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Abstract——In this paper, we consider the synchronous 
composition of Finite State Machines (FSMs) that corresponds to 
instantaneous communication of hardware components. Such 
FSMs can be deterministic or nondeterministic, partial or 
complete. We first extend the existing synchronous composition 
operator from a pair of components to a collection of components 
with multiple input and output ports, and provide a procedure to 
compute the composition working directly on the collection of 
transition tables of the component FSMs. Then, based on the 
notion of input-output Moore pair (the output is not sensitive to 
the input), we prove the following sufficient condition: if the 
composition has the property that every cycle of ports has a 
component with a Moore pair, then the class of quasi-complete 
and quasi-deterministic FSMs is closed under the proposed 
synchronous composition.  

Keywords—Finite State Machine (FSM), quasi-deterministic 
FSM, quasi-complete FSM, Moore pair, synchronous composition  

I. INTRODUCTION 
Many complex discrete systems are organized as a 

collection of interacting components and transition system 
models are widely used for analyzing and designing such 
composed systems. There are various composition operators 
over transition systems [1-14] which are used for components 
which are reactive (actions are divided into inputs and 
outputs) and non-reactive (actions are not divided into inputs 
and outputs) or extended transitions systems such as timed and 
hybrid automata; the composition can be synchronous and 
asynchronous, etc. The main issue is to guarantee the closure 
of a given formal model under a chosen composition operator. 
In this paper, we consider the so-called synchronous 
composition of Finite State Machines (FSMs) [12] that 
corresponds to instantaneous communication of hardware 
components. An FSM describes the behavior of a system that 
moves from state to state and produces an output when an 
input is applied. Such systems, and thus, FSMs which describe 
their behavior, can be deterministic or nondeterministic, 
partial or complete. An FSM is complete and deterministic if, 
for each state and each input, there exists exactly one pair 
‘next_state, output’. To the best of our knowledge, the 
synchronous composition of FSMs was first considered in [1] 
where the authors compose Moore FSMs [15], i.e., 

deterministic complete FSMs where output values do not 
depend on input values. The composition is constructed by the 
use of a successor tree and as each component is a Moore 
FSM, the composition operator returns a Moore FSM. The 
condition was later weakened in [12, 16] (see also [11] for 
related work), where the authors prove that the synchronous 
compositions of complete deterministic FSMs is complete and 
deterministic if every composition cycle has a Moore FSM.  

Composition of two FSMs was addressed in [11]; later in 
[16], synchronous composition of many components was 
reduced to iterating the composition of two components, since 
synchronous composition over FSMs is associative. A 
sufficient condition for the composition to be deterministic 
and complete is defined for an embedded component [11]: 
internal output values of the embedded component do not 
depend on its internal input values. In [2, 6], the asynchronous 
composition of two input/output automata is defined via 
appropriate composition of component languages; the 
complete description of such operator via the language 
composition was presented in [12], and extended in [16] to the 
synchronous composition of many component FSMs. Most of 
the previous literature on synchronous composition addressed 
complete deterministic FSMs. However, in many applications 
it is important to model partial and nondeterministic 
behaviors. Therefore, in this paper we study synchronous 
composition over quasi-complete and quasi-deterministic 
FSMs. 

An FSM is quasi-complete if the set of inputs is partitioned 
into classes such that at each state exactly one input of the 
class is a defined input, i.e., for any input of a class the FSM 
will have the same defined reaction. An FSM is quasi-
deterministic if the set of outputs is partitioned into classes 
and for each defined input any output of a corresponding 
output class can be produced at once. A deterministic 
complete FSM is a particular case of an FSM that is quasi-
complete and quasi-deterministic. In [17, 18], the composition 
of n > 2 component FSMs is reduced to deriving such a 
composition of (n – 1) component FSMs. As mentioned 
above, there exist some sufficient conditions when it is the 
case. However, the only necessary and sufficient conditions 
for checking whether a binary composition of complete 



possibly nondeterministic components is complete [12] are 
based on solving an equation A • X = S over FSM where X is a 
free variable and • is the synchronous composition, and is 
related to checking whether a corresponding equation has a 
compositionally progressive solution. The problem of deriving 
the largest compositionally progressive solution is rather hard 
and in this paper, following [17, 18], we analyze when the 
class of quasi-complete and quasi-deterministic FSMs is 
closed under the synchronous composition operator, and prove 
that it is the case when every cycle over component ports has a 
Moore-pair, i.e., a pair of <input-port, output_port> of some 
component FSM such that the signal at the output port does 
not depend on the signal of the input port. Moreover, we 
define the composition directly for any number of 
component FSMs with multiple input and output ports. 

The rest of the paper is structured as follows. Section 2 
deals with FSMs and the synchronous composition of FSMs. 
An algorithm for deriving FSM composition without using 
finite automata representing FSM languages is proposed in 
Section 3. A novel sufficient condition for the synchronous 
composition of quasi-deterministic and quasi-complete FSMs 
to be quasi-deterministic and quasi-complete is proven in 
Section 4. Section 5 concludes the paper. 

II. FINITE STATE MACHINES 
In this section, we remind the main FSM concepts and 

introduce the notion of an FSM that has several input and 
several output ports. The latter is important since when 
combining FSMs where inputs and outputs are Boolean vectors 
it is exactly the case while most papers consider binary 
compositions where there are at most two input and two output 
ports.  

A. Finite State Machines with single input and output ports 
A finite state machine (FSM), often simply called a 

machine, is a quintuple A = 〈SA, XA, YA, hA, sA0〉, where SA is a 
finite nonempty set of states with the initial state sA0, XA and YA 
are input and output alphabets, and hA ⊆ SA × XA × YA × SA is a 
transition relation. We say that there is a transition from a state 
s ∈ SA to a state s'∈ SA labeled with an I/O pair x/y (an I/O pair 
xy) if and only if the 4-tuple (s, x, y, s') is in the transition 
relation hA. An FSM A is deterministic if for each state s ∈ SA 
and each input x ∈ XA, there exists at most one pair (y, s') such 
that (s, x, y, s') ∈ hA. If A is not deterministic, then it is called 
nondeterministic. An FSM A is complete, if for each state 
s ∈ SA and each input x ∈ XA there exists at least one pair (y, 
s'), such that (s, x, y, s') ∈ hA. If A is not complete, then it is 
partial. For a partial FSM A, given a state s and input x, x is a 
defined input at state s if there exist at least one pair (y, s'), 
such that (s, x, y, s') ∈ hA. The set of defined inputs at state s is 
denoted DA(s).  

As usual, the transition relation hA of the FSM can be 
extended to sequences over the alphabet XA and YA. The 
extended relation is also denoted by hA and is a subset of 
SA × XA

 *× YA
 *× SA. By definition, for each state s ∈SA the tuple 

(s, ε, ε, s) is in the relation hA where ε is the empty sequence. 
Given a tuple (s, α, β, s′) ∈ hA, α ∈ XA

 *, β ∈ YA
*, and an input 

x ∈XA and an output y ∈ YA, the tuple (s, αx, βy, s′′) ∈ hA if 
(s', x, y, s′′) ∈ hA.  

Given state s, an input/output sequence x1y1 ... xkyk, x1 ... xk 

∈ XA
*, y1 ... yk ∈ YA

*, such that (s, x1...xk, y1...yk, s′) ∈ hA, is 
called a trace of FSM A at state s. Hereafter, such a trace can 
also be written as x1 … xk / y1 ... yk using its input sequence x1 
… xk and the corresponding output sequence y1 ... yk or (x1, y1) 
… (xk, yk). The set of all traces at state s is denoted TrA(s). We 
denote TrA the set of traces at the initial state sA0, i.e., the set of 
traces of SA, for short.  

FSM A is observable if ∀ s ∈ SA ∀ x ∈ XA ∀ y ∈ YA ∀ s′, 
s′′ ∈ SA it holds that  

(s, x, y, s′) ∈hA & (s, x, y, s′′) ∈ hA ⇒ s′=  s′′. 
In other words, FSM A is observable if for each triple (s, x, y) 
∈SA×XA×YA there exists at most one state s′∈SA such that (s, x, 
y, s′) ∈ hA. Given an observable FSM A, state s ∈ SA and a 
trace x1y1 ... xkyk, x1 ... xk ∈XA

*, y1 ... yk ∈YA
*, there is at most 

one state s′ such that (s, x1...xk, y1...yk, s′) ∈hA. In fact, an FSM 
is observable if and only if the underlying automaton that 
describes the set of FSM traces is deterministic and the latter 
simplifies a lot when solving FSM analysis and synthesis 
problems. On the other hand, considering only observable 
FSMs is not a theoretical limitation, since for every 
nondeterministic FSM there exists an equivalent observable 
FSM (by subset construction) [19]. 

Given an observable FSM A = (SA, XA, YA, hA, sA0), we 
define the transition and output functions 
δA : SA × XA × YA → SA ∪ {∅} and λA : SA × XA → 2YA. For 
each pair (s, x) ∈SA × XA and y∈YA, by definition, δA (s, x, y) = 
s′ if (s, x, y, s′) ∈ hA; otherwise, δA (s, x, y) = ∅. Given the 
transition function δA : SA × XA × YA → SA ∪ {∅}, we define 
an output function λA : SA × XA → 2YA as the set of possible 
outputs at state s under input x, i.e.,  

∀ s ∈ SA ∀ x ∈ XA (λA(s, x) = { y | δA(s, x, y) ≠ ∅ }).  
By definition, for each undefined input x at state s, it holds 
that λA(s, x) = ∅. It can easily be shown that the two 
definitions of an observable FSM which are based on the 
transition relation and transition and output functions are 
equivalent. 

Consider FSM A = (SA, XA, YA, δA, sA0) where XA and YA are 
partitioned into partitions πin and πout. As usual, a class of a 
partition πin (πout) that contains an input x (an output y) is 
written as [x] ([y]). Classes of πin and πout are called input and 
output classes, correspondingly. FSM A is quasi-complete 
(with respect to the partition πin) if for each state s ∈ SA and 
class b ∈ πin, there exists a defined input x ∈ b, i.e.,  

∀ s ∈ SA ∀ b ∈ πin ∃x ∈ b (λA(s, x) ≠ ∅). 
FSM A is quasi deterministic (w.r.t. the partitions πin and 

πout) if for each state s ∈ SA and class b ∈ πin, there exists 
exactly one defined input x ∈ b for which λA(s, x) coincides 
with some class of πout, i.e., ∀ s ∈ SA ∀ b ∈ πin ∃! 
x ∈ b (λA(s, x) ≠ ∅ & λA(s, x) ∈ πout). 

Here we notice that a deterministic complete FSM is an 
observable quasi-complete and quasi-deterministic FSM with 
respect to trivial partitions where each class is a singleton. 



For an observable quasi-complete and quasi-deterministic 
FSM A = (SA, XA, YA, δA, sA0) we define three additional 
functions related to input and output partitions: 

•  γA : SA × πin → XA: for each state s∈ SA and input 
class p, the function γA associates an input x ∈ p that is 
defined at state s, i.e., 

∀ s ∈ SA ∀ p ∈ πin ( γA(s, p) = x ⇔ λA(s, x) ≠ ∅ ). 
The function γA is well defined because there is a unique x ∈ p 
such that λA(s, x) ≠ ∅. 

•  λA
^ : S × πin → πout: for each state s ∈ SA and input 

class p, the function λA
^ associates an output class, i.e.,  

∀ s ∈ S ∀ p ∈ πin (λA
^(s, p) = λA(s, γA(s, p)).  

Since λA(s, γA(s, p)) = {y} returns a unique output y, where y ∈ 
q and q ∈ πout, so q is the output class yielded by λA

^.  
•  δA

^ : SA × πin × YA → SA: for each state s ∈ SA, input 
class p, and output y of the set λA

^(s, p), the function 
δA

^ associates the next FSM state, i.e., 
∀ s ∈ SA ∀ p ∈ πin ∀ y ∈ λA

^(s, p) ∀ s' ∈ SA  ( δA
^(s, p, 

y) = s' ⇔ s' = δA(s, γA(s, p), y) ). 
The function δA

^ is well defined because A is observable and 
thus, there is a unique s' = δA(s, γA(s, p), y). 

By definition, given functions γA, λA
^, δA

^ of an observable 
quasi-complete and quasi-deterministic FSM, the functions λA

 

and δA can be derived as follows: 
If x = γA(s, [x]) then λA(s, x) = λA

^(s, [x]); otherwise, 
λA(s, x) = ∅.  

If y ∈ λA
^(s, [x]) then δA(s, x, y) = {δA

^(s, [x], y)}; otherwise, 
δA(s, x, y) = ∅. 

B. Finite State Machines with multiple input and output ports 
When a synchronous composition is derived using 

component FSMs, component FSMs may have multiple input 
and output ports which are connected with those of other 
components. Given sets Xk, k ∈ K, we define the Cartesian 
product X of these sets in the usual way: 

X = Π{ Xk | k ∈ K } = { x : K → ∪{ Xk | k ∈ K } | x(k)
 ∈ Xk, k ∈ K }. 

If πk is a partition of the set Xk, k ∈ K, then the Cartesian 
product P = Π{ πk | k ∈ K } of πk, k ∈ K, induces the Cartesian 
product π of the Cartesian product X of the sets Xk:  

π = { { x ∈ X | x(k) ∈ p(k), k ∈ K } | p ∈ P }. 
The partition π is called a component-wise partition of the set 
X. 

Let FSM A have several input and several output ports. The 
set of input ports is I, the set of output ports is J, and 
I ∩ J = ∅. For each input (output) port i ∈ I (j ∈ J), a 
corresponding alphabet Xi (Yj) is specified. Correspondingly, 
the input alphabet XA is the Cartesian product of input 
alphabets Xi, i.e., XA = Π{ Xi | i ∈ I }, and the output alphabet 
YA is the Cartesian product of output alphabets Yj, i.e.,  YA = 
Π{ Yj | j ∈ J }.  

Given x ∈ XA and an input port i ∈ I, we use x(i) for 
denoting an input at the port i while y(j) denotes an output at 
port j for y ∈ YA. Given an input port i, two inputs x and x' are 

i-adjacent, written x ∼i x', if x(k) = x'(k) for any other input port 
k, k ∈ I & k ≠ i.  

We now extend the notion of Moore pairs [1, 17, 18] to 
possibly partial and nondeterministic FSMs. Given an 
observable FSM A with the set I of input ports and the set J of 
output ports, I ∩ J = ∅, the pair (i, j), i ∈ I and j ∈ J, is a 
Moore-pair if the set of outputs at port  j does not depend on 
the input at port i, i.e., ∀ s ∈ S ∀ x ∈ X ∀ x' ∈ X  

x∼i x'  & λ(s, x) ≠ ∅ & λ(s, x') ≠ ∅ ⇒ λ(s, x)(j) = λ(s, x')(j). 
If (i, j) is a Moore pair then we write i m j, otherwise, i ₥ j. 

If A is an observable, quasi-complete and quasi-
deterministic FSM, πk is a partition of the set Xk, k ∈ K, and 
P = Π{ πk | k ∈ K } of πk, k ∈ K, is the Cartesian product of 
πk then a Moore-pair can be defined also in another way: 

∀ s ∈ S ∀ p ∈ P ∀ p' ∈ P (∀ k ≠ I 
(p (k)= p' (k) ⇒ λ^(s, p)(j) = λ^(s, p')(j)). 

Consider now non-empty subsets B ⊆ I and C ⊆ J of input 
and output ports of A. Then the limitation XA↓B of XA onto the 
set B (limitation YA↓C of YA onto C) is Π{ Xi | i ∈ B } 
(Π{ Yj | j ∈ C }). The limitation A↓B∪C of the FSM A onto B 
and C is the FSM (SA, XA↓B, YA↓C, hA↓B∪C, sA0) if hA↓B∪C= {(s, 
x↓B, y↓C, s′) | (s, x, y, s′) ∈ hA}. 

Proposition 1. If A is a complete deterministic FSM then 
every limitation of A is a complete but possibly 
nondeterministic FSM.  

Proposition 2. If A is a quasi-complete and quasi-
deterministic FSM then every limitation of A is quasi-
complete but not necessarily quasi-deterministic FSM. 

III. SYNCHRONOUS COMPOSITION OF FSMS 
Consider a system A of interacting FSMs such that the sets 

of states as well the sets of ports of component FSMs are 
pairwise disjoint. Given an FSM A ∈ A , we write 
A = (SA, XA, YA, hA, sA0). Component FSMs interact with each 
other and the environment. For this reason, an output port of a 
component FSM can be connected with an input port of 
possibly another component FSM; without loss of generality, 
we assume that any input (output) port is connected with at 
most one output (input) port. Indeed, if it is not the case, 
additional repeaters between components should be added. A 
pair <output-port, input_port> if these ports are connected is a 
channel. By default, we assume that the alphabets of the 
channel ports coincide. Input (output) ports which are not 
connected with another port are external input (output) ports. 
External ports are connected with the environment; external 
inputs are applied at external input ports while external 
outputs are produced at external output ports.  
Correspondingly,  
I = ∪{ IA | A ∈ A } is the union of the sets IA of input ports 
over all A ∈ A;  
J = ∪{ JA | A ∈ A } is the union of the sets JA of output ports 
over all A ∈ A;  
Ie ⊆ I is the set of external input ports of the system; 
Je ⊆ J is the set of external output ports of the system; 
S = Π{ SA | A ∈ A } is the system state; 



X = Π{ Xi | i ∈ I } is the set of inputs of the system while X | Ie 
limited to the set of external input ports is the set of external 
inputs of the system;  
Y = Π{ Yj | j ∈ J } is the set of outputs of the system while 
Y | Je limited to the set of external output ports is the set of 
external outputs of the system.  
Both sets Ie and Je of external input and output ports are not 
empty. 

We now define the synchronous composition •(A) with the 
input ports of the set Ie and output ports of the set Je. For each 
component FSM A, the lifting A↑I∪J is constructed where all 
the ports of the set I∪J which are not in the set of ports of A, 
are added to A. When constructing the lifting we force the 
same value for all ports which are connected by a channel. 
The intersection of extended FSMs (A↑I∪J) determines all the 
sequences which can appear at the system channels. 
Correspondingly, the external behavior is the intersection 
limitation on the set Ie ∪ Je of external ports. Three steps can 
be considered when constructing the synchronous composition 
•(A). 

 
Algorithm 1 for constructing the synchronous composition  
Input: a system A of interacting FSMs 
Output: the synchronous composition •(A ) 
Step 1. Constructing the extension A↑I∪J, A ∈ A. 
The set of input (output) ports of FSM A↑I∪J is the set 

I∪J of all input (output) ports of FSMs A ∈ A. The behavior 
relation of A is lifted to added ports as follows. Given the sets 
B (C) of input (output) ports of FSM A, let (sj, x↓B, y↓C, s'j) 
be a transition of FSM A. Then the lifted FSM A↑I∪J has the 
set of transitions {(sj, x, y, s'j): (sj, x↓B, y↓C, s'j) ∈ hA} where x 
and y are the input and output at the ports of the sets I and J. If 
two ports are connected via a channel in the composition then 
each transition with different values at these ports is deleted 
from the behavior relation of A↑I∪J.  

By definition of the lifting operator, the following 
statement holds.  

Proposition 3. Given input x (output y) at the ports of the 
set I and J, FSM A↑I∪J, A ∈ A, has transition (sj, x, y, s'j) if 
and only if the items of x and y at the ports connected with a 
channel are the same and FSM A has transition (sj, x↓B, y↓C, 
s'j) where B and C are the sets of input and output ports of 
FSM A. 

Step 2. Constructing FSM ⊙( A ) = ∩ {A↑I∪J | A ∈ A}. 
The lifted component FSMs are intersected and the FSM ⊙(A) 
= ∩ {A↑I∪J | A ∈ A}, is called the global composition FSM. 
Given x (y) at the ports of the set I(J), the FSM has a transition 
(s1… sn, x, y, s'1… s'n) if and only if each FSM A↑I∪J has a 
transition (sj, x, y, s'j), A ∈ A. Moreover, if two ports are 
connected via a channel in the composition then each 
transition with different values at these ports is deleted. Thus, 
the following statement holds. 

Proposition 4. Given input x (output y) at the ports of the 
set I(J),  the FSM ⊙( A ) = ∩ A↑I∪J, A ∈ A, has a transition 
(s1… sn, x, y, s'1… s'n) if and only if each FSM A, A ∈ A, has a 

transition (sj, x↓B, y↓C, s'j) where B and C are the sets of input 
and output ports of FSM A,  A ∈ A, and the values of x and y 
at the ports connected with a channel coincide. 

Step 3. Constructing FSM •(A). 
The limitation of the FSM ⊙( A ) onto external input and 

output ports is derived. The FSM •(A) is the synchronous 
composition of FSMs A,  A ∈ A. 

Due to the definition of the limitation operator, the 
following statement holds. 

Proposition 5. The behavior of FSM •( A ) at state s1… sn 
is defined under input x↓Ie if and only if the global 
composition FSM ⊙( A ) has a transition (s1… sn, x, y, s'1… 
s'n).  

If the synchronous composition of two component FSMs is 
considered then the FSM •(A) is equivalent to the FSM which 
is derived by composing FSM languages first and then coming 
back to FSMs [12, 16].  

Example 1. Consider FSMs S and P in Figs. 1a and 1b 
with transition relations in Table 1 where port numbers are 
shown in bold. 

The FSM S has three input ports and two output ports. All 
the ports have the same alphabet {0, 1}. The output signal 2 = 
1 ⊕ 6, i.e., the output signal 2 does not depend on the input 
signal at port 3; therefore, the pair (3, 2) is a Moore pair. The 
output signal 7 = 1 ∨3, i.e., the output signal 7 does not 
depend on the input signal at port 6; therefore, the pair (6,7) is 
also a Moore pair. In the FSM P, 8 = 4 ⊕ 9, 5 = 9, i.e., (4, 5) 
is a Moore pair in this machine. Dotted lines in Fig. 1 show 
the dependency between signals at input and output ports. 

 

 
                          a)                                               b) 

Fig 1. FSM S (a) and (b) FSM P 
 

Table 1 – Transitions relations of FSMs S(a) and P(b) 

1 3 6 2 7 
0 0 0 0 1 
0 0 1 1 1 
0 1 0 0 1 
0 1 1 1 1 
1 0 0 1 0 
1 0 1 0 0 
1 1 0 1 1 
1 1 1 0 1 

 

 4 9 5 8 
0 0 0 1 
0 1 1 0 
1 0 0 0 
1 1 1 1 

 

(a)  (b) 
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8 

9 



Consider the system of interacting FSMs in Figure 2 that 
has external input ports 1 and 9 and one external output port 8 
and construct the synchronous composition S • P. 

 

 
Fig. 2. The system of interacting FSMs S and P that has 

external input ports 1 and 9 and one external output port 8 
 

Table 2 – Transitions relations of FSM S (a) lifted to ports 
4, 5, 8 and 9 and P(b) lifted to ports 1, 2, 3, 6, 7 

 
1 3 6 2 7 4 9 5 8 
0 0 1 1 1 1 0 0 0 
0 0 1 1 1 1 1 0 0 
0 0 1 1 1 1 0 0 1 
0 0 1 1 1 1 1 0 1 
0 1 1 1 1 1 0 1 0 
0 1 1 1 1 1 1 1 0 
0 1 1 1 1 1 0 1 1 
0 1 1 1 1 1 1 1 1 
1 0 0 1 0 1 0 0 0 
1 0 0 1 0 1 1 0 0 
1 0 0 1 0 1 0 0 1 
1 0 0 1 0 1 1 0 1 
1 1 1 0 1 0 0 1 0 
1 1 1 0 1 0 1 1 0 
1 1 1 0 1 0 0 1 1 
1 1 1 0 1 0 1 1 1 

 

 1 3 6 2 7 4 9 5 8 
0 0 0 0 0 0 0 0 1 
0 1 0 0 0 0 1 1 0 
0 0 0 1 0 1 0 0 0 
0 1 0 1 0 1 1 1 1 
0 0 1 0 1 0 0 0 1 
0 1 1 0 1 0 1 1 0 
0 0 1 1 1 1 0 0 0 
0 1 1 1 1 1 1 1 1 
1 0 0 0 0 0 0 0 1 
1 1 0 0 0 0 1 1 0 
1 0 0 1 0 1 0 0 0 
1 1 0 1 0 1 1 1 1 
1 0 1 0 1 0 0 0 1 
1 1 1 0 1 0 1 1 0 
1 0 1 1 1 1 0 0 0 
1 1 1 1 1 1 1 1 1 

 

(a)  (b) 
 
Lift the transition relation of S to ports 4, 5, 8 and 9 and 

leave only vectors which have the same value for ports 2 and 
4, 3 and 5, 6 and 7. The transition relations of lifted FSMs are 
shown in Table 2. Lift the transition relation of P to ports 1, 2, 
3, 6, 7 and leave only vectors which have the same value for 
ports 2 and 4, 3 and 5, 6 and 7; in Table 2 those vectors are not 
greyed. The intersection of lifted FSMs has four vectors 
shown in bold in Table 2. Its limitation to external input ports 
1 and 9 and external output port 8 provides the transition 
relation {0 0 0, 0 1 1, 1 0 0, 1 1 0}. We notice that the 
obtained composition of two deterministic FSMs is complete 
and deterministic since each cycle in the composition has a 

Moore pair. This feature is proven as the corollary to Theorem 
10. Here we notice that if all the ports have the alphabet {0, 1} 
and states are represented as Boolean vectors, it would be 
interesting to get more scalable formulas for obtaining the 
composition transition relation but this needs more research. 

IV. SYNCHRONOUS COMPOSITION OF OBSERVABLE QUASI-
COMPLETE AND QUASI-DETERMINISTIC FSMS  

 In general, the behavior of a system is described by an 
incomplete FSM, i.e., FSM components of a synchronous 
composition can be incomplete. In order to escape deadlocks 
which can occur according to such incompleteness, restrictions 
on component FSMs are required. In this section, we consider 
a special class of quasi-complete and quasi-deterministic FSMs 
and show that the synchronous composition of observable 
quasi-complete and quasi-deterministic component FSMs is 
observable quasi-complete and quasi deterministic if every 
cycle in the global FSM ⊙( A ) has a Moore pair. As a 
deterministic complete FSM is a particular case of an 
observable quasi-complete and quasi deterministic FSM, the 
synchronous composition of deterministic complete FSMs is a 
deterministic complete FSM if every cycle in the global FSM 
⊙( A ) has a Moore pair.   

A. The dependency graph 
Consider the synchronous composition of observable 

quasi-complete and quasi deterministic FSMs A, A ∈ A, and 
the global composition FSM S = ⊙(A ) that has the sets I and J 
of input and output ports. Every Moore pair of each 
component FSM A, A ∈ A, is a Moore pair of the FSM S = 
⊙(A ). A sequence of pairs <input_port, output_port> of 
component FSMs is a path in the FSM S if starting from the 
second pair the input port of each pair is connected with the 
output port of the previous pair. As usual, a path is a cycle if 
the output port of the tail pair is connected with the input port 
of the head pair.  

In this paper, we establish the following sufficient 
condition: if the composition has the property that every cycle 
of ports has a component with a Moore pair then the FSM •( A 
) also is an observable quasi-complete and quasi deterministic 
FSM. In order to prove this condition, given FSM ⊙(A ), we 
construct a special dependency graph Gdep. The nodes of the 
graph are all the ports of the FSM ⊙(A) and for each 
component FSM Ak, Ak ∈ A, there are two special nodes. The 
node labeled with sk corresponds to a current state of the 
component FSM Ak, while the node labeled with s′k 
corresponds to the next state of the component FSM Ak, 
Ak ∈ A.  

The graph has the following edges.  
1) If a pair <output_port, input_port> is connected by a 
channel, then there is an edge from the output port to the input 
port in the graph.  
2) If a pair <input_port, output_port> belongs to some 
component FSM Ak, Ak ∈ A, and is not a Moore pair in A, then 
there is an edge from the input port to the output port in the 
graph; there also is an edge from the input port to the node s′k. 
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3) Given the node sk that corresponds to the current state of Ak, 
the graph has an edge from the node sk to the node s′k and each 
output port of Ak, Ak ∈ A. A node s′k, Ak ∈ A, has no outgoing 
edges.  

We now show that if every cycle in the FSM ⊙(A) has a 
Moore pair then the graph Gdep is acyclic and this allows us to 
introduce special composition functions such that the output 
function for the output class is uniquely defined by the 
component FSM states and external input values. 

Proposition 6. The graph Gdep is an acyclic graph if every 
cycle in the FSM ⊙( A ) has a Moore pair. 

Proof. Assume that the graph is not acyclic while every 
cycle in the FSM ⊙( A ) has a Moore pair. By construction, 
there are no incoming edges in the nodes of Gdep which 
correspond to input ports of the FSM ⊙( A ) and current states 
of the component FSMs. On the other hand, there are no 
outgoing edges in the nodes of Gdep which correspond to 
output ports of the FSM ⊙( A ) and next states of the 
component FSMs. Correspondingly, every cycle in the graph 
does not traverse nodes-states and is an interchanging 
sequence of pairs <output_port, input_port> connected by a 
channel and pairs <input_port, output_port > of some 
component FSM, i.e.,  is a cycle in the FSM ⊙(A). Since by 
construction graph Gdep has no Moore pairs, this contradicts 
the hypothesis. 

� 
As usual, the nodes of an acyclic graph can be ranked 

starting from nodes corresponded to external inputs and nodes 
sk corresponded to a current state of Ak, Ak ∈ A. This ranking is 
used in the next section.  

B. A closure condition on the synchronous composition of 
observable quasi-complete and quasi-deterministic FSMs 
Consider now a system A of interacting FSMs where each 

component FSM A ∈ A is observable quasi-complete and 
quasi-deterministic. In order to show that the synchronous 
composition also possesses these features we first prove three 
statements. In this section, we use additional notations for the 
case when all the component FSMs are observable quasi-
complete and quasi-deterministic. We denote by 
P = Π{ πi | i ∈ I } the set of input classes of the FSM ⊙( A ) 
and by Pe = { p | Ie | p ∈ P } the set of external input classes. 
In the same way, Q = Π{ πj | j ∈ J } is the set of output classes 
of the FSM ⊙( A ), and Qe = { q | Je | q ∈ Q } is the set of 
external output classes. Given a port m ∈ I ∪ J \ Ie \ Je, r(m) is 
the port connected with port m, and r(M), M ⊆ I ∪ J \ Ie \ Je, is 
the set of such ports { r(m) | m ∈ M }, where 
M ⊆ I ∪ J \ Ie \ Je. We also denote a(m) an FSM A ∈ A with 
the port m ∈ I ∪ J.  

Given pe ∈ Pe and s ∈ S, the following system (1) of 
equations with respect to variables p(i), i ∈ I, and q(j), j ∈ J, is 
considered: 

p(i) = pe(i), i ∈ Ie, 
p(i) = q(r(j)), i ∈ I \ Ie,    (1) 
q(j) = λ^

a(j)(s(а(j)), p | I(a(j)))(j).   

The second equation specifies that for two ports connected by 
a channel, the same classes are associated. The third equation 
specifies the class q(j) = λ^

a(j)(s(а(j)), p | I(j))(j) that is the 
result of the function λ^

a(j) for the component FSM a(j) at the 
port j where p is the class value at the input ports of FSM a(j). 

In fact, a solution to this system associates with each 
output port j a class q(j) that is specified by the function λ^

a(j) 

of FSM a(j) at state s(a(j)) for input class p↓I(j) limited to the 
set I(j) of input ports of the FSM which are not Moore pairs 
with port j.  

Proposition 7. Given pe ∈ Pe and s ∈ S, the system (1) of 
equations with respect to variables p(i), i ∈ I, and q(j), j ∈ J, is 
solvable and has a unique solution such that 

q(j) = Λ^
j(s, pe), j ∈ J, 

p(i) = pe(i), i ∈ Ie, 
p(i) = Λ^

r(i)(s, pe), i ∈ I \ Ie 
In other words, for each output port j, j ∈ J, q(j) is 

computed by a well-defined function Λ^
j : S × Pe → πj that 

depends on the state s of the system and classes pe which are 
associated with external input ports.  

Proof. As usual, we say that a node of an acyclic graph 
Gdep is ranked by k, if k is the maximum distance from this 
node to nodes without incoming nodes. For those nodes, k = 0. 
Moreover, if Gdep has at least one edge, then the graph has a 
node of rank 1. It is well known that all the incoming edges of 
a node of rank k > 0 have starting nodes with rank less than k. 
Due to the graph definition, a node has rank 0 if this node is 
an external input port or this node corresponds to a current 
state sk of a component FSM Ak ∈ A.   

For proving the statement, we use the induction on port 
ranks of the graph Gdep. Given an external input port i ∈ Ie, the 
class p(i) = pe(i) is associated with the port, and thus, the 
induction base holds. 

Induction assumption. We now assume that the statement 
holds for all ports of rank at most n > 0 and prove the 
statement for the port of rank (n + 1) (if there is such a port). 

If n is odd then each port i of rank (n + 1) is an input port 
that has a single incoming edge from the port r(i) of smaller 
rank that is connected with this port by a channel. For each 
such port we have p(i) = q(r(i)). 

If n is even then each port j of rank (n + 1) is an output port 
that has incoming edges from input ports of this component 
FSM a(j) and all these ports have ranks ≤ n. We associate to 
each port j the class q(j) = λ^

a(j)(s(j), p | I(j))(j). For each input 
port of the FSM a(j) it holds that ∀ i ∈ I(j) \ Ie (p(i) = q(r(i)) ). 

All the ports of the set r(I(j) \ Ie) have rank at most n, since 
there is an incoming edge from such a port to the port j in the 
graph. Thus, due to the induction assumption, for each 
i ∈ I(j) \ Ie it holds that q(r(i)) = Λ^

r(i)(s, pe). 
Given λ^

a(j)(s(j), p | I(j))(j), we consider each pair 
(i, p(i)) ∈ p ↓ I(j)) and replace p(i) by Λ^

r(i)(s, pe). As a result, 
we obtain that for each output port j of rank (n + 1) the class 
q(j) is computed by a well-defined function Λ^

j(s, pe). 
� 

 



Consider the system (2) of equations over x(i), i ∈ I, and 
y(j), j ∈ J \ Je: 

x(i) = γa(i)(s(a(i)), p | Ia(i))(i) , i ∈ I,  (2)  
y(j) = x(r(j)), j ∈ J \ Je.   

The first equation states that x(i) = γa(i)(s(a(i)), p | Ia(i))(i), i ∈ I, 
that is we associate to each input port i a function x(i), where x 
is specified by the function γa(i) of FSM a(i) at state s(a(i)) for 
the input class p | Ia(i) and x(i) ∈ p(i). The second equation 
states that for two ports connected with a channel, the same 
values are associated. 

Proposition 8. System (2) of equations is solvable with 
respect to x(i), i ∈ I, and y(j), j ∈ J \ Je: it has a unique solution 
x(i) = Γi(s, pe), i ∈ I, where Γi : S × Pe → Xi is a function that 
depends on the state s of the system and classes pe associated 
with external input ports while y(j) = x(r(j)).  

Proof. We consider the function x(i) over the set I of input 
ports: ∀ i ∈ I (x(i) = γa(i)(s(a(i)), p | Ia(i))(i)). 

If i ∈ Ia(i) ∩ Ie, i.e., i is an external port, then by hypothesis, 
it holds that p(i) = pe(i). If i ∈ Ia(i) \ Ie then p(i) = q(r(i)) where 
according to Proposition 7, q(r(i)) = Λ^

r(i)(s, pe). 
Given γa(i)(s(a(i)), p | Ia(i))(i), we consider each pair 

(i, p(i)) ∈ p↓Ia(i) and replace p(i) by Λ^
r(i)(s, pe). As a result, we 

obtain that x(i) is defined by a well-defined function Γi(s, pe).  
For each non-external output port, according to the 

statement conditions, it holds that y(j) = x(r(j)). 
� 

Let all the functions associated with ports of the graph Gdep 
be solutions to systems (1) and (2) of equations and 
ye(j) ∈ q(j), j ∈ Je. Consider the system (3) of equations over 
y(j), j ∈ Je, and s'(A), A ∈ A, where s'(A) is the next state of the 
component FSM A: 

y(j) = ye(j), ye(j) ∈ q(j), j ∈ Je,    
s'(A) = δ^

A(s(A), p | IA, y | JA).   (3)  
Proposition 9. System (3) of equations is solvable with 

respect to y(j), j ∈ Je, and s'(A), A ∈ A: it has a unique solution 
s'(A) = ∆^

A(s, pe, y | Je), where ∆^
A : S × Pe × Ye → SA is a 

function that depends on the state s of the system, external 
input classes pe and outputs ye, which are associated with 
external output ports.  

Proof. According to Proposition 8, we associate to each 
external output port j the class y(j) = ye(j). For each component 
FSM A ∈ A, the next state s'(A) is equal 
to δ^

A(s(A), p | IA, y | JA), where y ↓ JA ∈ λ^
A(s(A), p ↓ IA). 

According to the system of equations (1), p(i) = pe(i), 
i ∈ IA ∩ Ie, and p(i) = q(r(i)), i ∈ IA \ Ie. By Proposition 7, 
q(r(i)) = Λ^

r(i)(s, pe). 
For an external output port j, y(j) = ye(j), j ∈ JA ∩ Je, and 

y(j) ∈ q(j). For a non-external output port j, according to 
Proposition 8, y(j) = x(r(j)) = Γr(j)(s, pe). 

Given Λ^
r(i)(s, pe), we consider each pair (i, p(i)) ∈ p | IA 

and replace p(i) by Λ^
r(i)(s, pe), while for each pair (j, y(j)) 

output y(j) is replaced by Γr(i)(s, pe). 
As a result, we obtain that s'(A) is computed by a well-

defined function ∆^
A(s, pe, ye).  

� 

Propositions 7 – 9 imply the following: 
1) Inputs x at external input ports and classes q | Je of 

external output ports are uniquely defined by state s of the 
FSM ⊙(A) and external input port classes p | Ie; 

2) The next state s' of the system is uniquely defined by 
state s of the FSM ⊙(A), external input port classes p ↓ Ie, and 
outputs y ↓ Je at external output ports of the classes q ↓ Je. 

The latter means as follows: 
1) There exists the function Γ : S × P ↓ Ie → X ↓ Ie such 

that ∀ s ∈ S ∀ p ∈ P ↓ Ie  
Γ(s, p) = { (i, Γi(s, p)) | i∈ Je }; 
i.e., the function Γ is complete and unique, along with 
Γ(s, p) being within the corresponding class. 

2) There exists the function Λ^ : S × P | Ie → Q | Ie such 
that ∀ s ∈ S ∀ p ∈ P ↓ Ie  

Λ^(s, p) = { (j, Λ^
j(s, p)) | j∈ Je }; 

i.e., the function Λ^ is complete and unique, along with 
Λ^(s, p) being within the corresponding class. 

3) There exists the function ∆^ : S × P | Ie × Y | Je → S 
such that ∀ s ∈ S ∀ p ∈ P ↓ Ie  

∀ y ∈ Λ^(s, p)↓ ∆^(s, p) = { (A, ∆^
A(s, p)) | A ∈ A }, 

i.e., the function ∆^ is complete and unique and, for each 
y, it is within the class Λ^(s, p). 

As the above functions correspond to classes over external 
input and output ports, the set of observable quasi-complete 
and quasi-deterministic component FSMs is closed under the 
synchronous composition when every cycle in the global FSM 
⊙( A ) has a Moore pair, i.e., the following statement holds.  

Theorem 10. The synchronous composition of observable 
quasi-complete and quasi-deterministic component FSMs is 
observable, quasi-complete and quasi deterministic if every 
cycle in the global FSM ⊙( A ) has a Moore pair.  

For deterministic complete FSMs, corresponding partitions 
are trivial containing only singletons and thus, the following 
statement holds as a corollary to Theorem 10. 

 
Corollary. The synchronous composition of complete and 

deterministic component FSMs is complete and deterministic 
if every cycle in the global FSM ⊙(A ) has a Moore pair. 

The corollary to Theorem 10 generalizes most of the 
existing results when the synchronous composition of 
complete and deterministic FSMs is a complete deterministic 
FSM. However, this requirement is only a sufficient condition, 
since in [12] there are examples when the condition does not 
hold but the synchronous composition of complete and 
deterministic FSMs is a complete deterministic FSM. 

V. CONCLUSIONS AND FUTURE WORK  
In this paper, we investigate multi component synchronous 

composition of FSMs; we extended the existing synchronous 
composition operator from a pair of components to a 
collection of components with multiple input and output ports, 
and provided a procedure to compute the composition directly 
from the transition tables of the component FSMs. More 
research is needed to evaluate the complexity of the proposed 
procedure; however, it seems that a scalable FSM 



representation by logic circuits can be used when each port 
alphabet is Boolean. Another interesting question is whether 
Algorithm 1 can be applied also to more expressive models 
like timed FSMs and other extensions.  

Furthermore, in this paper we study the synchronous 
composition of quasi-complete and quasi-deterministic FSMs, 
a subclass of partial and nondeterministic FSMs, whereas 
most previous investigations were restricted to complete and 
deterministic FSMs. In this paper, we consider multi 
component compositions where each component FSM is an 
observable quasi-deterministic and quasi-complete FSM and 
can have multiple input and output ports; the synchronous 
composition operator is defined over such FSMs. We then 
prove that the set of observable quasi-deterministic and quasi-
complete FSMs is closed under synchronous composition if 
every cycle over component ports has an input-output Moore 
pair (the output is insensitive to the input). Future research 
includes studying the problem of finding the unknown 
component over quasi-complete and quasi-deterministic 
FSMs.  
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