
Test Derivation for the Software Defined Networking Platforms: Novel Fault
Models and Test Completeness

Nina Yevtushenko1,2, Igor Burdonov2, Alexandre Kossachev2, Jorge López3, Natalia Kushik3,
Djamal Zeghlache3

1 Department of Information Technologies, Tomsk State University, Lenin str. 36, Tomsk, Russia
2 Software Engineering Department, Institute for System Programming of the Russian Academy

of Sciences, 25 Alexander Solzhenitsyn str., 109004, Moscow, Russia

3 SAMOVAR, CNRS, Télécom SudParis, Université Paris-Saclay, 9 rue Charles Fourier 91011
Evry, France

{evtushenko, igor, kos}@ispras.ru,
{jorge.lopez, natalia.kushik, djamal.zeghlache}@telecom-sudparis.eu

Abstract

Software Defined Networking (SDN) platforms are
used in many applications and thus, should be
thoroughly verified and tested before deployment;
there are a number of research papers proposing
various approaches for their verification. The next
step is to test whether all the items are proceeding
properly, i.e., to test the platform. As the requests can
be considered as sets of paths which have to be
properly implemented, the inputs of the System Under
Test (SUT) are appropriate graphs (and packets
traversing those graphs) while the output that can
also be considered as a set of paths with appropriate
parameters, is obtained via the appropriate platform
monitoring. Correspondingly, for testing, we use a so-
called proactive approach: check a submitted set of
paths after forwarding a packet with appropriate
parameters. We define several fault models (under
different testing assumptions) with respect to the
underlying resource connectivity graph (RNCT). Some
conditions for deriving a complete test suite as well as
the complexity upper bounds with respect to defined
fault models are also established.

1. Introduction

As information technologies progress rapidly, more
attention is paid towards various virtualization
aspects. Virtual networks are built on the basis of
classical / ‘physical’ ones, with respect to the user /
tenant demands. Users can request rather simple
networks as well as complex service function chains
where network functions or services are executed in

the network nodes [1]. Therefore, an important
question arises: how to guarantee that the user request
is respected and it has been properly implemented?
The reply to this question can be found through a
thorough verification and / or testing of virtualization
platforms and their components [2-5].

In this paper, we focus on Software Defined
Networking (SDN) [3] frameworks or infrastructures
that are crucial components of virtualization
platforms. In fact, SDN frameworks ‘are responsible’
for creating necessary virtual links between the
network nodes. Such framework therefore includes an
SDN controller that (together with the corresponding
application) processes a user request for a virtual
network or a given path, and the data plane, which is
managed by the controller and where switches or
forwarding devices connect various hosts between
each other. We discuss how such SDN framework can
be tested with guaranteed fault coverage. In fact, we
focus on different equivalence classes of potential
requests, taking into account different testing
assumptions, such as for example: i) each requested
path always starts and finishes at a host; ii) switches
are only used to forward the packets; iii) the
implementation of one of requested paths does not
affect the others, etc.

Proper assumptions allow to reduce the
enumeration of the possible user requests to guarantee
the correctness of their implementation. In particular,
we define different fault models in this paper; these
models reflect the completeness of the corresponding
test suites with respect to certain equivalent classes.
We thus introduce so called host- and switch-
connectivity complete test suites together with the

switch-forwarding complete ones considering various
packet / switch parameters that affect the packet
processing. For each of the cases, we estimate the
corresponding complexity as the length of the test
suite being derived.

We note that we are not aware of any test
generation strategies with guaranteed fault coverage
for SDN frameworks whenever various packet
parameters are taken into consideration. A pioneering
work has been recently published in [4] where the
authors have stated the corresponding problem and
have considered the necessary path generation as
inputs to the SDN controller (or its proper
application). We however note that these paths were
simplified, for example, switch port numbers or even
source / destination addresses for a packet were not
modelled at all. In this paper, we decrease the
abstraction level to obtain an adequate model by
augmenting the fault models by necessary details and
provide the contributions listed above.
Correspondingly, this paper is up to some extent, a
continuation of the paper [4], however in this paper,
we go deeper and consider the features of a packet
which should be carried on the set of paths of a test
suite. In other words, paths become augmented with
appropriate parameters which are important for the
functioning of the SDN data plane.

The paper is structured as follows. Section 2
presents the necessary background. Novel fault
models for testing SDN frameworks based on the
appropriate graph enumeration are presented in
Section 3. Section 4 concludes the paper and
describes future research directions.

2. Preliminaries

In the SDN architecture (Fig. 1), the instructions
for the data plane for packets’ forwarding are
provided by SDN-controller (-s). The network devices
in the data plane are usually considered as hosts
which can generate packets, and switches which
transfer these packets through the data plane to
another host. Switches have forwarding rules for an
obtained packet according to different parameters
such as an item where the packet came from,
destination node, etc. [5]. A forwarding rule has a
priority, a preamble and a postamble: the header
parameters are analyzed in the preamble and the
compatible rule with the highest priority is
determined; this rule postamble assigns the neighbor
device where the packet will be forwarded. An SDN-
controller accepts sets of paths which should carry on
corresponding packets, i.e., those paths can have
appropriate parameters according to which the packets

are then forwarded. In this paper, we consider paths
which have not more than two parameters.
Nevertheless, the results of the paper can be extended
to bigger sets of parameters which should be taken
into consideration.

Figure 1. Example of an SDN architecture

[4]

When a forwarding rule is issued to an SDN-

enabled switch, a virtual link from and to other node
(-s) adjacent to the switch is created, i.e., a packet
accepted from adjacent nodes (hosts or switches) is
forwarded to a (corresponding) set of ports that are
connected to appropriate ports of other nodes.

Consider a small example in Fig. 2. Let switch s1
be connected with host h1 and have the following
rules:

1) T1:100 -- Input port = 1 ^ UDP DST port =
5060 à output port = 2

2) T1:100 -- Input port = 1 ^ TCP DST port =
80 à output port = 3

Figure 2. Example of an SDN data plane as
an augmented graph

When a packet with the corresponding header

arrives to s1 from h1, the packet will be forwarded to
output 2 (or 3) depending on the header the network
packet carries, either the Session Initialization
Protocol (SIP) using the User Datagram Protocol
(UDP) or web traffic (HTTP) using the Transmission
Control Protocol (TCP). In general, this dependence

can be more complex, for example, an output port can
depend on the destination host, etc.

Similar to [4], the data plane is referred to as the
resource network connectivity topology (RNCT) with
the SDN elements such as hosts, switches and links
between them. An RNCT is represented as a directed
graph G = (V, E) without multiple edges, where the
set V of nodes represents network devices. Edges of
the graph (the set E) represent connections between
two nodes (links) in a network and without loss of
generality, we represent each link as two ordered
edges or simply edges for short.

3. Fault Models for Testing SDN
Architectures

For assuring the quality of the SDN architectures,
test derivation methods and techniques should be
developed. In this paper, we consider an active testing
mode where test cases or test sequences are applied to
an SDN framework that is a system under test (SUT),
and the conclusion about the correctness of the SUT is
made after applying corresponding test cases
(appropriate requests) together with packets which
induce a corresponding traffic based on observations
via monitoring. In model based testing techniques, test
suites with guaranteed fault coverage are usually
generated, i.e., in model based testing, the derived test
suites are complete under appropriate testing
assumptions. We later on make certain testing
assumptions to deliver complete test suites for SDN
frameworks under various conditions.

3.1. Testing assumptions

As usual, testing can be performed at different

levels. In this paper, we consider the requests which
have (parameterized) paths over a given RNCT and
the task is to test whether each requested path is
correctly implemented by the SDN-controller (-s) and
forwarding devices. A virtual path (simply a path
throughout the paper) is a sequence of directed edges
whose head and tail nodes are hosts and all other
intermediate nodes are switches. This assumption is
reasonable as the goal of any data network is to share
data between computing devices, through data
forwarding devices. Moreover, edges are not repeated
in a path (due to potential infinite loops). We assume
traffic can be generated from any host to any other,
and the observed path that the data follow, is
considered as an ‘output’. This is reasonable as well
since otherwise, it is impossible to conclude about the
real data paths in the RNCT. We assume that the hosts
in the RNCT, do not act as switches and switches do

not act as hosts. The RNCT model does not consider
such possibilities even if underlying virtualization
technologies allow this; the reason is that for the
considered model, a device acting as a switch and a
host can be modelled as two separate devices, and
furthermore, this configuration is irrelevant for the
model. The forwarding rules construct a virtual partial
path or a set of those. Some examples of the paths
obtained from an RCNT are illustrated in Fig. 3. In
this case, the RNCT is a dense network with four
switches as shown in Fig. 1. Each host is connected to
a single switch; however, a switch can be connected
with several hosts as well as with other switches. In
this paper, we consider that while executing the tests,
switches do not consult with SDN-controllers. If no
rule can be applied to a network packet then the
packet will be dropped and this action can be
observed via monitoring. This assumption is
reasonable as the potential re-configuration can be
modelled as a new set of paths. However, considering
the re-configuration of the forwarding devices is out
of the scope of this paper and left for future work.

Figure 3. Example of SDN augmented paths

Given the SDN infrastructure similar to that in Fig.

1, we continue the work started in [4] proposing new
Fault Models (FM) for testing the SDN framework,
including the controller (-s), switches, and
connections between them. A tester sends specific
requests to the SDN controller application asking for
different paths to be implemented in the RNCT. Those
paths can have a number of parameters that determine
which path the packet should take. This information
will help when generating the traffic and performing
monitoring as the monitoring output should follow the
proper paths. The parameters are mostly related to the
packet headers, the list of parameters depends on the
SDN controller. For example, for the ONOS controller

this list can be found in [5]. According to our
assumptions, the inputs that need to be generated in
order to guarantee that the SDN infrastructure is
functioning properly are the paths limited by the
RNCT. In order to derive complete test suites, the
following testing assumptions are made.
1) The RNCT model has no multiple edges and /or

loops and is connected. In such infrastructures,
multiple edges are sometimes included for
increasing the communication bandwidth, the
resulting link is a logical bond.

2) Moreover, the RCNT is permanent and is not
changed during the request implementation.

3) Switches are capable of cloning, i.e., they can
output a received packet to multiple ports;
however, in this paper we do not consider such
switches. Such consideration is left for the future
work.

4) As mentioned above, each path is started and
finished at a host.

5) A system under test (the controller and data plane,
possibly, with some application (-s)) gets a path (a
set of paths) which should be implemented via
pushing forwarding rules to switches and this can
be checked by generating and observing the
appropriate network traffic.

6) A packet is not changed while traversing a path.
This also is a reasonable assumption as not all
forwarding devices have such capabilities, for
example, to perform Network Address
Translation (NAT).

7) Given two paths A and B, the result does not
depend on the order how they are checked: A after
B or B after A, and also it does not matter if these
paths are implemented in parallel. Moreover, we
assume that if the paths A and B are correctly
implemented then the set {A, B} is also correctly
implemented and vice versa. This assumption
seems reasonable if the paths A and B do not
intersect in the same node with the same
parameters. We assume, the requested set of paths
is well-formed [2]. However, thorough
investigation of these issues is out of the scope of
the paper and left for the future work.

8) As already mentioned above, it is also assumed
that switches do not query a controller about a
packet that does not satisfy any rule. The switch
just drops the packet, i.e., a switch implements
some function f: D1 ´ … ´ Dn ® P where Di is the
domain for the i-th parameter, and P is the set of
ports of the switch.

Similar to [4], a fault model in this case is

represented by a pair <=, FD>, where = means that

the set of implemented paths in the RNCT has to be
equal to the requested one. FD is the fault domain, a
set of potential implementations, i.e., the set of all
possible paths that can be implemented by the use of
the given RNCT. A test case is a path that should be
implemented (an example is in Fig. 3) and a complete
test suite is the set of paths applied one by one such
that the following holds. If each path of the test suite
is correctly implemented then any requested path will
be also correctly implemented under the given testing
assumptions, i.e., up to some extent. subsection, we
define three fault models which correspond to the
above testing assumptions.

3.2. Defining Fault Models

FD contains all possible paths of the RNCT

augmented with all possible parameters’ values. A test
case is a (parameterized) path that after erasing all
parameter values is a path of the RNCT and a test
suite is a finite set of (parameterized) paths. As the
domain of each parameter is finite, the set of all
RCNT paths augmented with all permissible
parameter’s values is a complete test suite w.r.t. <=,
FD>. This statement is in fact, the extension of
Proposition 1 in [4]. However, the number of such
even non-parameterized paths is big enough; and it is
bigger when augmented with all possible parameters’
values. As stated in [4], this number reaches 36 even
for an example in Figure 1 and will be much bigger
for real SDN-networks where the RNCT graph can
have hundred of nodes. For this reason, we refine the
notion of a complete test suite in order to have a test
suite of reasonable size and still be able to capture
some critical faults of the SDN framework, since as it
is shown, for example in [6], different faults models
allow to capture different faults.

I. We first define a so-called host-connectivity-
(hc)-complete test suite. A finite set TS of
parameterized paths is an hc-complete test suite w.r.t.
<=, FD> if for each pair (h1, h2) of different hosts h1
and h2, the TS has a parameterized path which starts at
h1 and finishes at h2. The following statement can be
immediately established.

Proposition 1. A set of parameterized paths such
that for each ordered pair (h1, h2) of different hosts h1
and h2, the TS has a parameterized path which starts at
h1 and finishes at h2, is an hc-complete test suite w.r.t.
<=, FD>.

At least, after passing such an hc-complete test
suite it can be guaranteed that there is an opportunity
to implement a path between any two different hosts
while the test suite contains exactly n(n-1) test cases
when n is the number of different hosts.

II. In order to add more assurance about the SDN
framework implementation, the checking of the
switch connectivity is desirable. A finite set TS of
parameterized paths is a switch-connectivity-(sc)-
complete test suite w.r.t. <=, FD> if for each pair of
neighbor switches (s1, s2), the TS has a parameterized
path that has an edge (s1, s2). Another statement
immediately follows.

Proposition 2. A set of parameterized paths such
that for each pair of two neighbor switches (s1, s2), the
TS has a parameterized path with an edge (s1, s2) is an
sc-complete test suite w.r.t. <=, FD>.

In other words, similar to [4], we assume that two
paths are (si, sj)-equivalent if each switch processes
packets independently of many parameters only
paying attention from which RNCT node a packet
came. In other words, we assume that a packet
obtained by the switch si from the node sj is always
processed correctly or wrongly independent of other
parameters. By definition, a sc-complete test has a
path of each (si, sj)-equivalent class. The number of
such classes equals 2P where P is the number of edges
between switches and thus, the number of equivalent
classes does not exceed S(S – 1) where S is the
number of switches. Moreover, if there are not used
links in the RNCT then we can limit ourselves only
with classes which correspond to utilized links.

III. Another option is to consider that switches’
rules are implemented correctly with respect to more
parameters, for example, we can include the
destination node into the set of parameters.

Let the output port of a switch be specified only by
the neighbor node where a message came from and a
destination node. A finite set TS of parameterized
paths is a switch-forwarding-(sf)-complete test suite
w.r.t. <=, FD> if for a switch si and each pair of its
neighbor nodes nj and nk each of which can be a
switch or a host, the TS has a parameterized path that
has to forward a packet obtained by switch si from the
node switch nj to the neighbor node nk if the
destination node is d. In this case, two paths are (si, nj,
nk, d)-equivalent if each switch processes inputs
independently of many parameters only paying
attention where a message came from and what is the
destination port.

Proposition 3. A set of parameterized paths such
that for each switch si, each pair of its neighbor nodes
sj and sk, and each host d, there is a path of the (si, sj,
sk, d)-equivalent class, is an sf-complete test suite
w.r.t. <=, FD>.

The number of equivalent classes can be evaluated
as follows: this does not exceed S × (S – 1)2 × H + S ×
(S-1) × H2 + S × (S – 1) × H = O(S3 × H + S2 × H2), where
H is the number of hosts and S is still the number of

switches. The upper bound depends on the
relationship between the number of hosts and
switches. As the number of hosts is usually much
bigger than that of switches, the upper bound can be
considered as O(S2 × H2) or simply O(H2). Here, we
notice that the upper bound is still big enough and
thus, possibly it is worth to analyze which 4-tuples are
critical in order to guarantee appropriate fault
coverage of a derived test suite.

In the same way, more parameters can be taken
into account. If a switch is considered as a stateless
component [7] then the behavior of the switch si can
be represented as a function fi(p1,…, pm): D1 ´ …´ Dm

® P where Dj is the domain for the j-th parameter,
and then the f-equivalence of two paths can be taken
into account. Investigating this equivalence relation is
also left for the future work.

4. Conclusion

In this paper, we proposed three fault models for
testing an SDN framework. Complete test suite with
respect to proposed fault models can guarantee that if
each path of the test suite is correctly implemented
then any requested path will be also correctly
implemented under appropriate testing assumptions,
i.e., up to some extent.

We also mention that our approach can be applied
for refined testing assumptions, i.e., to the situations
when more parameters are considered and / or switch
cloning is possible and / or when a switch can
‘discuss’ with the controller packet processing for
which there are no appropriate rules, etc. These
directions are left for the future work.

Another direction for the future work is to
experiment with real SDN infrastructures in order to
evaluate which kinds of critical faults can be detected
when deriving complete test suites for the above fault
models.

5. References

[1] M. Mechtri, C. Ghribi, O. Soualah, D. Zeghlache, “NFV
Orchestration Framework Addressing SFC Challenges”,
IEEE Communications Magazine, 55(6), 2017, pp. 16-23.

[2] J. López, N. Kushik, N. Yevtushenko, D. Zeghlache,
“Analyzing and Validating Virtual Network Requests”,
Proceedings of ICSOFT, 2017, pp. 441-446.

[3] Open-Networking-Foundation [Electronic resource]
Openflow switch specification v1. 4.0.
https://www.opennetworking.org/images/stories/down
loads/sdn-resources/onf-
specifications/openflow/openflow-spec-v1.4.0.pdf

[4] A. Berriri, J. López, N. Kushik, N. Yevtushenko, D.
Zeghlache, “Towards Model based Testing for Software
Defined Networks”, Proceedings of ENASE, 2018, pp. 440-
446.

[5] ONOS Community [Electronic resource] Flow Rules.
https://wiki.onosproject.org/display/ONOS/Flow+Rules#Fl
owRules-Keyandfielddescription

[6] S. A. Smolov, J. López, N. Kushik, N. Yevtushenko, M.
M. Chupilko, A. S. Kamkin, “Testing logic circuits at
different abstraction levels: An experimental evaluation”,
Proceedings of EWDTS, 2016, pp. 1-4.

[7] J. López, N. Kushik, A. Berriri, N. Yevtushenko, D.
Zeghlache, “Test derivation for SDN-enabled switches : A
logic circuit based approach”, Accepted for publication at
ICTSS, 2018.

6. Acknowledgements

The work was partially supported by the Russian
Science Foundation (RSF), project № 16-49-03012, as
well as by the Celtic-Plus European project
SENDATE, ID C2015/3-1.

