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Abstract——Distinguishing sequences are used in model 
based mutation testing in order to distinguish the specification 
from its mutants that usually represent critical implementation 
faults. In this paper, we consider distinguishing sequences for 
Input/Output automata when a sequence of inputs can be applied 
before getting any response or a sequence of output responses 
from an implementation under test. We propose a technique for 
deriving an r-distinguishing trace, i.e. a distinguishing trace with 
respect to the trace inclusion (quasi-reduction) relation, and 
obtain the least and upper bounds on the length of a shortest r-
distinguishing trace showing that the exponential upper bound 
with respect to the number of states of the specification 
automaton is reachable; the results are then adapted for a proper 
case of Input/Output automata when each input is followed by an 
output, i.e., for Finite State Machines.  

Keywords—Input/Output automata, quasi-reduction relation, r-
distinguishing trace  

I. INTRODUCTION 
Test generation with guaranteed fault coverage is an 

important issue in developing complex critical systems (see, 
for example, [1]) and guaranteed fault coverage immediately 
asks for involving formal models. Finite transition systems are 
widely used for deriving tests and there are a number of 
methods [2] for deriving test suites with guaranteed fault 
coverage for Finite State Machines (FSMs) when each input is 
followed by an output. However, the above FSM model is not 
always appropriate and sequences of inputs can be applied 
before getting any response or a sequence of output responses; 
this situation can be adequately handled by the use of so-
called Input/Output(I/O) automata [3]. Nevertheless, all the 
methods developed for such automata usually return infinite 
tests when talking about the ‘black-box’ testing model [4]. In 
a number of cases when critical faults could be enumerated, a 
test suite can be derived as a set of distinguishing sequences 
for specification and mutant I/O automata. In this case, a 
technique for deriving an appropriate preset or an adaptive 
distinguishing sequence for two I/O automata has to be 
elaborated and the complexity of a corresponding test suite 
has to be evaluated. For FSMs there are many publications 

how to derive such sequences but we are not aware of these 
results for I/O automata.   

In this paper, we consider a variation of the well known 
ioco relation [4] but as we consider automata that not 
necessary are input complete we modify ioco as a quasi-
reduction relation (similar to FSMs [5]). Automaton A is not 
a quasi-reduction of automaton B if there exists a trace defined 
at both automata such that the set of outputs after this trace of 
automaton A is not a subset of that of automaton B and 
propose a technique how to check whether this relation holds. 
If the automaton B is deterministic then the obtained criterion 
describes necessary and sufficient conditions for checking the 
quasi-reduction relation. However, if the automaton B is 
nondeterministic then the conditions become only sufficient. 
Moreover, as we consider automata which not necessary are 
input complete and we do not observe states when testing, 
only traces for which an input is defined at any state after a 
corresponding prefix are considered as distinguishing test 
cases and such traces are called permissible. In order to 
completely check the quasi-reduction relation when B has a 
trace that takes the automaton from the initial state to two 
different states, the B has to be determinized; however, the 
deterministic equivalent of B is a bit different from the 
ordinary [6] as it contains only permissible traces and in this 
paper, we also evaluate the length of such trace obtaining 
lower and upper bounds for r-distinguishing traces depending 
on the number of states of both automata.  

The rest of the paper is structured as follows. As usual, 
Section 2 contains preliminaries while a technique for deriving 
a distinguishing trace together with the least bound of such 
trace is presented in Section 3. Section 4 shows that the 
exponential upper bound on length of a shortest r-
distinguishing trace with respect to the number of states of the 
specification automaton is reachable if the latter can be 
nondeterministic; the results are adapted for FSMs in Section 
5. Section 6 concludes the paper. 

. 



 

 

II. PRELIMINARIES 
An I/O automaton, simply an automaton throughout this 

paper, is a 5-tuple S = (V(S), X, Y, E(S), s0) where V(S) is a 
finite nonempty set of states with the initial state s0, X is a 
finite nonempty set of inputs, Y is a finite nonempty set of 
outputs, X ∩ Y = ∅, E(S) ⊆ V(S) × (X ∪ Y) × V(S) is a set of 
transitions. Sometimes, we refer to inputs and outputs as to 
actions. According to the above definition, we consider 
automata without the nonobservable action. 

For s, s′ ∈ V(S) and z ∈ (X ∪ Y), we use the following 
notations: 
sz→s′ ≝ (s, z, s′) ∈ E(S), 
sz→ ≝ ∃ s′ ∈ V(S) (s, z, s′) ∈ E(S). 

If there are no transitions at a state under outputs then we 
add a loop labeled with ‘output’ δ [4] that is not in the set Y: 
Eδ(S) = E(S) ∪ {aδ→a | a ∈ V(S) & ∀ y ∈ Y ∄ b ay→b}.  

Such an augmented automaton S is denoted as 
Sδ = (V(S), X, Y, Eδ(S), s0), and a trace in Sδ is a S-trace1 of S. 
If the contrary not explicitly stated then a trace denotes an S-
trace. 

Input x ∈ X is a defined input at state s ∈ V(S) if there is a 
transition sx→, i.e., ∃ s′ ∈ V(S) (s, x, s′) ∈ E(S). Input x ∈ X 
is defined after a trace if this input is defined at each state 
reached after this trace. An automaton is input-complete if 
every input is defined at every state. 

Given a trace µ and state s, µ is a permissible trace at state 
s if each input in µ is defined after the prefix that directly 
precedes this input. Given a permissible trace µ at state s, as 
usual, s-after-µ is the set of states where µ can take the 
automaton from state s. If µ is a permissible trace at the initial 
state of S  then instead of s0-after-µ we sometimes write S-
after-µ. In this paper, we assume that two automata can be 
distinguished only by a trace that is permissible at the initial 
states of both automata; moreover, we also assume that if after 
an input no outputs are expected then δ is a corresponding 
output. 

An automaton is observable if at each state at most one 
transition is defined for each action. 2  Given an observable 
automaton, the set of states s-after-µ is either empty or is a 
singleton. Given a nonobservable automaton, the set s-after-µ 
can have several states. 

We also use the following notation: the set of outputs at a 
state s is the set of defined outputs at this state: 
outS(s)  ≝ { y ∈ Y | sy→ }. If no outputs are defined at state 
s then outS(s) ≝ {δ}. For a subset B ⊆ V(S) we have 
outS(B )  ≝ ∪{ outS(s) | s ∈ B }. 

An automaton A  = (V(A),  X ,  Y ,  E(A),  a0)  is a quasi-
reduction of the automaton S  = (V(S),  X ,  Y ,  E(S),  s0)  if for 
each trace σ that is permissible in both automata it holds that 
outA(A-after-σ) ⊆ outS(S-after-σ). 

                                                           
1Suspension trace 
2Sometimes such an automaton is called deterministic [6]. However, we save 
this notion for an observable automaton where at each state at most one output 
is defined.  

If the automaton A  = (V(A),  X ,  Y ,  E(A),  a0)  is not a 
quasi-reduction of the automaton 
S  =  (V(S),  X ,  Y ,  E(S),  s0) ,  then there exists a trace σ that is 
permissible in both automata such that outA(A-after-
σ) ⊈ outS(S-after-σ). This trace σ is called an r-
distinguishing  trace. 

III. THE UPPER BOUND OF AN 𝑟-DISTINGUISHING TRACE CASE 
DERIVATION 

Let an automaton A be not a quasi-reduction of S, and σ is 
an r-distinguishing trace. For a trace σ, consider sequences of 
pairs (aj, S-after-σj) where σj is a prefix of σ of length j, 
j = 0, .., |σ|, and aj ∈ (A-after-σj), i.e., aj  is a state of A 
reachable after trace σj. If σ is a shortest r-distinguishing trace 
with this property then there exists at least one sequence of 
pairs where all the pairs are pairwise different. Since the 
number of such pairs does not exceed the product of n = |V(A)| 
and 2k – 1 where k = |V(S)|, the length of such sequence does 
not exceed n(2k - 1), and thus, the length of a shortest r-
distinguishing trace is not bigger than O(n2k). 

Given an automaton A and an observable automaton 
S = (V(S), X, Y, E(S), s0) over the same alphabets, in order to 
derive a set of permissible traces of both automata, the product 
A ∩ S of automata can be constructed. States of the product 
are pairs of states of the automata, a transition is defined at a 
state if it is defined at both states. 

Proposition 1. Given an automaton A and an observable 
automaton S over the same alphabets, A is not a quasi-
reduction of S if and only if the product A ∩ S has a state (a, 
s), a ∈ V(A), s ∈ V(S), such that the state is reachable from the 
initial state via a permissible trace at the initial states of both 
automata and some output is defined at state a while not being 
defined at state s. 

Indeed, let (a, s) be a state with the above features 
reachable from the initial state via a trace µ. Since the 
automaton S is observable, s is the only state of the automaton 
S reachable by µ and the latter immediately implies out A(A -
after-σ) ⊈ out S(S -after-σ). On the other hand, if each 
permissible trace at the initial states of both automata takes the 
product A ∩ S to a state (a, s) such the set of outputs at state a 
is a subset of that at state s then by definition, A is a quasi-
reduction of S. 

It is well known how to construct the product of two 
automata over the same alphabet of actions and thus, 
Proposition 1 provides necessary and sufficient conditions for 
checking whether one automaton is a quasi-reduction of 
another observable automaton. If the product has a state (a, s) 
with the above features then a permissible trace µ that takes 
the product to this state is an r-distinguishing trace. Given an 
automaton A with n states and an observable automaton S with 
k states, the product A ∩ S has at most nk states, and thus, 
length of a shortest r-distinguishing trace is not bigger 
than O(nk).  



 

 

 

 
Fig. 1. Automaton An, n ≥ 2 

 

 
Fig. 2. Automaton S3 

 

 
Fig. 3. Automaton A3 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Automaton S4 
 
If automaton S = (V(S), X, Y, E(S), s0) is not observable, 

we define a power-automaton P(S) over the same alphabets X 
and Y. We use non-empty subsets of the set V(S) as states of 
P(S), i.e., V(P(S)) = 2V(S) \ {∅}, and the initial state of P(S) is 
{s0}. In the automaton P(S), there is a transition Ax→B 
under input x ∈ X if and only if x is a defined input at each 
state a ∈ A of S, and B = {b | ∃ a ∈ A ax→b}. In P(S), a 

transition Ay→C is defined under output y ∈ Y if and only if 
in S, a transition under this output is defined at least at one 
state a ∈ A, and C = {c | ∃ a ∈ A ay→c}. 

Proposition 1′. Given automata A and 
S = (V(S), X, Y, E(S), s0) over the same alphabets, A is not a 
quasi-reduction of S if and only if the product A ∩ P(S) has a 
state (a, š), a ∈ V(A), š ∈ V(P(S)), such that the state is 
reachable from the initial state via a permissible trace at the 
initial states of both automata and some output is defined at 
state a while not being defined at the power-state š. 

Propositions 1 and 1′ show the way how an r-
distinguishing trace can be constructed if automaton A is not 
quasi-reduction of S. 

In the next section, we show that for every k ≥ 2 and n ≥ 1, 
there exist an automaton Sk with k states, (2k - 2) inputs and 
two outputs and an input-complete automaton An with n states 
over the same input and output alphabets that is not a quasi-
reduction of Sk such that a shortest r-distinguishing trace has 
the length (n - 1)2k - 2 = Ω(n2k). 

IV. THE LOWER BOUND OF AN 𝑟-DISTINGUISHING TRACE 
Theorem 2. For every k ≥ 3 and n ≥ 1, there exist an input-

complete automaton Sk with k states, (2k - 2) inputs and two 
outputs and an input-complete automaton An with n states over 
the same input and output alphabets that is not a reduction of 
Sk, such that a shortest r-distinguishing trace has the length 
(n - 1)2k – 2= Ω(n2k). 

Sketch of the proof. In order to prove the statement, we 
derive automata Sk and An for which the bound is reachable. 
The input alphabet X = {a, e, b3, …, bk-1, c3, …, ck-1} has 2(k –
 2) inputs while the output alphabet has two outputs, Y = {y, 
y′}. The set V(Sk) of states of Sk is the set {0, 1, 2,…, k - 1} 
and state 1 is the initial state. 

Automaton Sk has the following transitions: 
State 0: There are transitions under all inputs and all outputs 
to state 0; 
State 1: There is a transition under input a to each state of the 
set {2, …, k - 1}; for each input e, b3, …, bk-1, c3, …, ck-1, there 
is a transition to state 0 while there is a transition to state 1 
under output y; 
State 2: There is a transition under input e to state 1; for each 
input bj, j = 3, …, k - 1, there is a transition from state 2 to 
state j under input bj; for each action a, cj, j = 3, …, k - 1, there 
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is a transition from state 2 to state 0 while there is a transition 
to state 2 under output y; 
State j, j = 3, …, k- 1: there are transitions to state j under 
inputs b3,…, bj, с3,…, сj-1 and transitions to states 2, …., (j – 
1) under input сj; there are transitions to state 0 under inputs 
bj+1, …, bk-1, сj+1,…, сk-1 to state 0; there is a transition to state 
0 under inputs a and e and a transition to state j under output  
y. 

Automaton An is shown in Fig. 1. Automata S3, A3, S4 are 
shown in Figs. 2, 3, 4.  

By direct inspection, one can assure that the automaton A1 
is distinguishable from Sk. k ≥ 3, with the empty trace of 
length 0 and a shortest r-distinguishing trace for automata A3 
and S3 is a trace aeae of length 4 = (3 - 1)23 – 2.  

We first establish several statements about properties of 
automata An and Sk. 

Proposition 3. A trace σ is an r-distinguishing trace of An 
with respect to Sk if and only if this trace takes an power-
automaton P(Sk) from the initial state to any power-state 
without state 0 while taking the automaton An to state n. 

Indeed, according to automata definitions, output y′ can be 
produced at any power-state with state 0 and only at such 
power-state. 

Proposition 4. Given a state j of An, j < n, a trace γ ∈ 
{a, b3, …, bk-1, c3, …, ck-1}*e takes the automaton An from state 
j to state j + 1, j = 1, …, n – 1, while taking the automaton 
from state n to state n. 

The proof is a corollary to the fact that by definition, given 
a state j of An, j ≤ n, a trace γ ∈ {a, b3, …, bk-1, c3, …, ck-1}* 
leaves the automaton at state j. 

Due to the definition of the automaton Sk, the following 
statement holds. 

Proposition 5. Given automaton Sk and a trace γ∈ 
{b3, …, bk-2, c3, …, ck-2}* that takes the power-automaton P(Sk) 
from a power-state {2, …, k - 2}, k ≥ 4, to the power-state {2} 
traversing power-states D1, …, D|γ| without state 0, the trace γ 
takes the power-automaton P(Sk) from the power-state {2, …, 
k - 2, k - 1} through the power-states D1 ∪ {k - 1}, …, D|γ| ∪ 
{k - 1} each of which has state (k – 1).   

By definition, a trace γ is empty in Proposition 5 when 
k = 4.  

We first consider the case of n ≥ 2 and k = 3. In this case, 
the automaton S3 has only inputs a and e and by direct 
inspection, one can assure that a trace ae takes the automaton 
S3 from state 1 to state 1 while taking the automaton An  from 
every state j ≠ n to state j + 1, i.e., the trace (ae)n-1 takes the 
automaton S3 from state 1 to state 1 while taking the 
automaton An from 1 to state n, and thus, is a r-distinguishing 
trace for An and S3. An input e after trace of the set (ae)* takes 
the automaton S3 from state 1 to state 0 and input a after any 
trace of the set (ae)*e takes the automaton S3 from state 2 to 
state 0; therefore, (ae)n-1 is a shortest r-distinguishing trace for 
An and S3. This trace has length (n – 1)2k-2. 

Let n ≥ 2 and k ≥ 4. We now use the induction on k in 
order to show that there is a trace of length 2k-2 that takes Sk 
from state 1 to state 1.   

Induction base. If k = 4 then the trace a, b3, c3, e possesses 
the feature while traversing the following power-states: {1} – 
a – {2, 3} – b3 – {3} – c3 – {2} – e – {1}. At any power-state 
of the trace, any other input takes the automaton to state 0 or 
to a power-state already traversed by the trace.  

Induction assumption. Let for some k < m hold that a trace 
aγ, γ ∈ {b3, …, bk-2, c3, …, ck-2}, takes the power-automaton 
P(Sk) from power-state {1} to {2, …, k - 2} and from power-
state {2, …, k - 2} to {2} traversing power-states D1, …, D|γ| 
without state 0 and length of this trace is 2k-2 - 1, i.e., the trace 
aγe takes the power-automaton P(Sk) from power-state {1} to 
{1}. We append the trace γ with bk-1ck-1, i.e., the trace aγbk-1ck-1 
of the power-automaton P(Sk) traverses power-states {2, …, k 
- 1}, D1 ∪ {k - 1}, …, D|γ|∪ {k - 1}, {k - 1}, {2, …, k - 2} 
from state {1} (Proposition 5). Correspondingly, the trace 
aγbk-1ck-1γe takes the power-automaton P(Sk) from power-state 
{1} to {1} while taking automaton An to state 2 (Proposition 
4).   

Therefore, the trace (aγbk-1ck-1γe)n-1 takes the power-
automaton P(Sk) from power-state {1} to {1} while taking 
automaton An to state n, and due to Proposition 3, this proves 
the theorem statement. 

V. EVALUATING LENGTH OF AN 𝑟-DISTINGUISHING TRACE FOR 
FINITE STATE MACHINES 

The notion of a Finite State Machine (FSM) is very close 
to the notion of an I/O automaton. In fact, an FSM correspond 
to an I/O automaton where only inputs or outputs are defined 
at each state and each input is followed exactly by a sequence 
of outputs of length 1. Therefore, there are no races between 
inputs and outputs in FSMs and this fact makes this model 
very attractive for deriving test suites. 

Formally, an initialized FSM is a 5-tuple S = (S, X, Y, hS, 
s0) [7] where S is a finite non-empty set of states with the 
designated initial state s0, X and Y are input and output 
alphabets, and hS ⊆ S × X × Y × S is the transition (behavior) 
relation. A transition (s, x, y, s′) describes the situation when 
an input x is applied to S at the current state s. In this case, the 
FSM moves to state s′ and produces the output (response) y. 
FSM S is nondeterministic [8] if for some pair (s, x) ∈ S × X, 
there can exist several pairs (y, s′) ∈ Y × S such that (s, x, y, 
s′) ∈ hS; otherwise, the FSM is deterministic. FSM S is 
observable if for every two transitions (s, x, y, s1), (s, x, y, s′) 
∈ hS it holds that s1 = s2; otherwise, the FSM is 
nonobservable.  

FSM S is complete if for each pair (s, x) ∈ S × X there 
exists (y, s′) ∈ Y × S such that (s, x, y, s′) ∈ hS; otherwise, 
the FSM is partial. Given state s ∈  S  and an input x ∈  X , an 
input x  is a defined input at state s if there exists (y, s′) ∈ Y 
× S such that (s, x, y, s′) ∈ hS. Given an input sequence α  =  
x1x 2 … x k  ∈  X *, α  is a defined input sequence at state s if x1  
is a defined input at state s and for each j = 2, …, k, x j  is a 
defined input at any state where input sequence x 1x 2…x j - 1  
can take FSM S from state s.     



 

 

In usual way, the behavior relation is extended to input and 
output sequences. Given states s ,  s ′  ∈  S , a defined input 
sequence α  =  x 1x 2… x k  ∈  X * at state s and an output 
sequence β  =  y 1y 2…y k  ∈  Y*, there is a transition 
(s ,  α ,  β ,  s ′ )  ∈  hS if α  is a defined input sequence at state s 
and there exist states s 1=  s,  s2 ,  … ,  s k ,  s k + 1=s′  such that 
(sj-1, xj, yj, sj) ∈ hS, j = 1, … ,  k. In this case, the input 
sequence α  can take (or simply takes) the FSM S from state s  
to state s ′.  The set outS (s ,  α)  denotes the set of all output 
sequences (responses) that the FSM S can produce at state s  in 
response to a defined input sequence α, i.e. outS (s ,  α)   = {β: 
∃ s ′∈  S [ (s ,  α ,  β ,  s ′ )  ∈  hS]}. The pair α∘β, β ∈ outS (s ,  
α) , is an Input/Output (I/O) sequence at state s; if s is the 
initial state s0 then the pair α/β is an Input/Output (I/O) 
sequence (or a trace) of the FSM S. Given states s and s′, the 
I/O sequence α/β can take (or simply takes) the FSM S from 
state s to state s′ if (s ,  α ,  β ,  s ′ )  ∈  hS.  Given FSMs S = (S, 
X, Y, hS, s0) and P =  (P, X, Y, hP, p0), the intersection (or the 
product) S ∩ P is the largest connected submachine of FSM = 
(S × P, X, Y, f, s0p0) where (sp ,  x ,  y ,  s ′p ′ )  ∈  f  ⇔ (s ,  x ,  y ,  
p ′ )  ∈  hS &  (p ,  x ,  y ,  p ′ )  ∈  hP. The set successor(s, α∘β) 
denotes the set of all states reachable from state s after 
applying the defined input sequence α when getting the output 
response β, i.e., given a defined input sequence α at state s, 
successor(s, α∘β) = {s ′ : (s ,  α ,  β ,  s ′ )  ∈  hS}.  

Given FSMs S and P,  FSM P is a quasi-reduction of S if 
for each input sequence α defined at the initial states of FSMs 
S and P, it holds that outP (p 0 ,  α)  ⊆  outS (s 0 ,  α) ;  
otherwise, if there exists input sequence α defined at the initial 
states of FSMs S and P such that outP (p0,  α)  ⊈ outS(s0,  α) , 
then  P is not a quasi-reduction of S and α is a r-
distinguishing (input) sequence. If both machines S and P are 
complete then the quasi-reduction relation reduces to the 
reduction relation: FSM P is a reduction of S if and only if for 
each input sequence α, it holds that outP (p0,  α)  ⊆  ou tS (s0,  
α) .  In [8], it is shown that for two complete observable FSMs 
P with n ≥ 1 states and S with k ≥ 1 states, length of a 
shortest r-distinguishing sequence does not exceed nk and this 
bound is reachable for machines with a single input when n 
and k are relatively prime integers. If FSM S is not observable 
then an r-distinguishing sequence has length at most n2k but 
the reachability for this upper bound was not proven. 
Converting machines An  and Sk  from Section 4 into FSMs by 
replacing at each state every input by the pair input/output for 
the output defined at the state, the following statement can be 
established. 

Theorem 6. For every k ≥ 3 and n ≥ 1, there exist 
complete FSMs Sk with k states, 2(k - 2) inputs and two 
outputs, and a complete deterministic FSM An with n states 
over the same input and output alphabets that is not a 
reduction of Sk, such that a shortest r-distinguishing sequence 
has the length (n - 1)2k – 2= Ω(n2k). 

VI. CONCLUSION 
In this paper, we are concerned about the complexity of 

test suites with guaranteed fault coverage when critical faults 
are enumerated and a test suite is derived as a set of 
distinguishing sequences of the specification and mutant I/O 
automata when a sequence of inputs can be applied before 
getting a response or a sequence of output responses from an 
implementation under test. We propose a technique for 
deriving an r-distinguishing trace of the specification and a 
mutant I/O automata, i.e., a distinguishing trace with respect 
to the trace inclusion (quasi-reduction) relation, and obtain the 
least and upper bounds on the length of a shortest r-
distinguishing trace showing that the exponential upper bound 
with respect to the number of states of the specification 
automaton is reachable. The results are then adapted for a 
proper case of I/O automata when each input is followed by an 
output, i.e., for Finite State Machines.  As further directions of 
our work, we are going to study other distinguishability 
relations especially those when adaptive input sequences can 
be used.  
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