
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Implementing a virtual network on the SDN data

plane

Igor Burdonov

Software Engineering

department

Ivannikov Institute for System

Programming of RAS

Moscow, Russia

igor@ispras.ru

Nina Yevtushenko

Software engineering

deparment

Ivannikov Institute for System

Programming

Moscow, Russia

evtushenko@ispras.ru

Alexandr Kossachev

Software Engineering

department

Ivannikov Institute for System

Programming of RAS

Moscow, Russia

kos@ispras.ru

Abstract—The paper investigates the implementation of

virtual networks on the SDN data plane, modeled by a graph of

physical connections between network nodes. A virtual network is

defined as a set of ordered host pairs (sender, receiver), and it is

implemented by a set of host-host paths that uniquely determine

the switch settings. It is shown that any set of host pairs can be

implemented on a connected graph without the occurrence of an

infinite transfer of packets in a loop and without duplicate paths

when the host receives the same packet several times. However,

undesired paths may occur when a host receives a packet that is

not intended for this host. On the other hand, it is shown that in

some cases, implementation without undesired paths inevitably

leads to duplication or looping of packets. The question is posed:

on which graph can any set of host pairs be implemented without

looping, duplication and undesired paths? A sufficient condition is

proposed and a hypothesis is put that this condition is also the

necessary condition.

Keywords— Software Defined Networking (SDN), data plane,

Network connectivity topology

I. INTRODUCTION

Software Defined Networking (SDN) is one of the main
technologies for network virtualization [1][2][3][4][5]. On the
data plane, packets are transmitted between hosts through
intermediate switches. This is modeled by a graph of physical
connections (links) often referred to as RNCT (Resource
network connectivity topology), the vertices of which are hosts
and switches, and the edges correspond to physical connections
between them. The switches are configured by SDN controller
(-s), setting up a set of flow rules for each switch. The rule
determines which neighboring vertices of the graph the packet
received by the switch is forwarded to, depending on which
neighbor the packet came from and the parameter vector in the
packet header [6]. Thus, the configuration of the network
switches determines the set of paths from host to host, through
which packets will be forwarded.

There are tasks of two levels. 1) How to implement a given
set of host-host paths through appropriate switch settings? 2)
How to implement a given set of pairs (host, host) through
appropriate host-host paths in the graph of physical
connections?

It is known that when solving the 1st problem there are three
effects. 1a) Cycles may occur in which packets will be
transmitted endlessly and, moreover, endlessly cloned. 1b)
Undesired paths may appear. These problems were investigated
in [4] [5]. 1c) Duplicate paths may appear, due to which the host
destination receives the same packet more than once.

The 2nd task is reduced to the 1st task by choosing a suitable
set of paths, avoiding the above effects if possible. The
following questions are then raised. 2a) Is it possible to
implement a given set of host pairs on a graph, i.e. to choose a
suitable set of paths without the indicated effects? 2b) Is it
possible to implement any set of host pairs without such effects
on a given graph of physical connections?

As an answer to question 2a), this paper shows that any set
of host pairs can be implemented on a connected graph without
cycles and duplication, however, undesired paths may occur, i.e.
paths connecting unintended host pairs. On the other hand, the
article demonstrates that in some cases, the implementation of a
given set of host pairs without undesired paths inevitably leads
to path duplication or loops. The article establishes a sufficient
condition for the positive answer to question 2b) and puts the
hypothesis that this sufficient condition is also the necessary
condition.

II. PRELIMINARIES

A physical connection graph (hereinafter simply a graph),
often referred to as RNCT (Resource network connectivity
topology), is a connected undirected graph G = {V, E} without
multiple edges and loops, where V is the set of switches and

hosts, E  V  V is the set of edges modeling physical
connections between the switches and hosts. Since the edge
connecting the vertices a and b is undirected and there are no
multiple edges, it can be denoted by both ab and ba. Since there
are no loops, there are no edges of the form aa in E. Since there
are no multiple edges, a path as a sequence of adjacent edges is
uniquely determined by the sequence of vertices a1…an through
which it passes. A path starting at vertex a and ending at vertex
b is called an ab-path. If the path passes along the edge ab from
a to b, then we say that it passes through the arc ab. If a and b
are hosts, an ab-path in which all vertices except the first vertex
a and the last vertex b are switches, is called a complete path. A

path is called vertex-simple (edge-simple) if each vertex (arc)
occurs at most once. The vertices of the graph will be denoted
by lowercase letters a, b, c,…x, y, z, the paths by bold lowercase
letters p, q, r,…, and the set of paths by capital letters P, Q, R,
…

We will assume that each host x is connected to exactly one
switch [3]. Therefore, the host is the terminal vertex of the graph,
i.e. a vertex of degree 1. If the switch a has degree 1 and is
connected to vertex b, then any complete path passing through a
has the form ...bab...; removing all bab cycles from it, we get a
path that does not pass through a. This means that such a switch
is "superfluous", and it is enough to consider graphs in which
terminal vertices are only hosts. The sets of hosts and switches

are denoted by H and S, respectively; H  S = V, H  S = .

In general case, the rule of the switch b has the form abc,

where a and c are neighbors of b, and  is the vector of packet
header parameters that can be used in the rules. Such a rule

means that switch b, having received a packet with vector  from
neighbor a, forwards it to neighbor c. It is assumed that the

switch does not change . Thus, for the vector  complete paths
of the form a1…an are considered where in the switch ai there is

a rule ai - 1aiai + 1, i = 2..n – 1. If there are two rules abc and

abc`, where c  c`, then it is said that the packet is cloned, i.e.
is sent to both neighbors c and c`.

The given set P of complete paths uniquely determines the
minimal set of switch rules that induces all paths from P.
However, this does not mean that only paths of P are induced.
We say that two paths are merging paths on the arc ab at vertex
a if they have an intermediate common arc ab with different

direct predecessor arcs ca and c`a where c  c`, and are
separating paths after the arc de at the vertex e if they have an
intermediate common arc de with different direct successor arcs

eg and eg` where g  g`.

There is a cycle in the path if a complete xy-path passes
through an arc twice, i.e. the path has the form paqer(aqer)*aqes,

where the segment p starts at the host x  a, the segments p and
r do not end at the same vertex, after these segments the switch
a follows, the segment aqer passes one or more times, after the
switch e segments r and s do not start at one vertex, and segment

s ends at the host y  e. Moving along the path, we see that at the
vertex a the path merges with itself, then at the vertex e it
separates with itself, and then this merging and separating
occurs again. If the path goes through the cycle k times, then it
will be k + 1 times both separating after merging, and merging
after separating. Packets will not only endlessly traverse the aqer
cycle, but also endlessly clone at vertex e, so host y will receive
an infinite number of clones of the same packet.

A path that does not merge with itself is an edge-simple path.
For the absence of cycles, it is necessary that all paths of the set
P be edge-simple. But that is not sufficient. If two edge-simple
complete paths from P after merging on the arc ab are separated
(after this or another arc), i.e. those are xpabqy and x`p`abq`y`

with different start and end hosts x  x` and y  y`, then new
paths xpabq`y` and x`p`abqy are also induced. This operation of
inducing new paths is called the arc closure, and the result of

the arc closure of all pairs of paths from P is denoted by P [4]

[5]. Obviously, P  P. If P  P, i.e. P is not arc closed,

then undesired paths occur. In particular, non-edge-simple paths
and, therefore, cycles may occur. The appearance of cycles in
the arc closure of the set of complete paths always indicates the
infinity of this arc closure and, thus, the presence of duplication.
There are no cycles in a finite arc closed set of complete edge-
simple paths.

For a set of complete paths P, by H(P)  HH we denote the
set of pairs xy for which there is an xy-path in P. A set of host

pairs D  HH that does not contain pairs of the form xx will be
called normal. We say that a normal set D (non-strictly) is
implemented by an arc closed set of complete paths P if

D  H(P), D is strictly implemented if D = H(P), D is
implemented without cycles if P is finite, D is implemented
without duplication if P contains exactly one xy-path for each

pair xy  D.

If the source address is included into the parameter vector ,
then the rules for parameter vectors with different source
addresses work independently. For each source host x in the
graph, the tree Ix of shortest paths leading from x to all other
hosts can be selected. For any normal set D of host pairs and any
host x, a subset Dx is selected, where the first element of the pair
is host x, and the subtree Ix(D) is selected, in which leaf vertices

are destination hosts y such that xy  Dx. In the outgoing tree, all
paths are edge-simple (even vertex-simple, that is, without
vertex repetition), and there is no merging, thereby there is no
separating after merging. Therefore, Ix(D) is arc closed and,
obviously, strictly implements Dx without cycles and
duplication; moreover, the shortest complete paths are used.
Thus, in this case there is no problem with the strict
implementation without loops and duplication of any normal set
of host pairs. Moreover, the implementation of any such set
turns out to be a subset of the same set of paths, namely, the
union of Ix trees over all source hosts x. A similar procedure with
a similar result is applicable when the destination address is

included into the parameter vector . In this case, the incoming
Ox tree is built for each destination host x.

Below we consider the case when the source address and the

destination address are not included into the parameter vector .
The remaining parameters do not affect packet transmission

with the given vector , so we will omit  in the designation of

the rule and write abc instead of abc. In other words, the switch

rules (for a given vector ) determine to which vertex the packet
should be sent, only depending on the neighbor from which the
packet was received. In this case, the maximum number of rules
by which the switch operates depends only on the number of its
neighbors and does not depend on the number of hosts in the
network.

III. NON-STRICT / STRICT IMPLEMENTATION OF VERSUS CYCLES

AND DUPLICATION

In this section, we examine the relationship between the

non-strict and strict implementation of the set of host pairs with

the presence or absence of cycles and duplication.

Proposition 1. On a connected graph G, any normal set D

of host pairs is non-strictly implemented without cycles and

duplication.

Proof. In G, choose an arbitrary spanning tree T. Since a

host has degree 1 in G, all the hosts are leaves of T. Let P be the

set of all shortest complete paths in the tree T. Obviously, all

paths from P are vertex-simple and, therefore, edge-simple;

moreover, there are no duplicate paths and P is finite and arc

closed. If we leave only xy-paths in the set P such that xy  D,

then for the resulting set P(D) we have P(D)  P. Thus, in

P(D) all the paths are also edge-simple, there are no

duplicate paths and P(D) is finite and arc closed. By

construction, D = H(P(D))  H(P(D)). Therefore, P(D)

non-strictly implements D without cycles and duplication.



For a complete path p, let p denote the path that is obtained
from p by using, as far as possible, the following operation to

delete cycles: the path p = qaras turns into the path p = qas.

Note that the result of the operation “”, generally speaking, is
ambiguous. For the sake of simplicity, we assume that the
operation of deleting a cycle is applied only when each vertex of
the prefix q occurs only once in p and q and r do not contain
vertex a. In other words, if the vertex a occurs first among the
vertices that have several occurrences in p, then a cycle is
removed by deleting ra in p, where r does not contain a. For

example, for p = xacbcaby, p = xaby (not xacby) is obtained.

The procedure  terminates when each vertex occurs at most

once in p. Given a set of complete paths P, P is the set of paths
obtained by deleting cycles from all paths P, i.e.

P = { p | p  P }.

Proposition 2. Let P be the set of complete paths. Then P

consists of vertex-simple paths and connects the same pairs of

hosts that the set P: H(P) = H(P). If P is arc closed, then the

arc closure P connects the same pairs of hosts:

H(P) = H(P), i.e. the arc closure P adds only duplicate

paths to the set P. If P is finite and arc closed, then P is finite

and arc closed.

Proof. Obviously, removing all cycles from a path makes

the path vertex-simple. Therefore, P consists of vertex-simple

paths. The operation of deleting one cycle from one path does

not change H(P). Therefore, the chain of such operations also

does not change H(P). Therefore, P connects the same host

pairs that the set P: H(P) = H(P).

Let us prove that if the set P is arc closed, then

H(P) = H(P). Indeed, let the set P contain xy-path p and

x`y`-path q, which are obtained by removing cycles from

xy-path p` and x`y`-path q`, respectively, which are elements of

the set P. If the path p and q have a common arc, then this arc

is also common for the paths p` and q`. Since P is arc closed, it

also contains an xy`-path and an x`y-path. Thus, after deleting

the cycles in P there will also be an xy`-path and an x`y-path.

Therefore, H(P) = H(P`).

Let P be finite and arc closed. Then, obviously, P is also

finite. Let us prove that P is arc closed. Let P contain paths

pabq and p1abq1 with a common arc. These paths are obtained

by deleting the cycles from the paths r and r1, respectively,

which are elements of the set P. Since, when deleting the cycles,

any nonempty sequence between any two occurrences of the

vertices a and b can be completely deleted only together with

the removal of the occurrence a and/or b, the paths r and r1 can

be represented as p`abq` and p`1abq`1, respectively, where

p = p`, p1 = p`1, q = q`, q1 = q`1. Since P is arc closed, P

contains the paths p`abq1` and p`1abq`. And then P contains

the paths pabq1 = p`abq1` = (p`abq1`) and

p1abq = p`1abq` = (p`1abq`). Therefore, the set P is arc

closed.



Note that all conditions on the set P of complete paths in

Proposition 2 are necessary conditions. If the set P is not arc

closed, then the arc closure P can connect additional pairs

of hosts: H(P)  H(P), i.e. arc closure P can add to the

set P not only duplicate paths. If the set P is finite, but not arc

closed, then the set P is finite, but not necessary is arc closed.

In both cases, the set P = { xaby, x`aby` } can serve as an

example, where x  x` and y  y`: P = P,

P = { xaby, x`aby`, xaby`, x`aby }. If the set P is arc closed,

but infinite, then the set P not necessary is arc closed. As an

example the set P = Q can be considered where

Q = { xabcdy, x`cdaby` }, x  x` and y  y`: the set P contains

the path xabcdaby` that is not edge-simple, P = Q and

P = P.
It follows from Proposition 2 that any set D of host pairs that

is strictly implemented without cycles can be strictly
implemented by a set of vertex-simple paths. It is sufficient to

take the set P of vertex-simple paths instead of a finite arc
closed set P of complete paths that strictly implements D.

Proposition 3. A strict implementation is not always

possible without duplication: there is a graph on which some

normal set of host pairs is strictly implemented only with

duplication.
Proof. Consider the example in Figure 1. The set D is strictly

implemented by a finite arc closed set of paths P that contains
duplicate paths x0a0a1b1b0y0 and x0a0a2b2b0y0. Let us assume that
the arc closed set of paths P` without duplicate paths strictly
implements the set D. Since D contains 7 pairs of hosts, P`
strictly implements D and there are no duplicate paths in P`, P`
must contain exactly 7 paths. Then, by Proposition 2, we can
choose the set P` consisting only vertex-simple paths. In order
to reach host yj from host xi, the path must go either via the arc
a1b1 or via the arc a2b2. Let mi paths, i = 1, 2, pass via the arc
aibi, and these paths start at ni hosts and end at ki hosts. Then
n1 + n2 = 3, k1 + k2 = 3, m1 + m2 = 7. The set P` is arc closed,
which implies n1k1 = m1, n2k2 = m2. Hence
n1k1 + (3 - n1)(3 - k1) = 7, which implies 2n1k1 = 3(n1 + k1) - 2.

In this example, k1  3 and n1  3 which implies: 3k1 = 2 for
n1 = 0, k1 = -1 for n1 = 1, k1 = 4 for n1 = 2, 3k1 = 7 for n1 = 3.
Each of these equations has no solution for non-negative

integers or contradicts the condition k1  3. We came to a
contradiction, therefore, our assumption is not true, and the
proposition is proved.



Proposition 4. A strict implementation is not always

possible without cycles: there is a graph on which some normal
set of host pairs is strictly implemented, but only by an infinite
arc closed path set.

Fig. 1. The set D is strictly implemented only with duplication.

Proof. Consider the example in Figure 2. The set D is strictly

implemented by arc closure P of the set of paths P. But in P
there are paths x1a1b1c1c2a2b2y2 and x2a2b2d1d2a1b1y1, which in

P induce a non-edge-simple path x1a1b1c1c2a2b2d1d2a1b1y1

that goes twice via the arc a1b1, and therefore P is infinite.
Let the arc closed set of paths P` strictly implement the set D
and P` is finite. Then, by Proposition 2, we can choose the set
P` consisting of vertex-simple paths.

Fig. 2. The set D is strictly implemented only with cycles.

1. Let there be x2y1-path p1 passing via the arc c2c1.

1.1. Let there be a v2v1-path p2 passing via the arc c2c1. Then
x2y1-path p1 and v2v1-path p2 both pass via the arc c2c1 and,

therefore, induce an x2v1-path but x2v1  D.

1.2. Therefore, any v2v1-path p3 does not pass via the arc c2c1,
and then it passes via the arcs a2b2 and a1b1.

1.2.1. Let there be an x1y1-path p4 passing via the arc a1b1.
Then v2v1-path p3 and x1y1-path p4 both pass via the arc a1b1 and,

therefore, induce a v2y1-path but v2y1  D.

1.2.2. Therefore, any x1y1-path p5 does not pass via the arc
a1b1, and then it passes via the arc c2c1.

1.2.2.1. Let there be an x2y2-path p6 passing via the arc a2b2.
Then v2v1-path p3 and x2y2-path p6 both pass via the arc a2b2 and,

therefore, induce an x2v1-path but x2v1  D.

1.2.2.2. Therefore, any x2y2-path does not pass via the arc
a2b2. Such a path is unique among vertex-simple paths:
p7 = x2a2c2c1b1a1d2d1b2y2. Similarly, any x1y1-path does not go
via the arc a1b1. Such a path is unique among vertex-simple
paths: p5 = x1a1d2d1b2a2c2c1b1y1. The paths p7 and p5 have a
common arc a2c2, therefore the path
x1a1d2d1b2a2c2c1b1a1d2d1b2y2 is induced, which passes twice
through the arc a1d2, i.e. this path is not edge-simple.

2. Thus, any x2y1-path does not pass via the arc c2c1. Such a
path is unique among vertex-simple paths: p8 = x2a2b2d1d2a1b1y1.
Due to symmetry, it is similarly proved that any x1y2-path does
not pass via the arc d2d1. Such a path is unique among vertex-
simple paths: p9 = x1a1b1c1c2a2b2y2.

The paths p8 and p9 have a common arc a1b1, so the path
p10 = x2a2b2d1d2a1b1c1c2a2b2y2 is induced. This path passes twice
through the arc a2b2, i.e. this path is not edge-simple. We came

to a contradiction and, therefore, our assumption is not true, and
the proposition is proved.



IV. A SUFFICIENT CONDITION FOR THE STRICT IMPLEMENTATION

OF ANY SET OF HOST PAIRS WITHOUT CYCLES AND

DUPLICATION

In this section, we investigate sufficient conditions on a
graph that allow us to strictly implement any set of host pairs
without cycles and duplication. If for two paths there is a merge
on the arc ab and there is a separation after the arc cd, then we
say that the separation occurs after the merge, if at least one of
these paths first passes the arc ab and then the arc cd.
Accordingly, merging occurs after separation, if at least one of
these paths first passes the arc cd and then the arc ab. Note that
in the linear order of the vertices of one path, the separation after
the arc cd can occur after merging on the arc ab, and in the linear
order of the vertices of the other path, on the contrary, the
merging on the arc ab can occur after the separation after the arc
cd, as demonstrated by the example of two paths: xabefcdy and
ufcdabev, where different letters indicate different vertices.

Proposition 5. Given a finite set of complete paths, if there
is no separation after merging, then there are no cycles but the
converse is not always true.

Proof. The sufficiency follows from the fact that the arc
closure can induce new paths only in the case of the separation
after merging. Also, the cycle is induced by a non-edge-simple
path, in which there is a separation after the merging, as
indicated in Section 2. But the presence of the separation after
merging does not necessarily mean the arc non-closure or the
presence of cycles, as demonstrated by the following example
of a finite arc closed set of complete paths without cycles
P = { xaby, xaby`, x`aby, x`aby` }, where the hosts x, y, x` and
y` are pairwise different.



Proposition 6. Given an arc closed set P of complete paths,
the absence of merging after separation is the necessary and
sufficient condition for the absence of duplication.

Proof. Let there be two different xy-paths. Since each host is
connected to exactly one switch, the maximum common prefix
of these paths and the maximum common postfix of these paths
each has length at least 1, and the prefix can be represented as
xpa, and the postfix as bqy. Then, obviously, a is traversed in
each of the paths earlier than b, and the paths are of the form
xparbqy and xpar`bqy. Thus, these paths separate at the vertex
a, and then merge at the vertex b. From this follows the
sufficiency of the condition. Let us prove the necessity of the
condition. Let there be a merge after the separation for two
complete paths: xy-path and x`y`-path, with the xy-path first
passing through the vertex a at which the paths are separated,
and then the vertex b where the paths merge. Two cases are
possible.

1) Figure 3 (a). The x`y`-path goes through the vertices a and
b in the same order: ab. Then the paths have the form xpaqbry
and x`p`aq`br`y`, where the segments xp and x`p` end at the
same vertex c, the segments q and q` start and end at different

vertices, the segments ry and r`y` start at the same vertex d. The
arc ca is common for these paths; therefore, the path xpaq`br`y`
is in the arc closure. Compare this path with the path xpaqbry.
The arc db is common for these paths, so the path xpaq`bry is in
the arc closure. Since the segments q and q` start and end at
different vertices, the paths xpaqbry and xpaq`bry are different,
therefore, these are duplicate paths.

2) Figure 3 (b). The x`y`-path goes through the vertices a and
b in the reverse order: ba. Then the paths have the form xpaqbry
and x`p`bq`ar`y`, where the segments xp and bq` end at the same
vertex c, the segments q and r`y` start at different vertices, the
segments q and x`p` end at different vertices, the segments ry
and q`a start at the same vertex d. The arc bd is common for
these paths, so the path xpaqbq`ar`y` is in the arc closure.
Compare this path with the path xpaqbry. The arc ca is common
for these paths, so the path xpaqbq`aqbry is in the arc closure.
Compare this path with the xpaqbry path. Since the segment
q`aqb is not empty, the paths xpaqbry and xpaqbq`aqbry are
different, therefore, these are duplicate paths.



Fig. 3. Merging after separation.

A graph in which any normal set of host pairs can be strictly
implemented without cycles is called almost good. A graph in
which any normal set of host pairs can be strictly implemented
without cycles and without duplication is called good.

A graph in which any normal set of host pairs can be strictly
implemented without cycles is called almost good. A graph in
which any normal set of host pairs can be strictly implemented
without cycles and without duplication is called good.

A finite arc closed set of paths P connecting all pairs of
different hosts (i.e., H(P) is the largest normal set of host pairs)
will be called almost perfect if there is no path separation after
the path merging, and perfect if, in addition, there is no path
merging after the path separation. A graph will be called almost
perfect or perfect if it contains, respectively, an almost perfect
or perfect set of paths.

A sufficient condition for the strict implementation of any
normal set of host pairs without cycles and duplication can now
be formulated as the following proposition.

Proposition 7. An almost perfect graph is almost good, and
a perfect graph is good. Moreover, the almost perfect set of paths
for each normal set of host pairs contains its strict
implementation without cycles as a subset, and the perfect set of
paths for each normal set of host pairs contains its strict
implementation without cycles and without duplication as a
subset.

Proof. Since the almost perfect set of paths is finite and there
is no separation after merging, any subset of it is also finite and
there is no separation after merging, therefore, by Proposition 5,

it is arc closed and does not generate cycles. By definition, a
perfect set is almost perfect, so any subset of it is also finite, arc
closed and does not generate cycles. Since there are no merging
after separation in a perfect set of paths, there is no merging after
any separation in any of its subsets, and, according to
Proposition 6, it does not generate duplication. Given a normal
set D of host pairs and an almost perfect (perfect) set P of paths,
we can choose a subset P(D) such that H(P(D)) = D. The set
P(D) of paths strictly implements the set D of host pairs without
cycles and without duplication if the set P is perfect.



V. CONCLUSIONS

The paper shows that any set of host pairs can be
implemented on a connected graph using paths connecting the
hosts of given pairs, without the occurrence of cycles through
which packets will circulate endlessly and endlessly multiply,
and without duplicate paths, i.e. different paths connecting the
same host pairs. However, this may result in extra paths
connecting additional host pairs that are not in the given set of
pairs. If the absence of undesired paths is required, then for some
graphs some sets of host pairs are implemented only with
duplication or cycles. The requirements on the graph are
formulated and proved, which are sufficient to implement any
set of host pairs without cycles (possibly with duplication), and
without cycles and without duplication. At the same time, the
very possibility of implementing on a graph any set of host pairs
without cycles and, especially, without cycles and without
duplication seems to be a fairly strong requirement. Therefore,
we can hypothesize that these requirements on the graph are also
necessary. Confirmation or refutation of this hypothesis is one
of the areas for further research.

ACKNOWLEDGMENT

This work is partly supported by RFBR project N 20-07-
00338 А.

REFERENCES

[1] Sezer S., Scott-Hayward S., Chouhan P. K., Fraser B., Lake D., Finnegan
J., Viljoen N., Miller M. and Rao N. Are we ready for sdn?
Implementation challenges for software-defined networks IEEE
Communications Magazine, 2013, 51, 7: pp. 36-43.

[2] López J., Kushik N., Yevtushenko N. and Zeghlache D. Analyzing and
Validating Virtual Network Requests. Proc. ICSOFT2017: pp.
441-6.

[3] Yevtushenko N., Burdonov I., Kossatchev A., Lopez J., Kushik N. and
Zeghlache D. Test Derivation for the Software Defined Networking
Platforms: Novel Fault Models and Test Completeness Proc. IEEE East-
West Design and Test Symposium, EWDTS2018, N 8524712: pp. 1-5.

[4] Burdonov I. B., Yevtushenko N. V. and Kossatchev A. S. Testing switch
rules in software defined networks., Trudy ISP RAN/Proc. ISP RAS, 2018,
vol. 30, issue 6: pp. 69-88 (in Russian).

[5] Burdonov I., Kossachev A., Yevtushenko N., López J., Kushik N. and
Zeghlache D. Verifying SDN Data Path Requests, 2019, CoRR
abs/1906.03101.

[6] Boufkhad Y., De La Paz R., Linguaglossa L., Mathieu F, Perino D. and
Viennot L. Forwarding tables verification through representative header
sets, 2016, arXiv preprint arXiv:1601.07002.

