

978-1-7281-1003-5/19/$31.00 ©2019 IEEE

Evaluating the length of distinguishing sequences for
nondeterministic Input/Output automata

Igor Burdonov
Software Engineering

department
Ivannikov Institute for System

Programming of RAS
Moscow, Russia
igor@ispras.ru

Alexandr Kossachev
Software Engineering

department
Ivannikov Institute for System

Programming of RAS
Moscow, Russia
igor@ispras.ru

Nina Yevtushenko
Software engineering

deparment
Ivannikov Institute for System

Programming
Moscow, Russia

evtushenkor@ispras.ru

Alexey Demakov
Software engineering

deparment
Ivannikov Institute for System

Programming
Moscow, Russia

demakov@ispras.ru

Abstract——Distinguishing sequences are used in model
based mutation testing in order to distinguish the specification
from its mutants that usually represent critical implementation
faults. In this paper, we consider distinguishing sequences for
Input/Output automata when a sequence of inputs can be applied
before getting any response or a sequence of output responses
from an implementation under test. We propose a technique for
deriving an r-distinguishing trace, i.e. a distinguishing trace with
respect to the trace inclusion (quasi-reduction) relation, and
obtain the least and upper bounds on the length of a shortest r-
distinguishing trace showing that the exponential upper bound
with respect to the number of states of the specification
automaton is reachable; the results are then adapted for a proper
case of Input/Output automata when each input is followed by an
output, i.e., for Finite State Machines.

Keywords—Input/Output automata, quasi-reduction relation, r-
distinguishing trace

I. INTRODUCTION
Test generation with guaranteed fault coverage is an

important issue in developing complex critical systems (see,
for example, [1]) and guaranteed fault coverage immediately
asks for involving formal models. Finite transition systems are
widely used for deriving tests and there are a number of
methods [2] for deriving test suites with guaranteed fault
coverage for Finite State Machines (FSMs) when each input is
followed by an output. However, the above FSM model is not
always appropriate and sequences of inputs can be applied
before getting any response or a sequence of output responses;
this situation can be adequately handled by the use of so-
called Input/Output(I/O) automata [3]. Nevertheless, all the
methods developed for such automata usually return infinite
tests when talking about the ‘black-box’ testing model [4]. In
a number of cases when critical faults could be enumerated, a
test suite can be derived as a set of distinguishing sequences
for specification and mutant I/O automata. In this case, a
technique for deriving an appropriate preset or an adaptive
distinguishing sequence for two I/O automata has to be
elaborated and the complexity of a corresponding test suite
has to be evaluated. For FSMs there are many publications

how to derive such sequences but we are not aware of these
results for I/O automata.

In this paper, we consider a variation of the well known
ioco relation [4] but as we consider automata that not
necessary are input complete we modify ioco as a quasi-
reduction relation (similar to FSMs [5]). Automaton A is not
a quasi-reduction of automaton B if there exists a trace defined
at both automata such that the set of outputs after this trace of
automaton A is not a subset of that of automaton B and
propose a technique how to check whether this relation holds.
If the automaton B is deterministic then the obtained criterion
describes necessary and sufficient conditions for checking the
quasi-reduction relation. However, if the automaton B is
nondeterministic then the conditions become only sufficient.
Moreover, as we consider automata which not necessary are
input complete and we do not observe states when testing,
only traces for which an input is defined at any state after a
corresponding prefix are considered as distinguishing test
cases and such traces are called permissible. In order to
completely check the quasi-reduction relation when B has a
trace that takes the automaton from the initial state to two
different states, the B has to be determinized; however, the
deterministic equivalent of B is a bit different from the
ordinary [6] as it contains only permissible traces and in this
paper, we also evaluate the length of such trace obtaining
lower and upper bounds for r-distinguishing traces depending
on the number of states of both automata.

The rest of the paper is structured as follows. As usual,
Section 2 contains preliminaries while a technique for deriving
a distinguishing trace together with the least bound of such
trace is presented in Section 3. Section 4 shows that the
exponential upper bound on length of a shortest r-
distinguishing trace with respect to the number of states of the
specification automaton is reachable if the latter can be
nondeterministic; the results are adapted for FSMs in Section
5. Section 6 concludes the paper.

.

II. PRELIMINARIES
An I/O automaton, simply an automaton throughout this

paper, is a 5-tuple S = (V(S), X, Y, E(S), s0) where V(S) is a
finite nonempty set of states with the initial state s0, X is a
finite nonempty set of inputs, Y is a finite nonempty set of
outputs, X ∩ Y = ∅, E(S) ⊆ V(S) × (X ∪ Y) × V(S) is a set of
transitions. Sometimes, we refer to inputs and outputs as to
actions. According to the above definition, we consider
automata without the nonobservable action.

For s, s′ ∈ V(S) and z ∈ (X ∪ Y), we use the following
notations:
sz→s′ ≝ (s, z, s′) ∈ E(S),
sz→ ≝ ∃ s′ ∈ V(S) (s, z, s′) ∈ E(S).

If there are no transitions at a state under outputs then we
add a loop labeled with ‘output’ δ [4] that is not in the set Y:
Eδ(S) = E(S) ∪ {aδ→a | a ∈ V(S) & ∀ y ∈ Y ∄ b ay→b}.

Such an augmented automaton S is denoted as
Sδ = (V(S), X, Y, Eδ(S), s0), and a trace in Sδ is a S-trace1 of S.
If the contrary not explicitly stated then a trace denotes an S-
trace.

Input x ∈ X is a defined input at state s ∈ V(S) if there is a
transition sx→, i.e., ∃ s′ ∈ V(S) (s, x, s′) ∈ E(S). Input x ∈ X
is defined after a trace if this input is defined at each state
reached after this trace. An automaton is input-complete if
every input is defined at every state.

Given a trace µ and state s, µ is a permissible trace at state
s if each input in µ is defined after the prefix that directly
precedes this input. Given a permissible trace µ at state s, as
usual, s-after-µ is the set of states where µ can take the
automaton from state s. If µ is a permissible trace at the initial
state of S then instead of s0-after-µ we sometimes write S-
after-µ. In this paper, we assume that two automata can be
distinguished only by a trace that is permissible at the initial
states of both automata; moreover, we also assume that if after
an input no outputs are expected then δ is a corresponding
output.

An automaton is observable if at each state at most one
transition is defined for each action. 2 Given an observable
automaton, the set of states s-after-µ is either empty or is a
singleton. Given a nonobservable automaton, the set s-after-µ
can have several states.

We also use the following notation: the set of outputs at a
state s is the set of defined outputs at this state:
outS(s) ≝ { y ∈ Y | sy→ }. If no outputs are defined at state
s then outS(s) ≝ {δ}. For a subset B ⊆ V(S) we have
outS(B) ≝ ∪{ outS(s) | s ∈ B }.

An automaton A = (V(A), X , Y , E(A), a0) is a quasi-
reduction of the automaton S = (V(S), X , Y , E(S), s0) if for
each trace σ that is permissible in both automata it holds that
outA(A-after-σ) ⊆ outS(S-after-σ).

1Suspension trace
2Sometimes such an automaton is called deterministic [6]. However, we save
this notion for an observable automaton where at each state at most one output
is defined.

If the automaton A = (V(A), X , Y , E(A), a0) is not a
quasi-reduction of the automaton
S = (V(S), X , Y , E(S), s0) , then there exists a trace σ that is
permissible in both automata such that outA(A-after-
σ) ⊈ outS(S-after-σ). This trace σ is called an r-
distinguishing trace.

III. THE UPPER BOUND OF AN 𝑟-DISTINGUISHING TRACE CASE
DERIVATION

Let an automaton A be not a quasi-reduction of S, and σ is
an r-distinguishing trace. For a trace σ, consider sequences of
pairs (aj, S-after-σj) where σj is a prefix of σ of length j,
j = 0, .., |σ|, and aj ∈ (A-after-σj), i.e., aj is a state of A
reachable after trace σj. If σ is a shortest r-distinguishing trace
with this property then there exists at least one sequence of
pairs where all the pairs are pairwise different. Since the
number of such pairs does not exceed the product of n = |V(A)|
and 2k – 1 where k = |V(S)|, the length of such sequence does
not exceed n(2k - 1), and thus, the length of a shortest r-
distinguishing trace is not bigger than O(n2k).

Given an automaton A and an observable automaton
S = (V(S), X, Y, E(S), s0) over the same alphabets, in order to
derive a set of permissible traces of both automata, the product
A ∩ S of automata can be constructed. States of the product
are pairs of states of the automata, a transition is defined at a
state if it is defined at both states.

Proposition 1. Given an automaton A and an observable
automaton S over the same alphabets, A is not a quasi-
reduction of S if and only if the product A ∩ S has a state (a,
s), a ∈ V(A), s ∈ V(S), such that the state is reachable from the
initial state via a permissible trace at the initial states of both
automata and some output is defined at state a while not being
defined at state s.

Indeed, let (a, s) be a state with the above features
reachable from the initial state via a trace µ. Since the
automaton S is observable, s is the only state of the automaton
S reachable by µ and the latter immediately implies out A(A -
after-σ) ⊈ out S(S -after-σ). On the other hand, if each
permissible trace at the initial states of both automata takes the
product A ∩ S to a state (a, s) such the set of outputs at state a
is a subset of that at state s then by definition, A is a quasi-
reduction of S.

It is well known how to construct the product of two
automata over the same alphabet of actions and thus,
Proposition 1 provides necessary and sufficient conditions for
checking whether one automaton is a quasi-reduction of
another observable automaton. If the product has a state (a, s)
with the above features then a permissible trace µ that takes
the product to this state is an r-distinguishing trace. Given an
automaton A with n states and an observable automaton S with
k states, the product A ∩ S has at most nk states, and thus,
length of a shortest r-distinguishing trace is not bigger
than O(nk).

Fig. 1. Automaton An, n ≥ 2

Fig. 2. Automaton S3

Fig. 3. Automaton A3

Fig. 4. Automaton S4

If automaton S = (V(S), X, Y, E(S), s0) is not observable,

we define a power-automaton P(S) over the same alphabets X
and Y. We use non-empty subsets of the set V(S) as states of
P(S), i.e., V(P(S)) = 2V(S) \ {∅}, and the initial state of P(S) is
{s0}. In the automaton P(S), there is a transition Ax→B
under input x ∈ X if and only if x is a defined input at each
state a ∈ A of S, and B = {b | ∃ a ∈ A ax→b}. In P(S), a

transition Ay→C is defined under output y ∈ Y if and only if
in S, a transition under this output is defined at least at one
state a ∈ A, and C = {c | ∃ a ∈ A ay→c}.

Proposition 1′. Given automata A and
S = (V(S), X, Y, E(S), s0) over the same alphabets, A is not a
quasi-reduction of S if and only if the product A ∩ P(S) has a
state (a, š), a ∈ V(A), š ∈ V(P(S)), such that the state is
reachable from the initial state via a permissible trace at the
initial states of both automata and some output is defined at
state a while not being defined at the power-state š.

Propositions 1 and 1′ show the way how an r-
distinguishing trace can be constructed if automaton A is not
quasi-reduction of S.

In the next section, we show that for every k ≥ 2 and n ≥ 1,
there exist an automaton Sk with k states, (2k - 2) inputs and
two outputs and an input-complete automaton An with n states
over the same input and output alphabets that is not a quasi-
reduction of Sk such that a shortest r-distinguishing trace has
the length (n - 1)2k - 2 = Ω(n2k).

IV. THE LOWER BOUND OF AN 𝑟-DISTINGUISHING TRACE
Theorem 2. For every k ≥ 3 and n ≥ 1, there exist an input-

complete automaton Sk with k states, (2k - 2) inputs and two
outputs and an input-complete automaton An with n states over
the same input and output alphabets that is not a reduction of
Sk, such that a shortest r-distinguishing trace has the length
(n - 1)2k – 2= Ω(n2k).

Sketch of the proof. In order to prove the statement, we
derive automata Sk and An for which the bound is reachable.
The input alphabet X = {a, e, b3, …, bk-1, c3, …, ck-1} has 2(k –
 2) inputs while the output alphabet has two outputs, Y = {y,
y′}. The set V(Sk) of states of Sk is the set {0, 1, 2,…, k - 1}
and state 1 is the initial state.

Automaton Sk has the following transitions:
State 0: There are transitions under all inputs and all outputs
to state 0;
State 1: There is a transition under input a to each state of the
set {2, …, k - 1}; for each input e, b3, …, bk-1, c3, …, ck-1, there
is a transition to state 0 while there is a transition to state 1
under output y;
State 2: There is a transition under input e to state 1; for each
input bj, j = 3, …, k - 1, there is a transition from state 2 to
state j under input bj; for each action a, cj, j = 3, …, k - 1, there

2

b3
c3

e 1

e

b3
c3

3

y′ a

b3
c3

a y a y

2

a

0 1

y, y′, a, e

e
y

a

e
y

2

b3, …, k - 1
c3, …, k - 1

e 1

e

b3, …, k - 1
c3, …, k - 1

n - 2 ... e

b3, …, k - 1
c3, …, k - 1

n - 1 e

b3, …, k - 1
c3, …, k - 1

n

e

a

b3, …, k - 1
c3, …, k - 1

a y a y a y a y

a

2

a, c3

0 1
b3

3

y
y, y′, a, e, b3, c3

e, b3, c
y

a

e b

c

a, e

y

is a transition from state 2 to state 0 while there is a transition
to state 2 under output y;
State j, j = 3, …, k- 1: there are transitions to state j under
inputs b3,…, bj, с3,…, сj-1 and transitions to states 2, …., (j –
1) under input сj; there are transitions to state 0 under inputs
bj+1, …, bk-1, сj+1,…, сk-1 to state 0; there is a transition to state
0 under inputs a and e and a transition to state j under output
y.

Automaton An is shown in Fig. 1. Automata S3, A3, S4 are
shown in Figs. 2, 3, 4.

By direct inspection, one can assure that the automaton A1
is distinguishable from Sk. k ≥ 3, with the empty trace of
length 0 and a shortest r-distinguishing trace for automata A3
and S3 is a trace aeae of length 4 = (3 - 1)23 – 2.

We first establish several statements about properties of
automata An and Sk.

Proposition 3. A trace σ is an r-distinguishing trace of An
with respect to Sk if and only if this trace takes an power-
automaton P(Sk) from the initial state to any power-state
without state 0 while taking the automaton An to state n.

Indeed, according to automata definitions, output y′ can be
produced at any power-state with state 0 and only at such
power-state.

Proposition 4. Given a state j of An, j < n, a trace γ ∈
{a, b3, …, bk-1, c3, …, ck-1}*e takes the automaton An from state
j to state j + 1, j = 1, …, n – 1, while taking the automaton
from state n to state n.

The proof is a corollary to the fact that by definition, given
a state j of An, j ≤ n, a trace γ ∈ {a, b3, …, bk-1, c3, …, ck-1}*
leaves the automaton at state j.

Due to the definition of the automaton Sk, the following
statement holds.

Proposition 5. Given automaton Sk and a trace γ∈
{b3, …, bk-2, c3, …, ck-2}* that takes the power-automaton P(Sk)
from a power-state {2, …, k - 2}, k ≥ 4, to the power-state {2}
traversing power-states D1, …, D|γ| without state 0, the trace γ
takes the power-automaton P(Sk) from the power-state {2, …,
k - 2, k - 1} through the power-states D1 ∪ {k - 1}, …, D|γ| ∪
{k - 1} each of which has state (k – 1).

By definition, a trace γ is empty in Proposition 5 when
k = 4.

We first consider the case of n ≥ 2 and k = 3. In this case,
the automaton S3 has only inputs a and e and by direct
inspection, one can assure that a trace ae takes the automaton
S3 from state 1 to state 1 while taking the automaton An from
every state j ≠ n to state j + 1, i.e., the trace (ae)n-1 takes the
automaton S3 from state 1 to state 1 while taking the
automaton An from 1 to state n, and thus, is a r-distinguishing
trace for An and S3. An input e after trace of the set (ae)* takes
the automaton S3 from state 1 to state 0 and input a after any
trace of the set (ae)*e takes the automaton S3 from state 2 to
state 0; therefore, (ae)n-1 is a shortest r-distinguishing trace for
An and S3. This trace has length (n – 1)2k-2.

Let n ≥ 2 and k ≥ 4. We now use the induction on k in
order to show that there is a trace of length 2k-2 that takes Sk
from state 1 to state 1.

Induction base. If k = 4 then the trace a, b3, c3, e possesses
the feature while traversing the following power-states: {1} –
a – {2, 3} – b3 – {3} – c3 – {2} – e – {1}. At any power-state
of the trace, any other input takes the automaton to state 0 or
to a power-state already traversed by the trace.

Induction assumption. Let for some k < m hold that a trace
aγ, γ ∈ {b3, …, bk-2, c3, …, ck-2}, takes the power-automaton
P(Sk) from power-state {1} to {2, …, k - 2} and from power-
state {2, …, k - 2} to {2} traversing power-states D1, …, D|γ|
without state 0 and length of this trace is 2k-2 - 1, i.e., the trace
aγe takes the power-automaton P(Sk) from power-state {1} to
{1}. We append the trace γ with bk-1ck-1, i.e., the trace aγbk-1ck-1
of the power-automaton P(Sk) traverses power-states {2, …, k
- 1}, D1 ∪ {k - 1}, …, D|γ|∪ {k - 1}, {k - 1}, {2, …, k - 2}
from state {1} (Proposition 5). Correspondingly, the trace
aγbk-1ck-1γe takes the power-automaton P(Sk) from power-state
{1} to {1} while taking automaton An to state 2 (Proposition
4).

Therefore, the trace (aγbk-1ck-1γe)n-1 takes the power-
automaton P(Sk) from power-state {1} to {1} while taking
automaton An to state n, and due to Proposition 3, this proves
the theorem statement.

V. EVALUATING LENGTH OF AN 𝑟-DISTINGUISHING TRACE FOR
FINITE STATE MACHINES

The notion of a Finite State Machine (FSM) is very close
to the notion of an I/O automaton. In fact, an FSM correspond
to an I/O automaton where only inputs or outputs are defined
at each state and each input is followed exactly by a sequence
of outputs of length 1. Therefore, there are no races between
inputs and outputs in FSMs and this fact makes this model
very attractive for deriving test suites.

Formally, an initialized FSM is a 5-tuple S = (S, X, Y, hS,
s0) [7] where S is a finite non-empty set of states with the
designated initial state s0, X and Y are input and output
alphabets, and hS ⊆ S × X × Y × S is the transition (behavior)
relation. A transition (s, x, y, s′) describes the situation when
an input x is applied to S at the current state s. In this case, the
FSM moves to state s′ and produces the output (response) y.
FSM S is nondeterministic [8] if for some pair (s, x) ∈ S × X,
there can exist several pairs (y, s′) ∈ Y × S such that (s, x, y,
s′) ∈ hS; otherwise, the FSM is deterministic. FSM S is
observable if for every two transitions (s, x, y, s1), (s, x, y, s′)
∈ hS it holds that s1 = s2; otherwise, the FSM is
nonobservable.

FSM S is complete if for each pair (s, x) ∈ S × X there
exists (y, s′) ∈ Y × S such that (s, x, y, s′) ∈ hS; otherwise,
the FSM is partial. Given state s ∈ S and an input x ∈ X , an
input x is a defined input at state s if there exists (y, s′) ∈ Y
× S such that (s, x, y, s′) ∈ hS. Given an input sequence α =
x1x 2 … x k ∈ X *, α is a defined input sequence at state s if x1
is a defined input at state s and for each j = 2, …, k, x j is a
defined input at any state where input sequence x 1x 2…x j - 1
can take FSM S from state s.

In usual way, the behavior relation is extended to input and
output sequences. Given states s , s ′ ∈ S , a defined input
sequence α = x 1x 2… x k ∈ X * at state s and an output
sequence β = y 1y 2…y k ∈ Y*, there is a transition
(s , α , β , s ′) ∈ hS if α is a defined input sequence at state s
and there exist states s 1= s, s2 , … , s k , s k + 1=s′ such that
(sj-1, xj, yj, sj) ∈ hS, j = 1, … , k. In this case, the input
sequence α can take (or simply takes) the FSM S from state s
to state s ′. The set outS (s , α) denotes the set of all output
sequences (responses) that the FSM S can produce at state s in
response to a defined input sequence α, i.e. outS (s , α) = {β:
∃ s ′∈ S [(s , α , β , s ′) ∈ hS]}. The pair α∘β, β ∈ outS (s ,
α) , is an Input/Output (I/O) sequence at state s; if s is the
initial state s0 then the pair α/β is an Input/Output (I/O)
sequence (or a trace) of the FSM S. Given states s and s′, the
I/O sequence α/β can take (or simply takes) the FSM S from
state s to state s′ if (s , α , β , s ′) ∈ hS. Given FSMs S = (S,
X, Y, hS, s0) and P = (P, X, Y, hP, p0), the intersection (or the
product) S ∩ P is the largest connected submachine of FSM =
(S × P, X, Y, f, s0p0) where (sp , x , y , s ′p ′) ∈ f ⇔ (s , x , y ,
p ′) ∈ hS & (p , x , y , p ′) ∈ hP. The set successor(s, α∘β)
denotes the set of all states reachable from state s after
applying the defined input sequence α when getting the output
response β, i.e., given a defined input sequence α at state s,
successor(s, α∘β) = {s ′ : (s , α , β , s ′) ∈ hS}.

Given FSMs S and P, FSM P is a quasi-reduction of S if
for each input sequence α defined at the initial states of FSMs
S and P, it holds that outP (p 0 , α) ⊆ outS (s 0 , α) ;
otherwise, if there exists input sequence α defined at the initial
states of FSMs S and P such that outP (p0, α) ⊈ outS(s0, α) ,
then P is not a quasi-reduction of S and α is a r-
distinguishing (input) sequence. If both machines S and P are
complete then the quasi-reduction relation reduces to the
reduction relation: FSM P is a reduction of S if and only if for
each input sequence α, it holds that outP (p0, α) ⊆ ou tS (s0,
α) . In [8], it is shown that for two complete observable FSMs
P with n ≥ 1 states and S with k ≥ 1 states, length of a
shortest r-distinguishing sequence does not exceed nk and this
bound is reachable for machines with a single input when n
and k are relatively prime integers. If FSM S is not observable
then an r-distinguishing sequence has length at most n2k but
the reachability for this upper bound was not proven.
Converting machines An and Sk from Section 4 into FSMs by
replacing at each state every input by the pair input/output for
the output defined at the state, the following statement can be
established.

Theorem 6. For every k ≥ 3 and n ≥ 1, there exist
complete FSMs Sk with k states, 2(k - 2) inputs and two
outputs, and a complete deterministic FSM An with n states
over the same input and output alphabets that is not a
reduction of Sk, such that a shortest r-distinguishing sequence
has the length (n - 1)2k – 2= Ω(n2k).

VI. CONCLUSION
In this paper, we are concerned about the complexity of

test suites with guaranteed fault coverage when critical faults
are enumerated and a test suite is derived as a set of
distinguishing sequences of the specification and mutant I/O
automata when a sequence of inputs can be applied before
getting a response or a sequence of output responses from an
implementation under test. We propose a technique for
deriving an r-distinguishing trace of the specification and a
mutant I/O automata, i.e., a distinguishing trace with respect
to the trace inclusion (quasi-reduction) relation, and obtain the
least and upper bounds on the length of a shortest r-
distinguishing trace showing that the exponential upper bound
with respect to the number of states of the specification
automaton is reachable. The results are then adapted for a
proper case of I/O automata when each input is followed by an
output, i.e., for Finite State Machines. As further directions of
our work, we are going to study other distinguishability
relations especially those when adaptive input sequences can
be used.

ACKNOWLEDGMENT
This work is partly supported by RFBR project N 19-07-

00327/19.

REFERENCES
[1] Mathur, A:. Foundations of Software Testing. Addison Wesley (2008)
[2] Dorofeeva, R., El-Fakih, K., Maag, S., Cavalli, A., and Yevtushenko,

N.: FSM-based conformance testing methods: A survey annotated with
experimental evaluation. Inf. Software Technol., 52: 1286-1297 (2010)

[3] N. Lynch and M. Tuttle. An introduction to Input/Output automata.
CWI-Quarterly, 2(3): 219-246 (1989)

[4] J. Tretmans.: A formal approach to conformance testing. The Intern.
Workshop on Protocol Test Systems, 257-276 (1993)

[5] Petrenko, A., Yevtushenko, N., Lebedev, A., Das, A. Nondeterministic
State Machines in Protocol Conformance Testing. The Intern. Workshop
on Protocol Test Systems: 363-378 (1993)

[6] Hopcroft J.E., Motwani, R., and Ullman J.D.: Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, second edition
(2001)

[7] Kam, T., Villa, T., Brayton, K. R., Sangiovanni-Vincentelli, A.:
Synthesis of FSMs: Functional Optimization. Springer (1997)

[8] Yevtushenko N., Petrenko A., Vetrova M.: Nondeterministic Finite State
Machines: analysis and synthesis. Part 1: Relations and operations (in
Russian). Publishers TSU, Tomsk (2006)

 .

	I. Introduction
	II. Preliminaries
	III. The upper bound of an 𝑟-distinguishing trace case derivation
	IV. The lower bound of an 𝑟-distinguishing trace
	V. Evaluating length of an 𝑟-distinguishing trace for Finite State Machines
	VI. Conclusion
	Acknowledgment
	References

