst (mainly, exponential) complexity evaluations are not reachable. 
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INTRODUCTION 

The problem of identifying states in finite state machines (Finite State Machines or FSMs in the English-language literature) is actively studied beginning with Moore's first paper devoted to the synthesis of so-called “speculative” experiments for finite state machines [12]. Later, Moore’s results were developed by researchers for the various classes of finite state machines (see, for example, [2, 6, 11]). When identifying the current/final state, the synchronizing or homing sequence formed in advance, is supplied to the studied system. If the sequence is synchronizing, the studied system passes from any state into the known state. If the sequence is homing, a conclusion is made about the state achieved by the system after supplying the sequence according to the observed response of the system to the homing sequence. In this work, the authors do not consider adaptive input sequences, i.e., the input synchronizing (or homing) sequence is formed in advance, before the experiment with the system. 
The identification off states is used in various applications. One such application is the automaton methods of synthesis of fault detection tests for discrete control systems [4, 5, 13] and there are numerous publications on how such sequences can be constructed for deterministic and non-deterministic (including non-observable), partial or completely determined automata [1, 5, 7, 13]. Besides so-called “active” testing, the intensification of the state of the system being checked is also used in problems of monitoring ("passive" testing), when observing the behavior of the checked implementation. In particular, in [8], the authors study the possibility of acceleration/optimization of monitoring, if the system of synchronizing and/or homing sequences is available in the specification. If the current state of the system is known, the set of checked properties can be significantly reduced during a passive check of the system. 
Nevertheless, when describing the behavior of discrete control systems to check their reliability and correct functioning, not only the finite state machine model is successfully used, but also input/output automata. The reason is that the output response of the system does not necessarily appear directly after each input symbol, and, actually, a response in the form of a sequence of output symbols is possible for one input symbol. The input/output automata allow describing such situations by an appropriate mathematical model. However, the methods of analysis of such models from the point of view of identification of the current/final state are unknown to the authors. Respectively, the proposed methods of construction of homing and synchronizing sequences for such model are new. 
However, it should be noted that synchronizing experiments for automata have also been considered earlier, but, in the known cases, the actions marking the transitions are not divided into input and output [1, 13, 15]. In other words, during synthesis of the experiment, the fact is considered that in each state of the automaton, any symbol of the symbols defined in this state, which can be interpreted as the input symbols, can be supplied; there are no output symbols among the actions. In this paper, we consider a wider class of automata, namely, automata in which each state can either accept an input or produce an output symbol. Thus, the results on synthesis of synchronizing experiments are extended to the studied class of automata. 
The authors note that the results presented in this paper have been partially included in publication [16] according to the results of the Eighth Symposium on Program Specification and Verification “Program Semantics, Specification, and Verification: Theory and Applications” (2017). In this paper, the authors “inherited” the algorithm developed in a previous article. The scientific novelty of this study consists in 1) proving the correctness of the proposed algorithms, 2) establishing the evaluations of the lengths of synchronizing and homing sequences for the considered class of input/output automata, and 3) specifying the special subclasses of input/output automata, for which the worst (mainly, exponential) complexity evaluations are not reachable.
The structure of the paper is as follows. The basic definitions and designations are given in the first section. The method of synthesis of homing and synchronizing sequences for input/output automata are specified in the second section. The third section includes a conclusion, where, particularly, the perspectives of future scientific investigations are covered. 

1. BASIC DEFINITIONS AND DESIGNATIONS 
By input/output automaton (or simply an automaton) in the article, the authors mean a quadruple 
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In this article, a special class of automata are considered, for which the following conditions are fulfilled. 

1. In each state of the automaton, only the input symbols or output symbols are defined, i.e., 
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, so that, there are no states in the automaton from which there are no transitions. 

2. The automaton transition diagram does not include any cycles marked only by output symbols, i.e., the automaton language does not include any sequences with the infinite suffix of output symbols.

3. There is special output symbol 
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 in the automaton representing a so-called silence (in English, “quiescence [14]”) in the states, where the transitions by input symbols are defined: respectively, in each state 
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An example of input/output automaton S is shown in Fig. 1. The automaton has five states, i.e., 
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Generally, synchronizing and homing input sequences are used to identify the automaton state after supplying such sequence, provided that the initial state of the automaton is unknown. Based on [16], the definitions of such sequences for input/output automata are introduced. It should be noted that the supply of the input sequence and identification of the state after supplying the sequence are conducted according to the following assumption. 
Before supplying the first input symbol, the tester waits for the receipt of an output symbol within certain output timeout 
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. If the automaton generates an output symbol, the timer clock is set to zero, and the tester waits for the next output symbol within the following 
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 time units. If within 
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 time units the output symbol is not generated by the automaton, the next input symbol is supplied to the tester or testing is finished, and the timer clock is set to zero. This order of input symbols explains the presence of special output symbol 
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; when such an output symbol is not observed within 
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 time units, the authors assume that output symbol 
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 is generated. The output timeout is usually specified based on the longest possible output sequence to the supplied input symbol. 

Generally, an allowable sequence of actions in the automaton is called a route, and the 
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. The synchronization sequence is the input sequence, after which the automaton passes into the same state from any initial state. In other words, sequence 
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 is called "synchronizing" for automaton S, if there is a state 
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. Thus, the synchronizing sequence allows uniquely identifying the state of the automaton after its supply without observing the output responses generated by the automaton. 
The homing sequence allows uniquely identifying the state of the automaton after its supply and observing the output responses generated by the automaton. Thus, sequence 
[image: image50.wmf]12

k

ii…i

a=

 is called homing for automaton S, if for each route 
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 is an empty set or a solo-set. Carrying out a direct check, it is possible to make sure that there is homing sequence 
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2. METHODS OF SYNTHESIS OF SYNCHRONIZING AND HOMING SEQUENCES FOR INPUT/OUTPUT AUTOMATA 

In this section, the authors propose algorithms for constructing synchronizing and homing sequences for input/output automata from the above-described class. Besides, the complexity evaluations of construction of such sequences are specified and the automata class with the reduced evaluations of the lengths of synchronizing and homing sequences are considered.  

2.1. Construction of Synchronizing Sequences

As noted above, the synchronizing sequences and methods of their synthesis are well studied for “classical” automata, where the action alphabet is not divided into subsets of input (stimuli) and output (responses) of the actions, respectively. If, in automaton S, transitions are determined only by input actions, then the sequence of actions 
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 is called synchronizing, if there is a state of the automaton, into which 
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 transfers the automaton from any initial state. The algorithm of checking the existence and construction of synchronizing sequences (if any) for such automata, including non-deterministic and possibly partial automata, are published in [1, 5, 13, 15]. When constructing a synchronizing sequence for input/output automaton S, which meets the above-described conditions, the authors propose a transfer to a classical automaton without any output actions, which has the same set of synchronizing sequences. 
Algorithm 1: synthesis of automaton A
Input: Input/output automaton 
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Output: Automaton A 
Step 1. Construct automaton 
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Step 2. For each transition 
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Statement 1. The sets of synchronizing sequences for automata A (constructed according to the algorithm 1) and S coincide.
Proof. By definition, sequence 
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 is the synchronizing sequence in input/output automaton S, there is state 
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 is a synchronizing sequence in automaton  A.  
Consequence 1. Input/output automaton S has a synchronizing sequence, if and only if automaton A, constructed according to algorithm 1, has a synchronizing sequence. 
Let us note, that the above-specified class of input/output automata does not require a complete definiteness of the function of behavior in the states of set 
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 by input symbols. That is why, automata A, synthesized according to the algorithm 1, can be partially determined, if in initial automata in some certain state of set 
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, the transitions are defined not by all input symbols. On the other hand, the set of classical automata forms a subclass of the studied class of input/output automata, and, at that, for partial deterministic automata (in the English-language literature, the Partial Deterministic Automaton or PDA), the problem of checking for the existence of the synchronizing sequence is PSPACE-complete [3]. This fact validates the PSPACE-difficulty of the problem of checking for the existence of the synchronizing sequence for input/output automata studied in this article.
The high evaluations of the complexity of the problem of checking the existence of sequences identifying the current state of automata, as is known, are tightly related with the maximum evaluations of the minimum lengths of these sequences. It should be noted that for input/output automata of the studied class, this evaluation is exponential even in the case, when the behavior of the automaton is determined by all input symbols in the states of set 
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Statement 2. For the synchronized input/output automata S, whose behavior is determined by all input symbols in each of the states of set 
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Proof. Automaton A, synthesized according to the algorithm 1, has 
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 actions. This automaton is completely determined, however, it can be non-deterministic, as the existence of the various output sequences transferring initial input/output automaton S into various states from the same state of set 
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 for the same input symbol in some certain state is possible. The length of the shortest synchronizing sequence of automata A in the worst case depends exponentially on the number of states, in particular, for the classical automaton with the set of states, it can have the length of the order 
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Let us consider checking for the existence of the synchronizing sequence for the automaton in Fig. 1 as an example. The relevant classical automaton A (without output actions) is given in Fig. 2. Carrying out a direct check, it is possible to make sure that there is no synchronizing sequence for automaton A in Fig. 2. Thus, there is also no synchronizing sequence for the input/output automaton in Fig. 1. 
2.2. Construction of Homing Sequences
In this article, the problem of checking for the existence and synthesis of homing sequences for input/output automata is reduced to the problem of synthesis of homing sequences for the classical, probably, partial and non-deterministic automata, for which this problem is well studied [6--8]. 

Let us consider finite state machine 
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 are the finite disjoint input and output alphabets. Unlike the above considered model of the input/output automaton, quadruples 
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 are the transitions in the finite state machine, i.e., in any route of the machine, the output symbol follows each input symbol, and each route is completed by the output symbol. The machine is called fully determined, if in each state, a transition by each input symbol is defined, otherwise, the machine is called partially determined. The machine is called deterministic, if in each state, not more than one transition is defined by each input symbol, otherwise, the machine is called non-deterministic. Generally, the ratio of the transitions of the automaton is spread over input and output sequences. The machine is called strongly connected, if for any two states 
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. The deterministic machine is called reduced, if for any two states, there is an input sequence, the output responses to which are different in these states.  
Input sequence 
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 is called homing in the machine, if for any route 
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-receiver of each subset of states has a capacity no more than unity, and the same output responses to sequence 
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 guarantees the reachability of the same state. The methods of synthesis of homing sequences for finite state machines are well studied, in particular, for the determined deterministic automata in [6, 13]; for the non-deterministic machines in [8]; and for the partial machines in [17]. Similar to the method of construction of synchronizing sequences, the authors propose a sufficiently simple procedure of construction of finite machines by the specified input/output automaton, for which the sets of homing sequences coincide. 

Algorithm 2: synthesis of finite state machine M
Input: Input/output automaton 
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Output: Finite state machine M 
Step 1. Construct finite state machine 
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Step 2. For each state 
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Step 3. For each state 
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Statement 3. The sets of homing sequences of finite state machine M (constructed according to algorithm 2) and automaton S coincide. 
Proof. By definition, sequence 
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 is homing in finite state machine M, if for any route 
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 guarantees the reachability of the same state. By construction of finite state machine M, the latter means that the 
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 guarantee the reachability of the same state from the various different states. On the contrary, if 
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 is a homing sequence in input/output automaton S, the 
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 is the homing sequence in finite state machine M.  
Consequence 2. Input/output automaton S has a homing sequence, if and only if finite state machine M, constructed according to algorithm 2, has a homing sequence.  
As noted above, to check the existence and construction of the homing sequence in finite state machine M, the algorithms from [6, 8, 9, 13] can be used, which “process” the deterministic and non-deterministic, completely and partially determined machines. It should be also noted, that in case of non-observance of the nondeterminism of the obtained finite state machine M due to a high complexity of the problem of identification of the finite state of the machine, it is convenient to use the various heuristics of pruning of a so-called homing tree (obtained from the  successor tree representing the sweep of the machine behavior). For example, in [8], it is proposed to use the search of the homing sequence for a partial, probably, non-observed machine with the limitation of the required sequence to the maximum length. This fact is substantiated by the evaluation of the shortest homing sequence for the non-deterministic automata even in the case, when the initial automata is determined by all input symbols in the states from set 
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The known results by the reachability of the evaluation of the length of the shortest homing sequence for the observed completely determined machine validate the reachability of the exponential evaluation of the length of the homing sequence for the input/output automaton. In this case, the machine from [10] can be naturally transformed into the automaton by sweeping each transition 
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Statement 4. For any 
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The possibility of the above described transformation of the finite state machine into the input/output automaton also validates the PSPACE-difficulty of the problem of checking the existence of the homing sequence, as the problem of checking the existence of the homing sequence is PSPACE-complete also for partially determined deterministic automata. The PSPACE-completeness of the problem of checking the existence of the homing sequence for the input/output automaton should be studied additionally, as a result of the transition (of the polynomial complexity) to the classical machine, it is possible to obtain at worst a partial non-observed machine, for which the membership of the appropriate problem to the PSPACE class remains open to question. 
As an example, let us check the presence of the homing sequence in automaton S in Fig. 1. In this automaton, there is no synchronizing sequence, however, carrying out a direct check using the methods from [6, 7, 13], it is possible to make sure that relevant machine M (Fig. 3) has homing sequence 
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According to the above given arguments and statements, the problems of checking the existence and construction of synchronizing and homing sequences for the studied class of input/output automata have a sufficiently high complexity. However, in some cases, this complexity can be reduced due to imposing the restrictions on the studied automaton. For example, let us turn again to the automata, in which a transition by each input symbol is defined in each admissible state. Let us also agree that the single output symbol is determined in each state of set 
[image: image162.wmf]2

S

, i.e., the single sequence of the output symbols follows each input symbol. 

In this case, the appropriate finite state machine M and automaton A synthesized according to algorithms 1 and 2, represent the “good” deterministic, everywhere defined transition systems. The problems of checking the existence and synthesis of homing and synchronizing sequences for the completely defined strongly connected reduced deterministic automata (and classical automata, respectively) can be solved within the polynomial time, which is why the problem of identification of the final/current state of such input/output automata can be solved within the polynomial time. Moreover, the lengths of relevant input sequences are limited by the polynomial of the second and third degree as to the capacity of the subset of the automaton states, in which the transitions by the input symbols are defined. A subset of the deterministic by the output automata can serve as an example of a good class of input/output automata, in which in states from set 
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, a transition by each input symbol 
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 is defined, and in states from set 
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, a transition by only one output symbol. If for each input/output automaton from this subclass, appropriate machine M is reduced and strongly connected, any studied input/output automaton necessarily has a homing sequence, at that, the length of this sequence does not exceed 
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. The investigation of extension of the set of such good subclasses of automata is a part of further study. 
3. CONCLUSIONS 

In this paper, the problem of synthesis of synchronizing and homing sequences for a special class of input/output automata is studied, for which only input or output actions are defined in each state, and there are no cycles in the transition diagram marked only by output actions. The authors show, how the problem of synthesis of synchronizing and homing sequences for automata from this class can be reduced to the solving of such problems for classical machines and automata, for which such algorithm exists. Besides, evaluations of the complexity of checking the existence and construction of such sequences are obtained in the article. One of the classes of input/output automata is described, for which the obtained evaluation of the complexity can be reduced. In the future, the authors plan to continue studying the classes of input/output automata with the reduced evaluations of the complexity for synchronizing and homing sequences, in particular, due to the use of adaptive and speculative experiments. The authors also plan to carry out investigations on extension of the class of studied input/output automata adding non-observed action 
[image: image167.wmf]t

, as well as the assumption of existence of the composite state, in which both input and output action are permitted. 
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FIGURE CAPTIONS 

Fig. 1. Input/output automaton S 

Fig. 2. Automaton A obtained after using Algorithm 1 

Fig. 3. Finite state machine M obtained from S after using Algorithm 2 

�Thus, automata without transitions by unobservable actions and without specification of the sets of the initial and final states are considered in this article.  
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