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Abstract 
 

Software Defined Networking (SDN) platforms are 
used in many applications and thus, should be 
thoroughly verified and tested before deployment; 
there are a number of research papers proposing 
various approaches for their verification. The next 
step is to test whether all the items are proceeding 
properly, i.e., to test the platform. As the requests can 
be considered as sets of paths which have to be 
properly implemented, the inputs of the System Under 
Test (SUT) are appropriate graphs (and packets 
traversing those graphs) while the output that can 
also be considered as a set of paths with appropriate 
parameters, is obtained via the appropriate platform 
monitoring. Correspondingly, for testing, we use a so-
called proactive approach: check a submitted set of 
paths after forwarding a packet with appropriate 
parameters. We define several fault models (under 
different testing assumptions) with respect to the 
underlying resource connectivity graph (RNCT). Some 
conditions for deriving a complete test suite as well as 
the complexity upper bounds with respect to defined 
fault models are also established.  
 
1. Introduction 
 

As information technologies progress rapidly, more 
attention is paid towards various virtualization 
aspects. Virtual networks are built on the basis of 
classical / ‘physical’ ones, with respect to the user / 
tenant demands. Users can request rather simple 
networks as well as complex service function chains 
where network functions or services are executed in 

the network nodes [1]. Therefore, an important 
question arises: how to guarantee that the user request 
is respected and it has been properly implemented? 
The reply to this question can be found through a 
thorough verification and / or testing of virtualization 
platforms and their components [2-5]. 

In this paper, we focus on Software Defined 
Networking (SDN) [3] frameworks or infrastructures 
that are crucial components of virtualization 
platforms. In fact, SDN frameworks ‘are responsible’ 
for creating necessary virtual links between the 
network nodes. Such framework therefore includes an 
SDN controller that (together with the corresponding 
application) processes a user request for a virtual 
network or a given path, and the data plane, which is 
managed by the controller and where switches or 
forwarding devices connect various hosts between 
each other. We discuss how such SDN framework can 
be tested with guaranteed fault coverage. In fact, we 
focus on different equivalence classes of potential 
requests, taking into account different testing 
assumptions, such as for example: i) each requested 
path always starts and finishes at a host; ii) switches 
are only used to forward the packets; iii) the 
implementation of one of requested paths does not 
affect the others, etc. 

Proper assumptions allow to reduce the 
enumeration of the possible user requests to guarantee 
the correctness of their implementation. In particular, 
we define different fault models in this paper; these 
models reflect the completeness of the corresponding 
test suites with respect to certain equivalent classes. 
We thus introduce so called host- and switch-
connectivity complete test suites together with the 



switch-forwarding complete ones considering various 
packet / switch parameters that affect the packet 
processing. For each of the cases, we estimate the 
corresponding complexity as the length of the test 
suite being derived. 

We note that we are not aware of any test 
generation strategies with guaranteed fault coverage 
for SDN frameworks whenever various packet 
parameters are taken into consideration. A pioneering 
work has been recently published in [4] where the 
authors have stated the corresponding problem and 
have considered the necessary path generation as 
inputs to the SDN controller (or its proper 
application). We however note that these paths were 
simplified, for example, switch port numbers or even 
source / destination addresses for a packet were not 
modelled at all. In this paper, we decrease the 
abstraction level to obtain an adequate model by 
augmenting the fault models by necessary details and 
provide the contributions listed above. 
Correspondingly, this paper is up to some extent, a 
continuation of the paper [4], however in this paper, 
we go deeper and consider the features of a packet 
which should be carried on the set of paths of a test 
suite. In other words, paths become augmented with 
appropriate parameters which are important for the 
functioning of the SDN data plane. 

The paper is structured as follows. Section 2 
presents the necessary background. Novel fault 
models for testing SDN frameworks based on the 
appropriate graph enumeration are presented in 
Section 3. Section 4 concludes the paper and 
describes future research directions. 
 
2. Preliminaries 
 

In the SDN architecture (Fig. 1), the instructions 
for the data plane for packets’ forwarding are 
provided by SDN-controller (-s). The network devices 
in the data plane are usually considered as hosts 
which can generate packets, and switches which 
transfer these packets through the data plane to 
another host. Switches have forwarding rules for an 
obtained packet according to different parameters 
such as an item where the packet came from, 
destination node, etc. [5]. A forwarding rule has a 
priority, a preamble and a postamble: the header 
parameters are analyzed in the preamble and the 
compatible rule with the highest priority is 
determined; this rule postamble assigns the neighbor 
device where the packet will be forwarded. An SDN-
controller accepts sets of paths which should carry on 
corresponding packets, i.e., those paths can have 
appropriate parameters according to which the packets 

are then forwarded. In this paper, we consider paths 
which have not more than two parameters. 
Nevertheless, the results of the paper can be extended 
to bigger sets of parameters which should be taken 
into consideration. 

 

 
Figure 1. Example of an SDN architecture 

[4] 
 
When a forwarding rule is issued to an SDN-

enabled switch, a virtual link from and to other node 
(-s) adjacent to the switch is created, i.e., a packet 
accepted from adjacent nodes (hosts or switches) is 
forwarded to a (corresponding) set of ports that are 
connected to appropriate ports of other nodes. 

Consider a small example in Fig. 2. Let switch s1 
be connected with host h1 and have the following 
rules: 

1) T1:100 -- Input port = 1 ^ UDP DST port = 
5060 à output port = 2  

2) T1:100 -- Input port = 1 ^ TCP DST port = 
80 à output port = 3 

 

Figure 2. Example of an SDN data plane as 
an augmented graph 

 
When a packet with the corresponding header 

arrives to s1 from h1, the packet will be forwarded to 
output 2 (or 3) depending on the header the network 
packet carries, either the Session Initialization 
Protocol (SIP) using the User Datagram Protocol 
(UDP) or web traffic (HTTP) using the Transmission 
Control Protocol (TCP). In general, this dependence 



can be more complex, for example, an output port can 
depend on the destination host, etc. 

Similar to [4], the data plane is referred to as the 
resource network connectivity topology (RNCT) with 
the SDN elements such as hosts, switches and links 
between them. An RNCT is represented as a directed 
graph G = (V, E) without multiple edges, where the 
set V of nodes represents network devices. Edges of 
the graph (the set E) represent connections between 
two nodes (links) in a network and without loss of 
generality, we represent each link as two ordered 
edges or simply edges for short. 

 
3. Fault Models for Testing SDN 
Architectures 
 

For assuring the quality of the SDN architectures, 
test derivation methods and techniques should be 
developed. In this paper, we consider an active testing 
mode where test cases or test sequences are applied to 
an SDN framework that is a system under test (SUT), 
and the conclusion about the correctness of the SUT is 
made after applying corresponding test cases 
(appropriate requests) together with packets which 
induce a corresponding traffic based on observations 
via monitoring. In model based testing techniques, test 
suites with guaranteed fault coverage are usually 
generated, i.e., in model based testing, the derived test 
suites are complete under appropriate testing 
assumptions. We later on make certain testing 
assumptions to deliver complete test suites for SDN 
frameworks under various conditions. 
 
3.1. Testing assumptions 

 
As usual, testing can be performed at different 

levels. In this paper, we consider the requests which 
have (parameterized) paths over a given RNCT and 
the task is to test whether each requested path is 
correctly implemented by the SDN-controller (-s) and 
forwarding devices. A virtual path (simply a path 
throughout the paper) is a sequence of directed edges 
whose head and tail nodes are hosts and all other 
intermediate nodes are switches. This assumption is 
reasonable as the goal of any data network is to share 
data between computing devices, through data 
forwarding devices. Moreover, edges are not repeated 
in a path (due to potential infinite loops). We assume 
traffic can be generated from any host to any other, 
and the observed path that the data follow, is 
considered as an ‘output’. This is reasonable as well 
since otherwise, it is impossible to conclude about the 
real data paths in the RNCT. We assume that the hosts 
in the RNCT, do not act as switches and switches do 

not act as hosts. The RNCT model does not consider 
such possibilities even if underlying virtualization 
technologies allow this; the reason is that for the 
considered model, a device acting as a switch and a 
host can be modelled as two separate devices, and 
furthermore, this configuration is irrelevant for the 
model. The forwarding rules construct a virtual partial 
path or a set of those. Some examples of the paths 
obtained from an RCNT are illustrated in Fig. 3. In 
this case, the RNCT is a dense network with four 
switches as shown in Fig. 1. Each host is connected to 
a single switch; however, a switch can be connected 
with several hosts as well as with other switches. In 
this paper, we consider that while executing the tests, 
switches do not consult with SDN-controllers. If no 
rule can be applied to a network packet then the 
packet will be dropped and this action can be 
observed via monitoring. This assumption is 
reasonable as the potential re-configuration can be 
modelled as a new set of paths. However, considering 
the re-configuration of the forwarding devices is out 
of the scope of this paper and left for future work. 

 

 
Figure 3. Example of SDN augmented paths 
 
Given the SDN infrastructure similar to that in Fig. 

1, we continue the work started in [4] proposing new 
Fault Models (FM) for testing the SDN framework, 
including the controller (-s), switches, and 
connections between them. A tester sends specific 
requests to the SDN controller application asking for 
different paths to be implemented in the RNCT. Those 
paths can have a number of parameters that determine 
which path the packet should take. This information 
will help when generating the traffic and performing 
monitoring as the monitoring output should follow the 
proper paths. The parameters are mostly related to the 
packet headers, the list of parameters depends on the 
SDN controller. For example, for the ONOS controller 



this list can be found in [5]. According to our 
assumptions, the inputs that need to be generated in 
order to guarantee that the SDN infrastructure is 
functioning properly are the paths limited by the 
RNCT. In order to derive complete test suites, the 
following testing assumptions are made. 
1) The RNCT model has no multiple edges and /or 

loops and is connected. In such infrastructures, 
multiple edges are sometimes included for 
increasing the communication bandwidth, the 
resulting link is a logical bond.  

2) Moreover, the RCNT is permanent and is not 
changed during the request implementation. 

3) Switches are capable of cloning, i.e., they can 
output a received packet to multiple ports; 
however, in this paper we do not consider such 
switches. Such consideration is left for the future 
work. 

4) As mentioned above, each path is started and 
finished at a host. 

5) A system under test (the controller and data plane, 
possibly, with some application (-s)) gets a path (a 
set of paths) which should be implemented via 
pushing forwarding rules to switches and this can 
be checked by generating and observing the 
appropriate network traffic. 

6) A packet is not changed while traversing a path. 
This also is a reasonable assumption as not all 
forwarding devices have such capabilities, for 
example, to perform Network Address 
Translation (NAT). 

7) Given two paths A and B, the result does not 
depend on the order how they are checked: A after 
B or B after A, and also it does not matter if these 
paths are implemented in parallel. Moreover, we 
assume that if the paths A and B are correctly 
implemented then the set {A, B} is also correctly 
implemented and vice versa. This assumption 
seems reasonable if the paths A and B do not 
intersect in the same node with the same 
parameters. We assume, the requested set of paths 
is well-formed [2]. However, thorough 
investigation of these issues is out of the scope of 
the paper and left for the future work. 

8) As already mentioned above, it is also assumed 
that switches do not query a controller about a 
packet that does not satisfy any rule. The switch 
just drops the packet, i.e., a switch implements 
some function f: D1 ´ … ´ Dn ® P where Di is the 
domain for the i-th parameter, and P is the set of 
ports of the switch.  
 
Similar to [4], a fault model in this case is 

represented by a pair <=, FD>, where = means that 

the set of implemented paths in the RNCT has to be 
equal to the requested one. FD is the fault domain, a 
set of potential implementations, i.e., the set of all 
possible paths that can be implemented by the use of 
the given RNCT. A test case is a path that should be 
implemented (an example is in Fig. 3) and a complete 
test suite is the set of paths applied one by one such 
that the following holds. If each path of the test suite 
is correctly implemented then any requested path will 
be also correctly implemented under the given testing 
assumptions, i.e., up to some extent. subsection, we 
define three fault models which correspond to the 
above testing assumptions.  

 
3.2. Defining Fault Models 

 
FD contains all possible paths of the RNCT 

augmented with all possible parameters’ values. A test 
case is a (parameterized) path that after erasing all 
parameter values is a path of the RNCT and a test 
suite is a finite set of (parameterized) paths. As the 
domain of each parameter is finite, the set of all 
RCNT paths augmented with all permissible 
parameter’s values is a complete test suite w.r.t. <=, 
FD>. This statement is in fact, the extension of 
Proposition 1 in [4]. However, the number of such 
even non-parameterized paths is big enough; and it is 
bigger when augmented with all possible parameters’ 
values. As stated in [4], this number reaches 36 even 
for an example in Figure 1 and will be much bigger 
for real SDN-networks where the RNCT graph can 
have hundred of nodes. For this reason, we refine the 
notion of a complete test suite in order to have a test 
suite of reasonable size and still be able to capture 
some critical faults of the SDN framework, since as it 
is shown, for example in [6], different faults models 
allow to capture different faults. 

I. We first define a so-called host-connectivity-
(hc)-complete test suite. A finite set TS of 
parameterized paths is an hc-complete test suite w.r.t. 
<=, FD> if for each pair (h1, h2) of different hosts h1 
and h2, the TS has a parameterized path which starts at 
h1 and finishes at h2. The following statement can be 
immediately established. 

Proposition 1. A set of parameterized paths such 
that for each ordered pair (h1, h2) of different hosts h1 
and h2, the TS has a parameterized path which starts at 
h1 and finishes at h2, is an hc-complete test suite w.r.t. 
<=, FD>. 

At least, after passing such an hc-complete test 
suite it can be guaranteed that there is an opportunity 
to implement a path between any two different hosts 
while the test suite contains exactly n(n-1) test cases 
when n is the number of different hosts. 



II. In order to add more assurance about the SDN 
framework implementation, the checking of the 
switch connectivity is desirable. A finite set TS of 
parameterized paths is a switch-connectivity-(sc)-
complete test suite w.r.t. <=, FD> if for each pair of 
neighbor switches (s1, s2), the TS has a parameterized 
path that has an edge (s1, s2). Another statement 
immediately follows. 

Proposition 2. A set of parameterized paths such 
that for each pair of two neighbor switches (s1, s2), the 
TS has a parameterized path with an edge (s1, s2) is an 
sc-complete test suite w.r.t. <=, FD>. 

In other words, similar to [4], we assume that two 
paths are (si, sj)-equivalent if each switch processes 
packets independently of many parameters only 
paying attention from which RNCT node a packet 
came. In other words, we assume that a packet 
obtained by the switch si from the node sj is always 
processed correctly or wrongly independent of other 
parameters. By definition, a sc-complete test has a 
path of each (si, sj)-equivalent class. The number of 
such classes equals 2P where P is the number of edges 
between switches and thus, the number of equivalent 
classes does not exceed S(S – 1) where S is the 
number of switches. Moreover, if there are not used 
links in the RNCT then we can limit ourselves only 
with classes which correspond to utilized links. 

III. Another option is to consider that switches’ 
rules are implemented correctly with respect to more 
parameters, for example, we can include the 
destination node into the set of parameters. 

Let the output port of a switch be specified only by 
the neighbor node where a message came from and a 
destination node. A finite set TS of parameterized 
paths is a switch-forwarding-(sf)-complete test suite 
w.r.t. <=, FD> if for a switch si and each pair of its 
neighbor nodes nj and nk each of which can be a 
switch or a host, the TS has a parameterized path that 
has to forward a packet obtained by switch si from the 
node switch nj to the neighbor node nk if the 
destination node is d. In this case, two paths are (si, nj, 
nk, d)-equivalent if each switch processes inputs 
independently of many parameters only paying 
attention where a message came from and what is the 
destination port. 

Proposition 3. A set of parameterized paths such 
that for each switch si, each pair of its neighbor nodes 
sj and sk, and each host d, there is a path of the (si, sj, 
sk, d)-equivalent class, is an sf-complete test suite 
w.r.t. <=, FD>. 

The number of equivalent classes can be evaluated 
as follows: this does not exceed S × (S – 1)2 × H + S × 
(S-1) × H2 + S × (S – 1) × H = O(S3 × H + S2 × H2), where 
H is the number of hosts and S is still the number of 

switches. The upper bound depends on the 
relationship between the number of hosts and 
switches. As the number of hosts is usually much 
bigger than that of switches, the upper bound can be 
considered as O(S2 × H2) or simply O(H2). Here, we 
notice that the upper bound is still big enough and 
thus, possibly it is worth to analyze which 4-tuples are 
critical in order to guarantee appropriate fault 
coverage of a derived test suite. 

In the same way, more parameters can be taken 
into account. If a switch is considered as a stateless 
component [7] then the behavior of the switch si can 
be represented as a function fi(p1,…, pm): D1 ´ …´ Dm 

® P where Dj is the domain for the j-th parameter, 
and then the f-equivalence of two paths can be taken 
into account. Investigating this equivalence relation is 
also left for the future work. 
 
4. Conclusion 
 

In this paper, we proposed three fault models for 
testing an SDN framework. Complete test suite with 
respect to proposed fault models can guarantee that if 
each path of the test suite is correctly implemented 
then any requested path will be also correctly 
implemented under appropriate testing assumptions, 
i.e., up to some extent. 

We also mention that our approach can be applied 
for refined testing assumptions, i.e., to the situations 
when more parameters are considered and / or switch 
cloning is possible and / or when a switch can 
‘discuss’ with the controller packet processing for 
which there are no appropriate rules, etc. These 
directions are left for the future work.  

Another direction for the future work is to 
experiment with real SDN infrastructures in order to 
evaluate which kinds of critical faults can be detected 
when deriving complete test suites for the above fault 
models.  
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